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I. INTRODUCTION

We study in this paper ionization of muonic hydrogen-
like atoms by nonrelativistic electrons. The atoms con-
sists of a muon ¢~ moving in the Coulomb field of a nu-
cleus of electric charge Ze (e is the elementary charge).
The 4~ muon has mass m,=206.76m, (m, is the elec-
tron mass), and electric charge equal to the elementary
charge. Muonic hydrogenlike atoms are produced when
a muon y is shown down in matter, it encounters a
highly excited ordinary hydrogenlike atom, and replaces
the atomic electron removing it from the atom. Subse-
quently, the bound muon cascades down to lower atomic
levels.

Most of experimental studies of muonic atoms utilize
high-energy 1~ beams coming from pion 7~ decay gen-
erated by nuclear reactions. Some of the beam muons
lose their energy by inelastic (ionization and excitation)
collisions with particles in the medium. The electrons
produced in the ionizing collisions have high energies, are
still present in the medium when the muonic atoms are
formed, and are able to ionize the muonic atoms. How-
ever, the efficiency of the electron-impact ionization of
the muonic atoms in the experiments cannot be estimated
because of lack of the ionization cross sections. [Scatter-
ing of electrons and other particles on muonic atoms has
been studied (see Refs. [1-3] and references therein) but
neither experimental nor theoretical cross sections for the
electron-impact ionization of the atoms are available in
literature.] Therefore, the main goal of this work is to
derive the ionization cross sections for the collisions
where the target atom is the simplest muonic atom, that
is, an atom produced by replacing the electron in an ordi-
nary hydrogenlike atom by a negative muon u . We
derive there cross sections using the classical impulse ap-
proximation [4] and compare them with the cross sec-
tions for the electron-impact ionization of ordinary hy-
drogenlike atoms.

Muonic hydrogenlike atoms such as muonic hydrogen
(u”p) and muonic helium (u~ He)™ and their isotopes
are important systems for sensitive tests of QED and for
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study of the structure of nuclei with few nucleons [5].
Since our approach yields the cross sections for the
ground state as well as for the excited atoms, it is con-
venient for studying the kinetics of the n =2 level of hy-
drogenlike muonic atoms (the 2s states are of special im-
portance in spectroscopic studies of the atoms). In some
experiments, the rate of depopulation of the n =2 level
by electron-impact ionization may be comparable to, or
greater than, the rate of quenching of the level by atomic
collisions (for example [5], the cross section for the
quenching in a He-(u~ He)™ collisions is less than 10~ %
cm?). By itself, the rate of the electron-impact ionization
of the medium atoms by the muons in typical experi-
ments is not high enough to produce electron density
comparable with the density of the neutrals quenching
the muonic atoms in the 2s states. (However, the electron
density is much higher than expected on the basis of the
moderate rate of the electron production by the muons
because the electrons resulting from the ionization are
confined to a very slender cylinder around the path of the
muonic beam.) If the cross section for the electron-
impact ionization of the 2s muonic atoms is much greater
than the quenching cross section then the very large
difference between the speeds of the quenching atoms and
the ionizing electrons may be sufficient for the electron-
impact ionization to be an important factor in the kinet-
ics of the 2s state, especially when the density of the
quenching atoms is not too high.

Even though we focus in this work primarily on the
electron-impact ionization of hydrogenlike muonic
atoms, many conclusions of the work can be used to in-
vestigate the ionization of other muonic atoms. (Some of
such atoms are important in the muon catalized
fusion—see Refs. [3] and [5].) The muonic ground-state
orbital in a nonhydrogenlike atom is much closer to the
atomic nucleus than the other (electronic) orbitals. Being
mostly entirely inside the electronic orbitals, the ground-
state orbital is weakly affected by the electronic orbitals.
Therefore, the electron-impact ionization of the muonic
ground-state orbital in nonhydrogenlike atoms can be de-
scribed by the approach of the present work.

II. THE APPROACH

The approach of this work is based on the energy-
transfer cross sections of the classical impulse approxima-
tion [4] which has been applied successfully to study a
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wide variety of atomic inelastic collisions [4,6—12]. (The
approximation is especially suitable for the description of
interaction of an electron with hydrogenlike atoms be-
cause of the very small number of subatomic species in-
volved in the collision.) In the approximation, the target
atom interacting with the incident electron is considered
a group of localized particles (called hereafter ‘“‘com-
ponents” of the target atom) which are either electrons
(in the case of ordinary atom) or muons g~ (in the case of
muonic atom) orbiting the nucleus in the field of a central
force. Dynamic properties of the collision system (the in-
cident electron plus the target atom) before the collision
are defined [11,12] by a set C of n parameters
(C,C,,...,C,) such as the particle masses, velocities,
etc. During the collision, set C is transformed into a set
C' (C—C'’), where the prime denotes the state of the col-
lision system after the collision. The probability of tran-
sition C—C’ can be determined if relationship between
sets C and C' is known. This relationship can be given by
a function F such that

C’=F(w,D,e,C4,...,C,,) ’ (1)

where we separated, for future convenience, three param-
eters [C, =w (the relative velocity of the incident elec-
tron and the target atom before the collision), C, =D (the
impact parameter of the collision), and C; =06 (the az-
imuthal orientation of the “shot line” of the incident elec-
tron before the collision)] from the rest of the parameters
of the set C. In the impulse approximation, the function
F(w,D,0,C,,...,C,) can be obtained, in principle,
from the classical Hamiltonian for the scattering trajecto-

J

Q;(w,...,Cj):f"'fag(w,...,Cj,Cj_H,...

where f; ((C; 1), ..., f,(C,) are distribution functions
of parameters C; .4, . .., C,.

The complexity of the averaging (4) can be reduced
significantly by assuming that collision of the incident
electron with the target atom can be treated as a superpo-
sition of all the pairwise (binary) interactions between the
components of the target atom and the incident electron.
Averaging (4) over v, (the velocity vector of the /th com-
ponent of the target atom) one obtains

Qg(w,‘..,cj')

NB
=3 [ [ [ocitw,....Cov)fsv)dv,, (5
=1

where Ny is the number of the components in the target
atom, and fp(v,;) is the velocity distribution of the I/th
component of the atom.

If the spatial distribution pg(0,4) of the velocity vec-
tors v, in the target atom is assumed to be isotropic, then
the distributions pz(6,9) and f(v,) (in a spherical coor-
dinate system, located at the center of the atom, with the
angle 6 measured from the vector of the relative velocity
w before the collision) are, respectively,

ry (with quantum-mechanical requirements imposed on
the electronic energies of the target atom) if the poten-
tials for the interactions between the incident electron
and the components of the target atom are known. These
potentials can be approximated by the central-force
Coulomb potential, because the atomic components, hav-
ing classical diameters of orders of magnitude smaller
than the collision diameter, can be treated as point
charges.

A particular cross section for a collision of the incident
electron with the target atom is defined in the classical
impulse approximation as a measure of the probability of
a definite change in C during the collision, that is, the
probability of a definite change in the state of the col-
lision system. This change is characterized by change of
one, or more, parameters of the set C. Subsequently, the
cross section g, with respect to a parameter £ is defined
as [12]

qg(w,é,...,cn)=f02”f0°° 8(6—F(w,D,0,, . ..
XD dD de . @

,Cy))

Adding all the cross sections that are nonzero in some
practically useful range of £, one obtains the so-called
differential cross section with respect to &,

— §2
og(w,...,c,,)—fgl gew,§, ..., C,)dE . 3)

Averaging the relationship (3) over some important pa-
rameters (denoted by the subscripts j +1,...,n) of set C
one obtains the average cross sections with respect to &,

rCn)fj+1(Cj+x)"'fn(cn)dcj+1"'dcn ’ @

I
pp(6,3)d0d3=sin0d0d /4w (6)

and
fB(v,)dvl=p3(9,19)g3(v,)dv1d0d19 . (7

where gp(v;) is the speed distribution of the /th com-
ponent of the target atom.

Collision of the incident electron with a hydrogenlike
atom can be reduced to one pairwise interaction between
the incident electron and the atomic electron (if the tar-
get atom is an ordinary atom) or muon (if the target atom
is a muonic atom). Subsequently, the expression (5) can
be written as

Qg(w,...,Cj)=fffag,,(w,...,Cj,v,)fg(vl)dv,,

(8)

where o ; is the cross section for the interaction between
the incident electron and the only component of the tar-
get atom (this component is called hereafter the field par-
ticle).

In the present work, the scattering of an electron on a
hydrogenlike atom is considered as an outcome of the in-
teraction between the incident electron of mass m,=m,
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and velocity v, with the atomic field particle to be re-
moved from the atom as a result of ionization. The field
particle (of mass m; and velocity v,) is either an electron
or amuon . In the former case, m; =m,, while in the
latter case my =m,, where m, is the mass of the muon.

III. ENERGY TRANSFER
IN THE IMPULSE APPROXIMATION

Efficiency of the energy transfer from the incident elec-
tron of mass m, and velocity v, to the field particle of
mass m, and velocity v, is measured in the classical im-
pulse approximation by the so-called energy-transfer
cross section g,z for the energy AE to be transferred dur-
ing the collision from the incident electron to the field
particle. In the case when the interaction potential be-
tween the incident particle and the field particle is a
central-force potential, the cross section g, can be writ-
ten as [13,12]

F!(1/cos’¥,,0)
Wy (AE,1/cos™¥,,0)]'"2

gusaE)=7 [ [ Lpo)
v, [

Xd(1/cos’¥,)d6 , 9)

where W, is the scattering angle, V' is the relative speed of
the incident particle and the field particle, 0 is the angle
between the initial velocity vectors of the particles, and
p(0) is the distribution of the angle 8. The bar over g, g
in Eq. (9) indicates the fact that the cross section (9) is al-
ready averaged over the angle 0, whereas the cross sec-
tion (2) is not averaged over the angle. Here, F, =D? and

oF;
F(1/cos™V,,0)=——————— (10)
a(1/cos™V¥,,0)
Wq,g=(2a sin¥,cos¥, 2 —(AE+b cosz‘llg 2, (11)
a=pv,v,sinf , (12)
(ml_mz)
b=k |E,—E,+ v v,c080 |, (13)
mym,
=" (14)
H m;+m,
4m m
k=—T2 (15)
(m,+m,)
and
E,=mv}/2 and E,=m,v%/2 . (16)

In collisions of interest here the following inequality is
often satisfied during electron-electron and electron-
muon binary interactions:

(AE +b cos’W,)*>>(2a sin¥,cos¥, )* . (17)

To prove the validity of the relationship (17) we first
rewrite it as

u>>s , (18)

where
we=1+—BE (19)
b cos’¥,
and
s= —gbitan\lfg . (20)

[One should notice that the requirement (18) is stronger
than the requirement (17).]

Let us consider the “worst” situation when u in in-
equality (18) is very small (u =0). This occurs when
AE=—b cosz\llg. During ionization AE is close to U,
(U, is the ionization energy of the target atom excited to
the kth energy level) so that u =0 when —b cosz‘l’g =U,.
Consequently,

_ -2y __1\1/2
tan\I’g—(cos ‘I'g 1)7“=

172
b
——1 21
U, l 21

and
s=2a(bU, ) % . (22)

Using relationships (12) and (13) one obtains from Eq.
(21) the following:
(a) the electron-electron interaction (m;=m,=m,),

2v,sinf
s=— (23)
Uk
and
(b) the electron-muon p~ interaction (m | >>m,=m,),
2v,sinf m, 1 o
s=— |1+ — | — cosf , (24)
v,\. m2 Ez
where [14]
20, 1/2
Uy = < Uy > = |/ (25)
m,

It is obvious from Egs. (23) and (25) that the require-
ment (18) is always fulfilled (for both electron-electron
and electron-muon interactions) if the interaction of par-
ticles 1 and 2 occurs at small values of ratio v, /v,. This
is always true in consistent classical (Kepler’s) representa-
tion of elliptic orbits of the field particle (including the
zero-angular-momentum orbit with eccentricity €—0)
which represents in Kepler’s formalism the ground-state
orbit of the field particle. But even if the Bohr (circular)
orbit is assumed for an orbit of the field particle, the in-
equality (18) will still hold in the case when the field par-
ticle is a muon p~. This can be seen from the following
considerations. When W, <7 /2 (the range of the angle
W, ), the condition (17) is the weakest when b =0, that is,
when E, =E, and 8=w/2. In such a case, the condition
can be rewritten as

(AE)*>>4a’sin’W,cos’¥, . (26)

If (AE)*>>4a? then the condition (26) is fulfilled for
any value of the angle ¥, because sinz‘I’gcosz\I’g is never
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greater than one. Again, the condition (AE)*>>4a? is
the weakest when the term 4a? has its maximum value,
that is, when

1 21672
4a 4(#01’)2) —16m ElEl ’ (27)
1

where the reduced mass of the electron-muon collision
system is [see Eq. (14)) u=~m,, E,=U,, and E,=E (E is
the impact energy of the electron-atom collision). Thus,
Eq. (27) can be rewritten in the case of the electron-muon
system as

4a2~0.08UE . (28)

Since we assumed above that inequality (26) is the
weakest when E,~E;=~U,, one can conclude that the
requirement (26) [and, therefore, the requirement (17)] is
fulfilled if

>>0.08 , (29)

1

which is always true for the electron-muon interactions
of interest in this work.

Neglecting the first term on the right-hand side of Eq.
(11) means that practically only one value of the energy
AE is possible (AE=—b cosz\I/g) during collision [13,12]
at a given scattering angle ¥,. In such a case,

Wy =—(AE+bcos’¥, )’ —0, (30)

and the concept of the 8 function can be used [12],

1
[—(AE+b cos’¥,)*]'/?

1
 AE cosz\llg

(31)

so that the energy-transfer cross section (9) reduces to

F{(1/cos’¥,) deo . (32)

— V
Gap =T f —p(0)
Uy [l/cosz\l/g=—b/AE]

AE cosz\lfg

Representation of motion of the localized field particle in the target atom is a difficult issue. Various distributions of
kinetic energy of subatomic particles were proposed in the literature of the subject [8,14—17] and these distributions are
discussed in Ref. [14]. It has been shown there that the quantum-classical distribution proposed in Ref. [14] is the
closest to the distribution obtained from rigorous quantum-mechanical Hartree-Fock calculations, and that the distri-
bution of speed of the field particle can be approximated, for purpose of studying the ionization of the target atom, by a
6 function,

gp(v,)=8(v,—(v,)), (33)

where (v, ) is given by Eq. (25). Introducing a distribution other than the 8 distribution for the field particle energies
improves the agreement of the classical results with experimental data. This improvement does not, however, consti-

tute any significant improvement over quantum-mechanical approximations [18,14].
Averaging the energy-transfer cross section (32) over the distribution (33) yields

Q,AE(E’AE)zquEgB(UI)dvl

1

V
f vzp AE cos’¥,

The cross section Q'°"(E) for a binary collision of the
incident electron and the field particle when more than
g,=|AE,|, but less than e, =|AE,| energy is transferred
to the field particle is

0. (E)=[ " QL(E,e)de (35)
&

where e=|AE|.

The energy AE that can be transferred in a binary col-
lision from the incident electron to the field particle de-
pends on the properties (masses, velocities, etc.) of the
colliding particles. As discussed in Ref. [13], the range of
AE is

AE <AE<AE" (36)

F{(1/cos’¥,)

[1/cos2wg=~b/AE]

do

(E},0)—(Up,{v)))

I

with
2 1172
+a?

AE+’“=—§:1: , (37)

b
2

where @ and b are given in Eqgs. (12) and (13), respectively.
The 6-averaged AE can be obtained from Egs. (36) and
(37) as a quantity close to AE calculated at 6=m/2. In-
troducing a new parameter,

=— (38)

one obtains from Eq. (37),
AE*=E, and AE~=—E, (when A=1) . (39)
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Similarly, assuming that (A—2)E E, >>E? and neglect-
ing small quantities, one has

1/2
AE*Z%[ 1+(>»—2)% +§—;—1],
when A>>1, (40)
pE-=- 2B BB 1/2],
A E, )

when A>>1. (41)

The energy AE transferred during atomic ionization
must be greater than the energy threshold for ionization
of the target atom excited to the kth level. For A=1
(scattering of the incident electron on the field electron)
the relationship (36) allows one to specify the “‘ioniza-
tion” limits of integration in Eq. (35) as

¢, =U, and ¢, =E, . (42)

In the case when A >>1 (scattering of the incident elec-
tron on the field muon p ) these limits are
172 ]

2E U U
o ey
2

(43)

E, 1+(A—2)

g;=U; and Eu:T

The threshold energy (E,),;, required for ionization of
the target atom by electron can be found from the condi-
tion

AE =—U, . (44)
Using Egs. (39) and (41) one obtains from Eq. (44),
(Ey)y=U, , when A=1 (45)

and
A
(Ez)[h:§Uk , when A>>1 (46)

where we assumed in derivation of the last expression
that

A>>2 (47)
E,~U,, (48)
A+4

—— ~1

P , (49)
4 4

2 <<I , (50)

and
8E,U, >4U} . (51)

In the case of the electron-impact ionization of a
muonic hydrogenlike atom, A=206.76 and, according to
Eq. (46), (E,),;,~25.8U,. Thus, the incident electron en-
ergy greater than 25.8U, is required to ionize muonic hy-
drogenlike atom in the kth energy level.

IV. ELECTRON-FIELD PARTICLE
INTERACTION POTENTIALS

The interaction potential of the incident electron and
the field particle is the repulsive Coulomb potential,

Ur)=ar ', (52)

where r is the distance between the two charges, and
a=e?.
Introducing a new variable,

g=1/cos™¥, , (53)

the scattering angle W, for collision of two particles in-
teracting through the potential (52) can be written as [19]

oI’ ~12
gzcos_zkfrm Dr? =

r

1_.

U(r)
min E*

dr} , (54)

where E*=uV?/2, and r_, is the distance of the closest
approach. Introducing

y=D/r and y;, =D /r i, =2DE* /a (55)
and using
OF(g) _,pdD (56)
ag ag
Eq. (54) can be rewritten as
g=cos ™ [ T[1—y =2y ly) Vi (57)

where Y is the least positive root of the expression in
square brackets. Since
2
aD a | 3mn(g)]

2D== = , (58)
og 2E* dg

the derivative 9F /dg can be given as

2
OFg) _ | _a | (59)

ag 2E*

This derivative is used below to evaluate the integral (34).

V. ATOMIC LEVELS

(a)

A kth energy level €,” in hydrogenlike atom with prin-
cipal quantum number » can be given as
Z*R

’
n2

gfl=—A (60)
where A=pu, /m,~m/m, (u, is the reduced mass of the
field particle and the atomic nucleus of charge Ze), and
A is the Rydberg energy (13.6 eV).

The fine structure of the levels of a hydrogenlike atom
can be obtained from the solution of the Dirac equation
for a fermion p~ in Coulomb field of the nucleus of
charge Ze. The resulting levels are

2
n 3

E(ka):¥)&zzﬁ - — =
j+1/2 4

nZ

Za
n

) (61)

where a=1/137.036 is the fine-structure constant,
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j=1%1/2, and [ is the orbital angular momentum quan-
tum number of the field particle in the (n,I/)th shell.
(More accurate values of the energy levels of muonic
atoms can be found in Ref. [20].) In our model of target
atom we assume that E, = U, = |e(k“)| , and that the energy
of the kth atomic level is specified by the principal quan-
tum number n (k =n).

In heavy (large value of Z), ordinary hydrogenlike
atoms, the sizes of the electron orbits are much larger
than the sizes of the nuclei of the atoms; as a result, the
nuclei can be treated as point charges. It can be seen
from Eq. (61) that the energy levels in the hydrogenlike
muonic atom are proportional to a large factor A =207.
Thus, the corresponding sizes of the orbits of the field
muon are greatly reduced (by the same factor), compared
to the ordinary hydrogenlike atom where A=1. There-
fore, the sizes of the lowest orbits of heavy muonic hydro-
genlike atoms can be compared with the sizes of the nu-
clei of the atoms. Since the nuclear radius is of the order
of 1.2X1071 413 cm (A4 is the total number of nu-
cleons in the atomic nucleus), the size of the orbit of the
muon is smaller than the size of the nucleus when Z % 30.
Then, the departure of the nuclear electrostatic field from
the field of a point charge is quite significant and must be
taken into account.

As can be seen from Eq. (61), the ratio Z/n for the
atom should be small enough to justify use of nonrela-
tivistic mechanics. The relativistic effects associated with
the field particle can be neglected if the particle orbital
speed v, =v,?, is more than about five times smaller than
the speed of light ¢ because then the relativistic momen-
tum of the field particle py =m v /V'1 — (v /c)* differs
by less than few percent from the particle classical
momentum m,v;. If v, <c/5 then
Zz <L ~27 . (62)

n  Sa

As discussed previously, the size of the lowest muonic
orbit in a hydrogenlike muonic atom is greater than the
size of the atomic nucleus when the nucleus charge num-
ber Z < 30. Taking this and the relationship (62) into ac-
count, one can say that the approach of the present work
is valid when the hydrogenlike muonic atom participat-
ing in the collision with the incident electron has Z <30
(however, see discussion in the last section).

V1. IONIZATION CROSS SECTIONS

The energy-dependent cross section Q" for electron-
impact ionization of a hydrogenlike atom (ordinary or
muonic) excited to the kth energy level are calculated as
the averaged (over the energy distribution of the field par-
ticle) cross section (35) for transfer of energy AE
(e, =AE =<g,) from the incident electron to the atomic
field particle. Using the cross sections of Ref. [12], as-
suming p(8)=(sinf)/2, and integrating over 6 (from 6
to ) and over € (from g, = Uy, to €, ) one obtains

min

wonr o 2me* AV2(1+0)? (x —1) Uy

(E)=
ke UIZ- (1+Ax )3/2 x 172

) (63)

u

where me*=6.56 X107 % cm?eV?,
x=E/U, , (64)

and, as before, E~FE, is the impact energy of the
electron-atom collision. We used, when evaluating Eq.
(63), the fact that 0_;,=0 for the electron trajectory in
the field of Coulomb force (see Ref. [12]). Also, we as-
sumed that when integrating over 6 the mean relative
speed of the incident electron and the field particle is
equal to

V=(3+(v,)H2. (65)

In the case of electron-impact ionization of an ordinary
hydrogenlike atom (A=1 and U, /e, =x ~!), relationship
(63) leads to the following cross section for ionization of
the atom from the kth energy level:

2met  (x —1)?
U/f x3/2(1+x)3/2 :

Qlon(x)= (66)

In the case of electron-impact ionization of a muonic
hydrogenlike atom excited to the kth energy level [A >>1
and €, is given by Eq. (43)] the ionization cross section
obtained from relationship (63) is

_ 2me* A2+ (x—1)
Up (1+ax)? x!72

0jtx)

A
X 41— , (67
2[x — 1+ (x2+(A—2)x)'"?] ©r

with the threshold value of x

X =g - (68)
Since A >>1 and x > 1, one has

AV2(1 422 =257 (69)
and

(1+Ax )2 =(Ax "% . (70)

Using relationships (69) and (70), the cross section (67)
can be written in a somewhat simpler form as

i 2me* Mx —1) A
oM(x)= 1— .
o Ut x? l 2[x —1(x2+1x)"2] J

(71)

At the threshold (where x =x,, =A/8), the cross section
(71) is

16me* (A—8)

N
U@ A

ion, =)\/8)=
ch (x /8) 4r—8

(72)

The deviation of the value of the second term in the
square brackets in Eq. (72) from unity is a measure of
inaccuracy (resulting from the simplifications made in
this section) of the cross section (71). For A=206.76 one
has



344 J. A. KUNC 49

=0.009 . (73)

1— 41
41—38

Thus, the simplifications made in this section are well
justified.

At very large impact energies (that is, very large value
of x), the ionization cross section (63) for the electron-
impact ionization of the ordinary hydrogenlike atom ex-
cited to the kth energy level becomes

. 4
on(x — o0 ) 87"; x 1, (74)
Ui

and in the case of the electron-impact ionization of the
muonic hydrogenlike atom,
. 4
fonx > o0 )= 2T A
U 4x +A

(75)

The relationships (74) and (75) show the traditional
weakness of the classical impulse approximation in
description of collisions with large impact energies when
the target atom is weakly excited. According to Egs. (74)
and (75), Q/°(E — o )~E ~!, while the Bethe-Borne ap-
proximation give QI°%E — o )~E “'InE. However, it
was shown by Garcia [21] and by Omidvar [22] that at
large impact energies E the cross section for electron-
impact ionization of ordinary hydrogen atom should go
smoothly from the Born approximation InE /E behavior
to the classical 1/E as the atomic principal quantum
number n increases.

VII. RESULTS AND DISCUSSION

The validity of the classical impulse approximation is
discussed in detail in literature (see, for example, Refs.
[23,24,15,18,8,7]. Therefore, we discuss below only a few
aspects of it which are directly related to the fact that the
field particle in the case of ionization of muonic atoms is
not an electron but a muon u .

It was shown by Vriens [23] that the main weakness of
the classical impulse approximation results from the fact
that the requirement of conservation of linear momentum
gives different values of the minimum momentum
transferred in the binary collision (of the incident elec-
tron with the field particle) as compared with the
minimum momentum transferred in a many-body col-
lision (of the incident electron with several field particles).
(The classical impulse approximation requires full conser-
vation of momentum and energy between the incident
electron and the field particle, while the quantum-
mechanical approach requires only conservation of ener-
gy because the nucleus can take up momentum.) Thus,
the ionizing collision of an electron with a hydrogenlike
atom (ordinary or muonic) is the best candidate to study
the electron-atom collisions using the formalism of the
classical impulse approximation.

Another weakness of the classical impulse approxima-
tion is the assumption that the incident electron and the
field electron are distinguishable during the electron col-
lision with an ordinary atom. However, this weakness
does not occur in the description of the electron-muonic

atom collisions.

One of the goals of this section is to clarify the expecta-
tions of the classical impulse approximation when apply-
ing it to ionization of the muonic hydrogenlike atoms. A
direct comparison of the corresponding cross sections
with their experimental or quantum-mechanical values
cannot be made because such data are not available.
Therefore, we test the present approach indirectly by
comparing our cross sections for the electron-impact ion-
ization of some ordinary hydrogenlike atoms with the
corresponding experimental cross sections which are
available in the literature of the subject. We show the
cross sections for the electron-impact ionization of ordi-
nary H(1s) and H(2s) atoms in Figs. 1 and 2, respective-
ly. In both cases the present cross sections [Eq. (66)] are
in good agreement with the measured cross sections
[25-29], and they are closer to the measured values than
the other theoretical cross sections [30, 31, 32, 25]. We
also compared the present cross section for the electron-
impact ionization of singly ionized ordinary helium in the
ground state (see Fig. 3) with the available measurements
[33-38]. Our cross section for the ionization of the heli-
um ion is also in good agreement with the experimental
values.

Summarizing the above, one can say that the present
approach yields analytical cross sections for electron-
impact ionization of ordinary hydrogenlike atoms (with
small values of Z) which are in good agreement with ex-
perimental data. Therefore, it seems that the approach
should give reasonable values of the cross sections for the
electron-impact ionization of muonic hydrogenlike atoms
with small values of Z. At large values of Z (but not
greater than 30—see Sec. V), an important effect not ac-
counted for in the present approach must be taken into
consideration. Due to the field of the target ion with a
large value of Z, the trajectory and speed of the incident
electron change significantly before they interact with the
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FIG. 1. The cross section for the electron-impact ionization
of the H(1s) atom.
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FIG. 2. The cross section for the electron-impact ionization
of the H(2s) atom.

field particle. This effect can be taken into account, using
the classical impulse approximation, in the way proposed
by Thomas and Garcia in Ref. [39] or by Gryzinski and
Kunc in Ref. [9]. _

The *“scaled” cross section, Q" U,f /me*, for the
electron-impact ionization of muonic hyrogenlike atoms
[Eq. (67)] is shown in Fig. 4 together with the scaled cross
section for the electron-impact ionization of ordinary hy-
drogenlike atoms [Eq. (66)]. The cross sections differ
significantly both qualitatively and quantitatively.

The ratio of the maximum value of the cross section
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FIG. 3. The cross section for the electron-impact ionization
of the He*(1s) ion.
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FIG. 4. The “scaled” cross sections, Q["UZ/me*, of the
present work for the electron-impact ionization of ordinary
[curve 1, Eq. (66)] and muonic [curve 2, Eq. (67)] hydrogenlike
particles excited to the kth level; U, is the ionization potential
of the kth level and E is the impact energy of the electron-atom
collision.

for the electron-impacted ionization of a muonic hydro-
genlike atom excited to the level with the principal quan-
tum number n to the maximum value of the correspond-
ing cross section for ionization of an ordinary hydrogen-
like atom excited to the level with the same value of n is

ion ymuonic
( nc )max Un (76)
( ion)ordinary =~ U’ ’

nc ’max n

where U, and U, are ionization potentials for the ordi-
nary and muonic atoms, respectively, excited to energy
levels with the principal quantum number n. Thus, the
maximum value of the cross section for the electron-
impact ionization of the muonic atom is much smaller
than the corresponding cross section for the ionization of
the ordinary atom,; if the atoms are in the ground states
then the ratio (76) is 10/A2=2X 10~*. However, as can
be seen in Fig. 4, at impact energies E greater than the
energy of the cross section maximum, the cross section
for the ionization of the muonic hydrogenlike atoms de-
creases with energy much slower than the cross section
for the ionization of the ordinary hydrogenlike atoms.

One should add that the ratio of the maximum value
|AE|,., of the energy which can be transferred in a
binary Coulomb collision from the incident electron of
energy E, to the field particle (an electron or a muon u ™)
of energy E, = U, is [see Egs. (42) and (43)]
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AE E
I—E‘ﬂ=7]i(when A=1) (77)
1 k
and
|AE|.,. 2E, U, U, 1'?
o max 1——5 4+ |1+ (a—2)—=% ,
E, AU, E, ( )EZ

when A>>1. (78)

As can be seen in Fig. 4, at energies E, corresponding
to the maximum values (“peaks”) of the ionization cross
sections Q" one has (E,/E,~E /U, because E,~E
and El = Uk )

E ~5, when A=1

Uk peak

E -

— ~50, when A=206.76 . (79)
Uk peak

Using relationships (79) in Eqgs. (77) and (78) one ob-
tains, respectively,

|AE |max
—_ ~5, when A=1
El peak
‘AE |max
———— =~2, when A=206.76 . (80)
El peak

Thus, the value of (1AElmax/E1)peak for electron-muon
1~ binary collision is smaller than the corresponding
value for the electron-electron collision. However, in the

case of the ionizing collisions, the collisions with
|AE|/E, <2 are the most important ones [23,7]. There-
fore, the accuracy (associated with the magnitude of the
energy transferred during the binary collision) of our
treatment of the electron-muon u~ interaction should
not differ from the accuracy of our treatment of the
electron-electron interaction.

In some cases the cross sections of the present work
can be used for approximate calculations of the cross sec-
tions for electron-impact ionization of muonic atoms oth-
er than hydrogenlike atoms. The cross section Q;>" for
the electron-impact ionization of such atoms can be given
as

0= n [0, , 81
k

where [Q[°"], is the electron-impact ionization cross sec-
tion [given in Eq. (67)] for removing one field particle (the
muon p ) belonging to the atomic kth shell character-
ized by two (n and /) quantum numbers, and 7, is the
number of the field particles in the shell. In general, ac-
curacy of the approximation (81) depends on the collision
system under consideration [4,8,9].
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