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Canonical density matrix for free electrons moving on a spherical surface
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The energy levels and eigenfunctions for electrons that are confined to moving on the surface of a

sphere but are otherwise free are utilized to calculate the corresponding canonical density matrix. This

matrix is then expanded in an asymptotic series for a large sphere radius R. The leading term naturally

corresponds to free electrons moving on a plane and the first correction term to this, 0 (R ), is exhibit-

ed explicitly. This matrix is then utilized to construct both the Dirac density matrix and the Green func-

tion in the same approximation. This Green function, in relation, say, to K-doped C«, where added

electrons are localized near the surface of a sphere, serves to emphasize first the quasi-two-dimensional

character of the motion, and then to exhibit the corrections for a finite ball radius.

PACS number(s): 31.10.+z

I. INTRODUCTION

where P, complex in general, can be thought of formally
as a time variable, or, alternatively, in statistical mechan-
ical language, as (ks T) . From the Schrodinger equa-
tion, it then follows that C satisfies the Bloch equation

~C(, t)C(r, r', P) (1.2)

with the condition for the completeness of the set of

There is now good evidence that if solid C60 is doped
with an alkali metal, say K, the donated electrons are
rather localized near the surface of the molecule [1,2].
This has motivated us to consider a model problem of
electrons confined to move on the surface of a sphere of
radius R but otherwise free. This model has also been
treated by Gedik and Ciraci [3]. However, whereas these
workers were concerned with approximating the Green
function for small energy, our focus here is the canonical
density matrix, defined precisely in Eq. (1.1) below. This
is intimately related to the Feynman propagator, where
the variable P in the Bloch equation (1.2) is replaced by
it /A, with t the time. We shall first give an exact expres-
sion for the canonical density matrix in Sec. II, while in
Sec. III an asymptotic expansion is developed for a large
sphere radius. This result is then utilized in Sec. IV to
obtain an analogous expansion for the Dirac density ma-
trix, while Sec. V gives the corresponding Green func-
tion.

First, however, let us summarize the definition of the
canonical density matrix C for a system of independent
electrons described by a one-electron Hamiltonian &,.
Suppose the eigenfunctions of %, are g (r) with corre-
sponding eigenvalues e.. Then the canonical density ma-
trix C(r„rz,P) is defined as

C(r„rz', P) = g g (r, )g~ (r2)exp( Pej ), —

eigenfunctions QI(r) being embodied in the boundary
condition

C(r„r2,P=O)=5(r, —r2) . (1.3)

In our recent paper [4], one can find references to earlier
use of C in condensed matter studies, as well as results
concerning this matrix for free electrons moving in D-
dimensional Cartesian space, with arbitrary D.

Below, we shall exhibit explicitly the exact solution of
Eq. (1.2) satisfying the condition (1.3) for the admittedly
very simple model problem of free electrons moving on a
spherical surface.

II. CANONICAL DENSITY MATRIX
FOR THE SPHERE MODEL

First, let us set down the solutions of the Schrodinger
equation for free electrons moving on the surface of a
sphere of radius R. To do so, we recall this equation for
the free-electron Hamiltonian 8o in three-dimensional
(3D) space in spherical polar coordinates (r, 8,$), name-

ly,

fi&op= r +—g =eg, (2 1)
1 c} p Bf 1'

r2 Br Br r2

is solved in terms of the spherical harmonics, obeying the
orthogonality and normalization

f d 0 Yi (O)Yt. .(Q)=5tt5
4n

and closure relations

(2.3)

where the operator 1 acts on coordinates 8,$ only. Its
eigenequation

1 Y( (8,$}=1(l+1)Yt (8,$),
1=0,1,2, . . . , m = —1, —1+1, . . . , 1, (2.2}
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g Yi' (Q)Y( (Q')=5(Q —Q') .
I, m

(2.4)

Assuming that electrons are allowed to move only on
the surface of the sphere, f(r, 8,$) is to be replaced by
f(R, 8,$) while dil'erentiations with respect to r are to be
set equal to zero. Hence Eq. (2.1) for the present model is
then reduced to read

This is the point to return to the general definition (1.1}
and to note, since in the present case j= (l, m), that the
canonical density matrix of the model becomes

Co"'(ri, rz', P)= g exp[ PE—a 1(1+1)]
E=O

I
X g R Y)m(8i, g, )Ym(8~$z),

P
P(R, 8,$)=eg(R, 8,$)

2me R
(2.5)

m= —l

(2.10)

with solution, according to Eq. (2.2):

1 fi l(1+1)
2m, R

normalized on the spherical surface such that

f,d'~A'mAm = f, R'd'Q
R R

(2.6)

where

r;=Rn;, ~n, ~

=1, n;=n(8;, P;), i =1,2 . (2.11)

Due to the closure relation (2.4), the boundary condition
(1.3) is fulfilled by Co"' given in Eq. (2.10). The second
sum in Eq. (2.10) is known to be

I

Ym(n, ) Y&m(nz)=(21 +1)(4n ) 'Pi(n, nz), (2.12)
m= —I

II'Smm' ' (2.7)

It is to be noted that this normalization remains meaning-
ful in the R ~ oo limit (i.e., the fiat 2D case).

Introducing as the unit for the kinetic energy on the
sphere:

S
n&.n2=1 —2 (2.13)

where P&(z) is the Legendre polynomial. Using the
definition (2.11),we obtain for its argument in Eq. (2.12):

'2 2

2m, R
(2 g) where

s=/r, —r, /
. (2.14)

the eigenenergy in Eq. (2.6) may be rewritten as

ei =Eel(1 +1) . (2.9)
After substituting Eq. (2.13) in Eq. (2.12) and further into
Eq. (2.10), we then find

Co"'(r„rz,P}=Co"'( ~r,
—rz ~

=s;P)

=(4mR )
' g exp[ PEal(1 +1)—](2l +1)P& 1 —2

1=0 2R

'2 '

(2.15)

The result (2.15) represents the exact canonical density
matrix for free electrons moving on the spherical surface
of radius R. Its form corresponds precisely to the result
of Gedik and Ciraci [3] for the Green function of the
same model [see definition (5.1) below].

III. EXPANSION OF CANONICAL DENSITY
MATRIX (2.15) FOR LARGE R

Pi(1 —2x) =F(—l, l +1;1;x), (3.1)

Our main aim below is now to demonstrate that the
sum over l in Eq. (2.15) can, in fact, be carried out in the
limit of large R. Specifically, it will be shown that
C&~&"~{s;P) in Eq. (2.15) can be evaluated in closed form as
an asymptotic series in powers of R

The first step in the derivation is to find a representa-
tion of PI, appropriate for its argument exhibited in Eq.
(2.15). Writing Pi in terms of the hypergeometric func-
tion F(a,P;y;z} as

C&+~ {s;P}= {4mR ~ } i g exp[ PE& 1{1 + 1)](2—1 + 1)
1=0

I

Xg pi„
n=0

S

2R

2

(3.4)

Next, the change in the order of the summation over I
and n in Eq. (3.4) can be carried out because of the finite

we have it as a polynomial of lth order in x, namely,

I

P&(1 —2x)= g (
—1)"p&„x", (3.2)

n=0

where

fk

plo= 1, p,„= g (1+j), n =1,2, . .., 1 .(n)), =i „
(3.3)

Utilizing this result, Eq. (2.15) can be rewritten as
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range of n there:

C' '(s;P)=(4mR )
n=0

S

2R

2 n

This result (3.8) is still exact for the sphere model. It is to
be noted that the dependence on R enters via the argu-
ment of Q„.

In the Appendix we evaluate Q„(g ) as an asymptotic
power series in g . The result derived there is

x g (21+1)p,„
1=n

Xexp[ PE—~ I ( I + 1)] .

(3.5)

Q„(g )=1+—,'(1 n—g +O(g ),

which inserted into Eq. (3.8) yields

(3.10)

Introducing the parameter

(3.6)
Co '(s;P)=(2mP) 1

n=o "'
n

$2

where

p=pfi /m, (3.7)
X 1+—'(1 n)—

2R

has dimensions of length squared, we can rewrite Eq.
(3.5), by multiplying and dividing it by n!P"+" and
making use of Eq. (3.3), to obtain

+0
2R

2

(3.11)

C(')"'(s;P) =(2ng) 1

0 n!

where

Q„(P/2R '), (3.8)
2P

It can readily be verified that the summation occurring
above can be expressed in closed form:

oo

Q„(g )=, g exp[ —
g l(1+1)](2'"+"(/+,')

n 'I

n

x g (1+j) .
j=1—n

00

n y"=(y+y )exp(y)
0 n!

(3.9) and thus Eq. (3.11)can be rewritten as

(3.12)

Co '(ir, —rz =s;P)=(2~P) 'exp( —s /2P) 1+—,
'

2

+1— +0
s 2P

S

2R

4

(3.13)

where P is given by Eq. (3.7).
Equation (3.13) represents the main result of the

present investigation. When compared with the "Oat"
two-dimensional result [4]

Co (s;P)=(2irP) 'exp( —s /2P), (3.14)

IV. CALCULATION OF CORRESPONDING
DIRAC DENSITY MATRIX

The Dirac density matrix for the system of nonin-
teracting electrons is defined (see, e.g., Ref. [5]) in a paral-
lel way to the canonical density matrix C(r„rz,p) in Eq.
(1.1), namely,

p(ri r2'E)=X Pj (rl)le (r2)e(E GJ ), —(4.1)

we see that the leading term (R ~ oo ) of Co ' coincides
with Eq. (3.14). The role of "curvature" is to yield, of
course, an R-dependent correction, the term of O(R )

being the leading term.

where e(x) denotes the usual unit step function.
Having C(r„rz,'P), one can determine p(r&, r2', E) for

the same system by applying an inverse Laplace trans-
form, the two matrices being related by [5]

(4.2)

where co is an occupancy factor which is 2 for spin-
compensated systems and otherwise unity. Knowledge of
the density matrix for free electrons permits one to obtain
the kinetic- and exchange-energy densities and is also use-
ful for further density-functional investigations of an in-

teracting electron system in the local-density approxima-
tion. This is the motivation then for obtaining the Dirac
matrix for the sphere model too.

Applying the relation (4.2) to the canonical density ma-
trix Co ' in the form (3.13) and using tables of inverse La-
place transforms [6], we then find for the Dirac matrix of
the sphere model:

X&p(r, , rz) = J dE p(r, , r2, E )exp( PE)—
0

=coP 'C(r„r~;P),
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p' ' ~r —r ~=s;E= k =co(2ns ) skJ (sk)+-R 2 2 $
0 1 2 3 2Rme

~ T ~ 4
s+0

2

Jo(sk}+—skJ, (sk) ——(sk) J2(sk)
1 1

{4.3)

where J„(z) is the Bessel function of the first kind. For
small ~z~, this function is given by the series

1 z 1 z
I (v+1) 2 (v+1) 2

~ ~ ~ 4 r

+0 z
2

We can thus obtain po '(s;E}in the region of small s as

(4.4)

p' '(s'E)= k 1 ——k s +O(k s )
co 1

4m 8

+— [1+O(k s )]
3 E

+0 ER
(4.5)

The diagonal element of Eq. (4.5), which is the electron
number per unit area, and denoted by n0"', can evidently
be written as

n'"'(E) =p' '( ~r,
—

r2~ =0;E )

1+— +0co meE 1 ER2n'
I 2 ~

ER
(4.6)

E»-E„. (4.7)

This is in agreement with intuition that the Fermi energy
I

It should be noted that the expressions (4.3) and (4.6) con-
stitute asymptotic expansions, just as the main result for
Co '. From Eq. (4.6} it can be seen that the two-term
form can yield a good numerical approximation to
no"'(E} provided the Fermi energy E of the system
satis6es

must lie in the region of the eigenenergies e& in Eq. (2.9),
with large quantum number /, if the dependence on
discrete levels is smeared out in the functions obtained.
The result for no

' as a function of E in Eq. (4.6) can be
inverted to yield

r

2

E 2 TA ~a) 1
1 N +0 CO

4 R 2n(R) 4~R2n~R)

V. CORRESPONDING CALCULATION OF
GREEN FUNC:TION

To make contact with the study of Gedik and Ciraci
[3], who worked solely with the Green function, let us
note next that knowledge of the canonical density matrix
C(r„r2,p) defined in Eq. (1.1) allows one to calculate the
Green function. This is taken to be defined as

1
G(ri r2»} g 1( {rl}4'{12}

a11 j j
(5.1)

for complex energy z. Here, in Eq. (5.1},we take ej &0
by appropriate choice of a constant in the potential ener-

gy.
The relation between C and G is then

G(r&, rz, E)= —J d—P exp( —PE)C(r&, r2,'P)
0

XzC(r&, r2), — (5.2)

where XE evidently denotes the Laplace transform, with
transformed variable E ( & 0).

Applying this relation to Co"' as given in Eq. (3.13}and
using tables of Laplace transforms [6], we find

(4.8)

When this result is inserted into Eq. (4.3), it yields the
density matrix in terms of the particle density n0"', thus
allowing further density-functional applications.

me 1Eo(sk)+—G fr —r /=s; E=-(R) g2k 2

0 1 2
2

sk
sk Ei (sk)+ED(sk) +0 s

2R

4

, (5.3)

where E„(z}denotes the modified Bessel function of the third kind. Knowing the expansions for small ~z~, namely,

&0(z)= —lnz+a+ —,'z ( —lnz+a+1)+O(z lnz),

K&(z)=z '{1+—,'z (lnz —a —
—,')+O(z lnz)],

(5 4)

where & =ln2 —y =0.115931, with y equal to Euler's constant, we can rewrite the Green function G0"' for small s k
as
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—m, Z2Go i(~r& —
r2~ =s; E—)= —ln(sk)+a+ —k s [

—ln(ks)+a+1]+0{k s ln(ks))

+— 1 —k s +O(k s ln(ks)) +O((E /E) )
' . (5.5)

m, ERG' '(s; E)= — +ln
2m''

+1
2R

Noting a similarity between the expansions (5.5) and
(4.5), we should reiterate arguments given below Eq. (4.6),
leading to the conclusion that the two-term representa-
tion (5.3) or (5.5) of the asymptotic series for Go '(s; E ) is
meaningful for energies E satisfying the inequality (4.7).
While Eq. (5.5) is useful for s k «1, i.e., for small s but
not too large E =Pi k /2m„ the representation (5.3) can
be used for arbitrarily large energies E.

This is the point to make explicit contact with the re-
sult of Gedik and Ciraci [3]. Their closed-form result,
rewritten here in our notation and normalization, reads

'2

given here for the Dirac density matrix offer potential for
future density-functional calculations for a system of
electrons moving in two-dimensional space having finite
curvature.
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APPENDIX: EVALUATION OF Q„($2)
AS AN ASYMPTOTIC SERIES

To evaluate the function Q„(g ) defined in Eq. (3.9) it is
useful to introduce the variable

+0 E (5.6)
« =«, =g(1+ —,') . (Al)

This result (5.6) can be derived for energies E satisfying

E &&6l =2ER (5.7)

Therefore the results of Gedik and Ciraci [3] and the
present findings are complementary, because they cover
different ranges of energy, specified by the inequalities
(5.7) and (4.7), respectively, practically "touching" at
E, =0.8Es, where E, /2E& =0.4= ,'EIt /E, . —

g l(1+1)=x —
—,'g (A2)

j=l —n

(1 +j)= p [x +g(j—
—,
'

) ]
j=—n+l

In terms of this, one can write various quantities appear-
ing in Eq. (3.9) as

VI. SUMMARY AND FUTURE DIRECTIONS

The main achievement of the present study has been
the explicit calculation of the cononical density matrix
Co '{r„r2,'p) for free electrons moving on the surface of
a sphere of radius R. The result obtained is an asymptot-
ic series in powers of R, and Eq. (3.13) exhibits explic-
itly the first two terms of this expansion, namely, the flat
plane result plus the term of O(R ). This result has
then been employed to calculate the corresponding Dirac
density matrix in Eqs. (4.3) and (4.5), the Fermi energy of
the system in Eq. (4.8), and, finally, the Green function
given in Eqs. (5.3) and (5.5). The last result is comple-
mentary to that obtained by Gedik and Ciraci [3], cover-
ing the region of large energies as in Eq. (4.7), while their
result is appropriate for small energies as indicated in Eq.
(5.7).

As to future work, it is worthy of note that the Green
function given by Gedik and Ciraci [3] was employed by
them to argue that a pair of electrons moving on the sur-
face of a sphere will bind for an arbitrarily weak (model)
attractive interaction. When an understanding of the na-
ture of the attractive interaction in C6O is eventually ob-
tained, our results for the same Green function will allow
their investigation to be generalized to the case of an at-
tractive interaction of finite strength. Finally, the results

i=0
g2i« 2(n —i) (A3)

The coeScients t„, can be deduced from the above
product form to be

t„,= g —
(j—

—,
'

) = —
—,', n (4n —1 ),

j=l
(A4)

&.[fl (= g Cf(k 1 + —,
' »

I=n
(A6)

r„„=(—1)"Q(j —
—,
')' .

j=l
Then, with the help of Eqs. (Al) —(A3), we can rewrite
Eq. (3.9) as

n

Q.(k')=
,
exp(k'/4) X V'r. ;7'nff2. +i-2;]

n. ! i=0

where T„as a function of g and a functional off is given

by
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and

f (x)=x~exp( —x ), j=1,3, .. . . (A7)

approximated by discrete summation. Therefore we shall
rewrite Eq. (A6), without introducing any approxima-
tions as yet, in this spirit:

The form of T„given by Eq. (A6) resembles an integral
I

T„[f]=f f(g(A+ —,'))/de+ g f [f(g(l+ ,'))——f(g(l+—,')+P.)]/de,

00 00
2k ] 2k+1 (2k)

ng k, (2k)! 2k+1
(AS)

where we have used the notation
3m

f(-)(x)= f(x) .
dX

(A9)

I

Equation (A10) can now be iterated many times. Each
iteration introduces higher and higher powers of g in the
series; e.g., after the first iteration we should insert into
Eq. (A10) the expression

(A 10)

To arrive at the form (AS) a change of variable from A, to
x =g(A, + —,

' } was made in the first integral, while in the
second f was expanded in a Taylor series in (P, ) and
then a term-by-term integration over A, was carried out.
It is now to be noted that the expression in the square
brackets can be written as T„[f'2"') according to the
definition (A6), so that

T„[f]=f dx f(x)
ng

' 2k)
(2k) )

, (2k, +1)! 2
1 I

ng
' 2k2

T„[f(2k i+2k
)2] (Al 1}

etc.
Next we evaluate an integral: the leading term in Eq.

(A10), for f (x)=f2 +,(x), m =0, 1,2, . . . ; see Eq. (A7):
i.e., a typical function occurring in Eq. (A5):

2m+1 X X 2m+1

dx x2~+'exp( —x2) — dx g x2 + ~+'00 ng
"

( —1)"
0 k=p

m!m 2(m +1} 1 )kn 2(k+m + i)
2k

2 k~0 k!2(k+m+1)

Again the result obtained is a power series in g . It is to be noted that the lowest power in this variable is P
One can evaluate the leading terms of Eq. (Al 1) using properties of the functions (A7) to find

d f""',( )=f," "( )
ng

(A12)

f (2k —i) (n g)
2k —1

dX
2j+2m + i

J=0 J x=ng
(A13}

which is evidently again a series in g .
Collecting the results in Eqs. (A10)—(A13) and insert-

ing them into Eq. (A5}, we obtain

Af

Q (g2) 1+y ~ g
i 2g+(g2(JV+ ))1 (A14}

where the coeScients q„; are determined via the pro-
cedure outlined above. It needs to be stressed, however,

that Eq. (A14) represents an asymptotic expansion. This
is so because the function Q„(g ) is nonanalytic at g =0,
which can be seen if we expand formally the function

'"+"Q„(g } in a power series in g using the defining
expression (3.9), all coefficients of this formal expansion
then being infinite. Due to the properties of the asymp-
totic expansion, for each fixed go, only a finite number of
terms JV gives the best approximation to Q„(g ) for
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This limiting index JV is to be found, roughly
speaking, from the condition that the (JV'+ l)th term is
larger than its predecessor in absolute value.

It finally remains then to calculate Q„(g ) up to O(g )

quite explicitly. For n =0 we have in Eq. (AS) one term
only, so that we need to evaluate

T„[f2„,]o. Therefore, froin Eqs. (A10) and (A12),

n!T„[f~„+)]= —,'„g—T„[fi„'+) ]o+O(P), (A17)24

but T„[f'2„'+,]o=0 according to Eqs. (All) and (A13).
Next we have

T 2

To[fi]=
2

—
3, 2

To[fI"]o+O(k')
1 1

Tn [f2n —) ]0=Tn [f2{n —i)+ i ]0

(n —1)!
2

(A18)
2

1+ +O(g )
2 12

(A1S)

p2 1
Qo(g )=2 1+~+0(P) —1+ +O(g ) .

4 2 12

Here we have used Eqs. (A10)—(A13) and the value

f ',"(0)=1. Hence, according to Eq. (AS), we have

Therefore, inserting the results (A17) and (A18) and the
coefficients t„o and t„„Eq. (A4), into Eq. (AS), we have
finally

p2

Q (g )= 1+~+0(g )
n~ 4

n! c 2 (n —1)!X
' — n(4n —1) P

2 12 2
p2= I+~+o(g') .
3

(A16) =1+—,'(1 n)g—+O(g ) . (A19)

For n ~1, within the assumed accuracy, we require
only two terms in Eq. (AS), namely, T„[f2„+,] and

When compared with Eq. (A16), it can be seen that this
result (A19) is valid also for n =0.
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