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Momentum-transfer dispersion relations for electron-atom cross sections
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We derive momentum-transfer dispersion relations by showing that at fixed impact energy the
electron-atom differential cross sections are analytic functions of the momentum transfer squared K in a
complex plane cut from —00 to 0, along the real axis. It is therefore natural to introduce sets of interpo-
lating rational functions of E~ to fit experimental data. The most suitable are the Pade approximations.
We find that the zeros and the poles of these approximations split into two families. One family is made
of poles and zeros that sit on the cut, yielding a good simulation of it. The other family takes care of the
noise in the data: poles and zeros appearing in pairs very near each other. We can therefore first filter
the noise by eliminating those pairs. Among the remaining poles, one pole is extremely near E'=0 for
the inelastic differential cross sections. We apply this technique to recompute both elastic and inelastic
cross sections for Xe, Kr, and Ar atoms, at impact energies of 100, 400, and 500 eV. In this way, we get
the optical oscillator strength for two optically connected states. Our results are compared with other
experimental as well as theoretical results.

PACS number(s): 32.70.Cs, 34.80.Dp, 34.90.+q

I. INTRODUCTION

Miller and Platzman [1] have pointed out that for
%~ &&1 the generalized oscillator strength (GOS) is con-
stant and reduces to the optical oscillator strength (OOS).
Lassettre, Skerbele, and Dillon [2] inferred that the GOS
converges to the OOS as K = t ~0 for inelastic electron
transitions regardless of the applicability of the Born ap-
proximation and therefore at any impact energy. The
limiting behavior of the GOS at t =0 is important in the
normalization of the experimentally determined relative
differential cross sections for excitation by electron im-
pact [3—7], calculation of the cross sections for energy
transfer [8], and in the determination of the OOS [9—11].
Also, it has been examined [7—9,12,13] with no clear
departure from the limiting theorem. However,
difficulties [13] and incompatibilities [14] with the limit
theorem have been reported.

Because, for finite electron impact energy E, the value
t =0 is unphysical, it is necessary to use an
interpolation-extrapolation algorithm on the experimen-
tal data to reach it. In general, two different fitting pro-
cedures are used. For the elastic differential cross sec-
tions, one uses [9,15]

T

do 2 3

dQ
=exp[Co+C&E+C2E +C&E ],

which in the complex t =K plane produces an approxi-
mation analytic in the plane cut along the negative real
axis (square root branch point). We shall see that al-

though this approximation has correct analytical struc-
ture, it can be greatly improved.

For dipole allowed transitions, most authors, following
Lassettre, write an expansion for the GOS in the follow-
ing form:

1F(t)= fo+fi +
(t+to) t+to

'n

+f„ t+tp
(2)

The power six in the first exponent is associated with the
s ~p transitions that we more specifically study in this
paper. We shall see that F(t) is analytic in the complex t
plane cut from minus infinity to zero. A formula such as
Eq. (2) represents F(t) as the ratio of a polynomial of de-

gree n to the polynomial (t+to)"+ that is by a rational
fraction with a pole of order (n+6) located at t = to-
The discontinuity of the cut has been replaced by a pole
of high degree (n+6). See Figs. 1(a) and 1(b). The two
kinds of fitting procedures, Eq. (1) for the elastic cross
sections and Eq. (2) for the GOS, suffer the same
deficiency: those are a priori expansions, based on some
modeling and/or intuition of the various authors who
proposed them. The aim of this paper is to propose an
unbiased method totally model-independent and based on
axiomatic theory, that is on the analytic properties of the
scattering amplitudes. In Sec. II, we derive the analytic
properties of the GOS, as a function of the squared
momentum transfer t=K, at fixed incoming electron
impact energy E. In Sec. III, we introduce a general ap-
proximation

P„(t)F„(t)= (3)

Permanent address: Service de Physique Theorique CEN-
Saclay, Gif-sur-Yvette 91191France. where P„(t)and Q„(t)are polynomials (the subscript n
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The Lasseure Pole

0

FIG. 1. Analytic properties of the general-
ized oscillator strength in the complex transfer
plane. (a) represents the full cut; (b) shows the
replacement of the full cut by a pole of order
(n+ 6) in the Lassettre approximation.

(b)

represents here a label characterizing the order of the ap-
proximation, and it is not the degree of those polynomi-
als}. In the Lassettre approximation, the denominator
Q„(t)was (t+to)"+ while the numerator was adjusted
to fit the data. In the method of Pade approximations,
neither the numerator nor the denominator has a
prescribed form. Both are optimized simultaneously to
the data.

In Sec. IV A, we introduce those rational approxima-
tions using the continued fraction approach. We show
that the numerators and the denominators of these ap-
proximations satisfy a three-term recursive relation that
allows them to be found eSciently. In the literature,
these approximations are known under the name of Pade
approximants of type II [16,17]. In Sec. IV B, we analyze
the distribution of the zeros and the poles of these Pade
approximants in the complex transfer plane. We discover
that these zeros and poles split very significantly into two
families.

(a) A first family consisting of the "noisy" zeros and
poles. These are generated by the existence of noise
and/or the statistical character of the data. The Pade ap-
proximant plays the role of noise filter for an analytic
function [18]. These zeros and poles are very easy to
recognize; they always appear as a pair of extremely near
zero pole (and therefore tend to compensate each other).
The distance between the element of the pair being of the
order of the noise.

(b) The second family is made up of zeros and poles sit-
ting distant to each other on the left-hand cut (real nega-
tive axis). Clearly their role is to simulate the discon-
tinuity on the cut. In Sec. V, we use the fact that the
OOS is proportional to the residue of the pole at t =0 of
the inelastic differential cross section to compute the
OOS from the Pade approximation. Inspecting the poles
left after getting rid of the first family of zeros and poles,
we discover a unique pole extremely near zero, within the
same distance to zero as the distance between a doublet
pole zero representing the noise. The residue of this pole
provides the OOS. The fact that the Pade approximants
put a pole at t =0, without forcing it, clearly indicates the
consistency of our approximations. Finally, in the Con-
clusion, we discuss, interpret, and compare our results to
others for xenon, argon, and krypton atoms.

II. ANALYTIC PROPERTIES OF THE SCATTERING
AMPLITUDES IN THE MOMENTUM-TRANSFER

PLANE AT FIXED ENERGY

We consider the scattering of electrons of a few hun-
dred electron volt energy by neutral atoms, viz. Xe, Kr,
Ar. The target atoms are initially prepared in an
(L =S=0) state and then excited by electron impact to
(L =1, S=—,') state. The mass of the target atom is as-

sumed to be infinite, and this will increase the analyticity
domain, in the transfer t, of the scattering amplitude, by
suppressing the right-hand cut. The scattering is
represented by the reaction

e+A —+e+A (4)

e+Kr[4p ('So)]~e+Kr[4p ( P, /2 3/2)5$]

e+Ar[3p ('So)]—+e+Ar[3p ( P, /23/i)4s] .

(6)

(7)

Let k; and kI be the initial and final momenta of the elec-
tron projectile. The electron impact energy is defined by

E=
—,'k,. =

—,'k/+co,

while the squared momentum transfer is given by

(8)

t=K =(k;—kr) =2E(1+x —2xy),

where

x =&1 co/E, O~—x (+1
y =cos8 .

The physical range of t is from t;„to t,„,viz. ,

tmin —t —tmax

with

(9)

(10)

(12)

t;„=2E(1—x ),
t,„=2E(1+x) .

(13)

(14)

where A * is the atom in its final excited state; namely, we
consider the following reactions [9-11]:

e+Xe[5p ('So}]~e+Xe[5p ( P, /2 3/2}6s],
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a =&2I +'}/2(I co), —
2 (16)

and I being the ionization potential of the target atom.
The optical oscillator strength is defined by

co a
oos=»m I'(t)= yf~0 2 X

(17)

where y is the residue of der/dQ at t=0. This last re-
mark will be the root of this paper.

Analytic structure of the scattering amplitudes

We see that t=0 can only be reached for x =I, that is at
E equal to infinity, then t,

„

is of the order of 8E.
At any fixed energy E, t=0 is always unphysical, and

consequently an interpolation-extrapolation formula is
necessary to reach it from the experimental data. It is
clear that to define a sensible extrapolation to unphysical
values the analytic properties of the quantities of interest
are of crucial importance. The generalized oscillator
strength (in a.u. ) is defined by

~ k, do ~ a', da
2 kI dQ 2 x dQ

where da/dQ is the inelastic difFerential cross section,
with

two-particle bound state and have shown that the ampli-
tudes satisfy a dispersion relation in the energy for fixed
values of the scattering angle. Again this contrasts with
our approach where the relationships involve unphysical
scattering angles but physical energies.

While additional poles and branch cuts are introduced
in atomic physics due to the composite nature of the tar-
get and because of electron exchange, when one deals
with energy dispersion relations, no such singularities and
associated difficulties are expected when writing
momentum-transfer dispersion relations. This is so be-
cause in the momentum-transfer channel besides the pho-
ton only very heavy particles can be exchanged, and tak-
ing into account the infinite mass approximation for the
atoms, there would be no singularities in the momentum-
transfer complex plane except the singularity linked to
the photon itself.

It is known since the work of De Alfaro and Regge
[24] that the Mandelstam representation is valid in the
nonrelativistic limit. For our purpose this reduces to the
fact that f (E,t) is analytic in the full complex t plane less
two cuts running on the real axis:

(i) A left-hand cut corresponding to t &0. This cut is
linked physically to the exchange of a photon of zero
mass in the crossed channel reaction e+e~A+A,
where the bar corresponds to the antiparticle.

(ii) A right-hand cut running along the positive real t
axis from

The differential cross section is given in terms of the
scattering amplitude f (E, t) by

t=4 E to +Oo .
M
m

(20)

k~ kI
dQ k,

'
k,

If(E, r)I = f(E,t)f'(E, r), (18)

where the e operation corresponds to complex conjuga-
tion. From the analytic properties of f (E, t) in the com-
plex t plane, one deduces immediately the analytic prop-
erties of f' (E,t'), the analytic Hermitian associate.
The domain of analyticity of f'(E, t') is just the sym-
metric region with respect to the real axis to that of
f (E,t). As we shall show that f (E,t) is analytic in the t
plane deprived from the real negative axis, it results from
the previous remark that f"(E,t') enjoys the same prop-
erty. Therefore, defining the analytic extension of the
differential cross section in the complex t plane by e+ A —+e+ A, (21)

Here M is the atom mass, m that of the electron, while E
is the electron impact energy in the rest frame system of
the target atom. Physically, this cut comes from the ex-
change of an ionized atom of mass M —m in the crossed
channel of the reaction e+A~e+A. In the limiting
case where M/m ~~, which corresponds to the present
situation, this cut recesses to infinity and is no longer
present. Consequently, our cross sections are reduced to
analytic functions with only the left-hand cut as stated.
We note the following:

(i) Although our previous discussion dealt with the
elastic process,

dQ k,
f(E,r)f'(E, t*), (19)

the same reasoning applies equally well to the inelastic
process

which of course reduces for real t to the physical formula
Eq. {18),we see that the di6'erential cross section will be
analytic in the complex t plane less a cut from —Oo to 0.
To find the analytic properties of the amplitudes f (E, t),
we refer the reader to the model independent results of
the theory of dispersion relations [19].

Previously Gerjuoy and Krall [20,21] analyzed atomic
scattering problems using energy dispersion relations in
contradistinction with the present work which makes use
of momentum-transfer dispersion relations. Those au-
thors were followed in their energy dispersion relations
analysis by Rubin, Sugar, and Tiktopoulos [22] and Tip
[23]. They have studied the amplitudes for breakup of a

e+ A ~e+ A ' . (22)

f(E,t)= f '
2 dp .

t+p
(23)

{ii) The reader may be puzzled by the fact that we have
used relativistic field theory arguments to get the analytic
properties of the scattering amplitudes. This is not neces-
sary at all; it was just a matter of convenience to use
them, because all the work done on analyticity originated
in field theory. For a pure nonrelativistic approach, use

[19]. We end this section by giving the integral form of
the dispersion relation for f (E, t)
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p.(E,O)

2
(24)

If we suppose that p(E,p) has a finite limit when IM~O,
viz. p(E, O), then from Eq. (23), for small t, f(E, t)
behaves as

p» Pd )(t)
(29)

These d discrete charges sit on the left-hand cut at points
—

gj and have charges p . The net result for Fz is

This is best seen by making in Eq. (23) the change of vari-
able i», =Pv t. As a consequence of Eq. (24), the
difFerential cross section behaves as

where

J=d
Q (t)= g (t+gj)

j=1
(30)

p(E, O)

k, 4 t
[optical theorem] (25)

and, combining Eq. (25) with Eq. (17), we find that the
OOS is equal to

2

lp«, 0)'I . (26)

III. THE FADE APPROXIMATION

We see that the Lassettre theorem implies that p(E, O) be
independent of E, because the OOS is supposed to be in-
dependent of E. Notice that the Lassettre theorem, or
equivalently, the existence and the independence of
p(E, O) on E, results simply from the assumption of the
pole dominance of the single photon exchange in the t
crossed channel, combined with the p-wave dominance of
the production process of the excited atom. The presence
of a certain amount of s wave in the inelastic process will
translate itself into a change of the computed GOS by a
mechanism we shall explain in a forthcoming paper. In
this approach, we shall ignore such a possibility.

F(tk)=Fk, k=1,2, . . . , N, (31)

we can impose these constraints to compute the pj and
the g". Using Eq. (29), we get the set of equations

J=d p.
Fk= g k=1,2, . . . , N .

j=] k j
(32)

If we choose N =2d, we will get a set of N equations with
N unknowns. Unfortunately, the system Eq. (32) is non-
linear and untractable. We now briefly describe a method
inspired from the classical work of Stieltjes [16), by ex-
tending it to Pade approximants of type II, defined by the
continued fraction

is a polynomial of degree d whose zeros are the —g .
Pd, is a polynomial of degree d —1. We see that this
electrostatic approach produces naturally a rational frac-
tion of degree d —1 at the numerator and degree d at the
denominator.

The 2d unknowns [Pj,g ]~j:", are chosen in the follow-

ing way: Given the values of F(t) at the points of
analyticity t„t2, . . . , tz', that is,

Given a function F(t), this could be for instance the
scattering amplitude at fixed energy, the cross section at
fixed energy, or the GOS, analytic in a cut plane and
satisfying a dispersion relation

F(t}=f dg .
o t+g (27)

We want to approximate it by a set of the most suitable
rational fractions, that is a ratio of two polynomials in t.
From the mathematical point of view, this is justified be-
cause the most complicated types of singularities, besides
poles that are already embedded by construction in the
approximation, can be represented. Essential singulari-
ties, poles of infinite order, can be approximated by a
cluster of poles; logarithmic singularities by a sequence of
poles along the cut associated with the singularity, etc.

From the physical point of view, Eq. (27} can be rein-
terpreted in an electrostatic analogy in the following way.
We consider p(g) as a linear electric density along the
negative real axis and F(t} as the electric potential gen-
erated by these charges at a point t in the complex plane.
Keeping in mind this electrostatic analog, we shall use
the principle of electric images to replace the continuous
electric distribution p( g) by a discrete one (point
charges), and write for the approximate F(t)

FN(t) =p, +

3+

+
0N —2+

t —t2

3

tN —2

II N —1+

(33)

F~(tk ) =Fk, k = 1,2, . . . , N . (34)

Fz(t) is called the Pade approximation of type II built on
F(t). This approximation enjoys deep and remarkable
properties; the interested reader can refer to [16,17]. To
compute easily the set [Pk]k, from the knowledge of
the set [F,=F(t»)]» „weintroduce the set of linear

Depending on whether N is even or odd, Fz(t} is a ra-
tional fraction of degree [N/2] for the numerator and of
degree [(N —1)/2] for the denominator. ' We shall fit
the set [Pk ]k & by requiring that

j=d
Fd(t)= f g pjfi(g+gj)

o , ,
» t+g (28}

~The notation [x] means integer part of x.
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fractional transformations IV. POLES AND ZEROS

&X-s+1
F, (t)=PN, +1+

F, )(t)

or, equivalently, by inverting Eq. (35)

tW-. +1
F, ,(t)= F, (t) —PN, +

To initialize the system, we put

F )(t)=(t N.

(35)

(36)

(37)

A. Construction of the numerator and the denominator
of the Pade approximations

In the previous section, we gave a scheme for expand-
ing F(t) in a continued fraction characterized by a set of
p's. The truncated (at order N) continued fraction FN(t)
is defined by a subset of p: I pk ] k „andwe have learned
how to compute the pk from the input data. One checks
immediately that F~ is a rational fraction that we write
for convenience as

One checks that this set of transformations with Eq. (37)
correctly generates Eq. (33). Setting t=t in Eq. (35)
gives

PN(t)
FN(t) = (47)

p~=FN I+)(rI ), p=1,2, . . . , N .

We now calculate explicitly the P's, beginning with

FN(t) )=F), FN(t2)=F2 ] . . . )FN(&N)=FN,

(38)

(39)

Q, =F„(r,)=F, . (40)

which from Eq. (38) allows the immediate computation of

where PN(t) is a polynomial of degree [N/2] and QN(t) is
a polynomial of degree [(N —1)/2]. Note that the index
N is not the degree of the polynomials but a label index-
ing the order of the approximation.

Using the linear fractional transformation Eq. (35), it is
not difficult to show that the polynomials PN(t) and

QN(t) satisfy the same three-term recursive relation in-

volving only the knowledge of the P's

Then we compute Rk(r) ekRk —)(r)+(r rk —l)Rk —2(r) & (48)

FN(&) 0)—FN(t) F, — (41)
where Rk(t) is either PN(t) or QN(t). Only the initial
conditions are different for the P's and the Q's. For the
Ps one has

This gives all FN, (tk ) with k =2, . . . , N, viz. ,

t2
FN )(t2) =

2 1

P)(t) =(I

P2(t)=r+($)$2 tl ),

3 1

FN 1(t3)=—
3 1

and in particular

(42)

Pk(t) =PkPk )(t)+(t tk ) )Pk 2(t—),
while for the Q's, the relations are

Q)(t)=1,

Q2(r)=42

(49)

FN )(t2)— —
2 1

(43) Qk(r) Okak —l(t)+(t rk —1)ak —2(r) ' (50)

Continuing in this way, we can compute

+1 FN, (t, +))— (45)

and finally get

FN, (t, +) ); FN, (t, +2); . . . ; FN, (tN), (44)

From these relations, one constructs immediately the re-
cursive relations for the coefficients of the polynomials
Pk(t) and Qk(t), namely,

(51}

a (r) — [ —I /2 r (k —1)/2]+ f(k —1)/2 —)r (
—1)/2] —1~k

l{k—1)/2] —I [{k—1)/2] —1+.. . + 0qk-

P (r)= [k/2]r[k/2]+pP/2] )r[k/2] —1+.. . —
k

fk/2] —lr[k/2] —I+. . . + 0
S'k

N Fl(rN ) (46)

One checks that

(52)

This elegant procedure allows the computation of the
essential rational fraction that will fit the given analytic
function. and

~2k
k k (53}
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TABLE I. Noisy poles and zeros, corresponding to the electron-xenon elastic scattering at 100 eV,
coming from experimental errors.

zero
pole
zero
pole
zero
pole

Real part

0.011376 530 307 507 876 1

0.011 322 829 961 303061 0
0.051 199228 528 817482 3
0.051 645 615 778 1191860
0.051 199228 528 817482 3
0.051 645 615778 1191860

Imaginary part

0.000000000 000000 0000
0.000000 000 000 000 0000
0.009 464 864 297 820 334 28
0.009 275 091 687 547 080 97

—0.009 464 864 297 820 334 28
—0.009 275 091 687 547 080 97

Pk PkPk 1+P—k 2k——1Pk —2

(54)

with an analogous recursive relation for qk .
The initial conditions for the coefficients are derived

from the knowledge of the first polynomials P„P2,and

Q& Q2

and

Pl Nl ~ P2 1 ~ p2 $1/2 tl

vi=1 e2=6.

(55)

(56)

B. Poles and zeros structure

In the previous section, we have seen how to construct
explicitly from the data the numerator and the denomina-
tor of the Pade approximation. We can rewrite Eq. (47)
as

[N/2] [(N —1)/2]
F (t)=K Q (r —,) g (t p, ), —

1=1 1=1
(57)

where the z's and the p's are the zeros and the poles of
the Fade approximation, respectively, and ECN is given by

[y,+y4+ +y„]' if X is even,

[P,+$3+ +Pz] if N is odd .

To find out the pattern of the poles and zeros, let us dis-
cuss a practical case extracted from the present case,

It is therefore possible to compute the coefficients of
Pk(t) and Qk(t) from the input values. The computer de-
cimal precision required for these calculations is conser-
vatively 2N decimal places, where N is the number of in-
put data.

rather than a theoretical discussion which can be found
in [18]. We consider the elastic cross section for Xe at
100 eV. From the 14 nearest values of E =0, of the elas-
tic differential cross section, one computes the Pade ap-
proximation F,4(t) which is a rational fraction of degree
seven at the numerator and degree six at the denominator
or [7/6) approximation. We have therefore seven zeros
and six poles to describe it, with one pole at infinity. The
six poles and seven zeros have been, for the reader's con-
venience, split into three different families, represented in
Tables I, II, and III. In Table I, we see three pairs of
doublets pole zero whose inner relative distance is of the
order of 0.5—2 %. Clearly these doublets represent the
error due to the experimental data which are themselves
of this magnitude.

In Table II, we see again three pairs of doublets pole
zero whose inner relative distance is this time of the order
of 10 ' . This corresponds to the noise generated by the
computer roundoff. We have added for convenience a
fictitious pole at infinity in Table II to compensate for the
zero at 0.587X 10 . Finally, in Table III, what is left is
the filtered pole and zero after the various polluting
sources of noise have been taken away. This very power-
ful filtering is obtained through the explicit use of the an-
alytic properties of the cross sections; without them, no
such filtering could exist. Although it is not the proper
place here to discuss the properties of the Pade approxi-
mations as analytic noise filter [18], let us very briefiy
sketch the origin of such properties. When an analytic
function is measured experimentally, one picks up noise
which is represented by a function n(t). Therefore, the
function one analyzes is no longer F( r ) but
P(t)=F(t)+n(t). Because n(t) presents natural boun-
daries in the complex t plane, that is, sets of dense singu-
larities along some curves, P(t) will inherit them. The
Pade approximations will tend to reproduce these natural

TABLE II. Noisy poles and zeros, corresponding to the electron-xenon elastic scattering at 100 eV,
coming from computer roundoK The nuxnbers in brackets denote multiplicative powers of ten.

zero
pole
zero
pole
zero
pole

Real part

0.029 393737 442 456 349 0
0.029 393 737442 448 639 9
0.029 393 737 442 456 349 0
0.029 393737 442 448 639 9
0.587 392 030 111528 023[+26]

In5nity

Imaginary part

0.341 535 222 086 635 176[—03]
0.341 535 222 093 373 764[ —03]—0.341 535 222 086 635 176[—03]

—0.341 535 222 093 373 764[ —03]
0.000 000 000 000 000000
0.000000000 000000 000
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TABLE III. Filtered poles and zeros, corresponding to the
electron-xenon elastic scattering at 100 eV.

200 ~ I I I
l

I I I ~

)
I I T I

Real part Imaginary part

zero —1.276 972 042 685 660 34 0.000000000000000000
pole —0.018 386 108 761 050 356 4 0.000000000000000000 K

00

a 100—

boundaries also. It can be shown that they are represent-
ed by doublets of pole zero with an inner distance of the
order of the noise. We can now get a clean representa-
tion for the quantity F(t). Instead of Eq. (57), we shall
now have

50—

t N/2] —n

Ftv(t)=Kit g (t —zt )
1=1

(,N —1)/2] —n

1=1
(59) 0.00 0.05 0.10 0.15

t (a.u. }

I I i I I I I I I l I I I I I I ~ I I0
0.20

where we have discarded n pole-zero doublets corre-
sponding to the noise. F(t) is the analytically filtered ver-
sion of F(t) For th. e previous example, we get

FIG. 2. Elastic differential cross sections for Xe at 100 eV.
The current filtered result (solid line) is compared with the
Suzuki et al. [9] (crosses) data.

t —z,
0 (t) =k,4 t —

Pr
(60)

EI4 =4.473 . (65)

where z, and p, stand for the true zero and true pole
given in Table III, and E,4 has the value

There is an excellent agreement between the value of k, 4

and k'„.
E,4 K,4(t —tt ) . —

Using Eq. (58) gives us the value of K,4, that is,

(61)

V. OOS CALCULATION AND CONCLUSION

K14 = —0.7615 X 10 (62)

and tJ is the largest zero value in Table II. Neglecting
the value of t with respect to that of tL, we get
k,4 =4.473.

Finally, let us make two more remarks before closing
this section.

(i) For large t the cross section tends to zero; none of
the Pade approximations tend to zero for large t: the even
ones tend to infinity like, KNt while the odd ones tend to
the constant KN. It is easy to circumvent this difficulty
and construct approximations that will behave correctly,
that is, tend to zero for large t. A simple way is to con-
struct the Pade approximations to the inverse function of
interest, namely the Pade of 1/F rather than that of F.
Then the even approximations to 1/F will go to infinity

proportionally to t and their inverse will go to zero like
1/t. We shall also make use of this remark to compute
the OOS.

(ii) We can compute k, 4 in a different way, using a
best-fit procedure. We introduce the error functional

'2

(63)

30

K

00

22.5—

In Figs. 2 and 3, we give examples of the use of the
Pade approximation in the interpolation-extrapolation
and the filtering of experimental data. In particular, in
Fig. 2 while we input 14 experimental data for elastic
di6'erential cross section for xenon atom at 100 eV the
filtered Pade approximant (sold curve} depends only on
three parameters [see Eq. (60)]. In Fig. 2 the solid curve

(64)

Minimizing this functional with respect to k,4, we get
2

i =14 t. —z i=14 t. —z
E',4= g tr(t,).

ti Pr i =1 ti Pr

We can now compare this value with the value of K,4 fol-
lowing Eq. (62},viz.

0
0

I I I I I I I I I I I I ~ I I s

0.025 0.05 0.075
t. (a.u. )

0. 1

FIG. 3. Inelastic differential cross section corresponding to
the 5p ('So)~5@'( P&/2)6s transition versus It (a.u.) at 100 eV

for xenon atom. The current filtered result (solid line) is com-

pared with the Suzuki et at. [9j (crosses) result.
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represents our filtered result for the elastic differential
cross section for Xe at 100 eV, while the crosses are the
Suzuki et al. [9] data. Figure 3 compares the filtered
(solid curve) and the experimental (crosses) data for the
Xe Sp ('So}~5p ( P, &2)6s transition at 100 eV. This
dramatic reduction in the number of parameters as well
as the quality of the fit shows the power and eSciency of
the method. It must be pointed out that those Pade ap-
proximants satisfy, by construction, all the constraints
implied by the momentum-transfer dispersion relations
representation.

As our main goal, we have computed the residue of the
true pole nearest to the origin in the Pade approximation
to the difFerential cross section. The optical oscillator
strength (OOS) is then proportional to it within a simple
kinematical factor. The fact that the method does not by
construction put a pole at t =0, but produces it, is a cru-
cial feature of our method. Let us discuss briefly the case
of Xe at 100 eV. In this case, for the inelastic cross sec-
tion, the pole in the J=—,

' state is found at t=0.006,
while for J=—'„the pole sits at t=0.0025. The value
t =0.0025 is certainly compatible within the experimen-
tal errors with zero, and therefore confirms the hy-
pothesis of p-wave dominance. This result is supported
by the fact that for J=

—,', the optical measurements are in
reasonable agreement with the extrapolated OOS from
electron scattering data, as can be seen from Tables IV,
V, and VI. The (i} values of the OOS are related to the
residue of the true pole of the Pade approximation

TABLE IV. Comparison of the optical oscillator strength for
xenon atom, with other results. The fourth column lists the ra-
tio of the P3/2 strength to the P, /, strength.

Author 2Pi/2
2
P3/2

This work
Semiempirical

(i) 0.222 p'p3

(11) 0.2168+p p3

0.04547 p pp8

0.0469+p op8

Li et al.'
Chamberlain et al.

EELS
0 222+002

0.181
0.058+o.'oos

0.049

Optical measurements
0.228%0.021

d 0.275+0.02
0.278%0.002
0.22+0.02

Lawrence'
Stacey and Vaughan
Lewis'
de John and van Eck
McConkey and Donaldsona

0.059+0.003
0.036%0.004

0.096+0.02

Dow and Knox"

'Reference [11].
Reference [33].

'Reference [34].
dReference [35].

Calculations
(A) 0.17
(B) 0.20

'Reference [36].
fReference [37].
sReference [38].
"Reference [31].

0.052
0.049

whereas the (ii) values are related to a more standard ap-
proximation, forcing the pole to be zero

The pole at t =0.006 in the J=—,
' state, is farther away

from the origin than its sibling in the J=—, state. This is

a rather general situation; for krypton at 500 eV, this is
even more striking, the pole at J=—,

' is found to be at

TABLE V. Comparison of the optical oscillator strength for
argon atom, with other results.

OOS

Author 2
OOS

2p3n Ratio
TABLE VI. Comparison of the optical oscillator strength for

krypton atom, with other results.

This work
Semiempirical

(i) 0.141%0.019 0.208+0.027 1.10
(ii) 0.164%0.019 0.223+0.027 1.36

Author
OOS

2
P1/2

2
P3/2

Suzuki et al.'
Lub

Geiger'
Delage and Carette
8rion'

EELS
0.158%0.019

0.189
0.19
0.169
0.173

0.222+0.027
0.272
0.260
0.183
0.252

1.41
1.44
1.37
1.08
1.46

This work

Takayanagi et al.'
Geigerb

Semiempirical
(i) 0.127+0.015

(11) 0.114+0.015

EELS
0.127+0.015
0.173+0.035

0.1855+0.015
0.1124+0.015

0.143%0.015
0.173+0.035

Anderson
Wilkinson~

Dow and Knox"

Kim et al.'

'Reference [9].
Reference [25].

'Reference [26].
Reference [27].

'Reference [28].

0.256
0.270

Calculations
(A) 0.147
(B) 0.170

0.189

0.194
0.190
0.212

fReference [29].
sReference [30].
"Reference [31].
'Reference [32].

Optical measurements
0.238
0.260

1.08
1.04

1.32
1.12
1.12

Optical measurements
0.159

0.142+0.015
0.139+0.010

0.174

Wilkinson'
de John and van Eck
Tsurubuchi et al.'
Lewis

Dow and Knox''

'Reference [10].
bReference [39).
'Reference [40].
dReference [37].

Calculations
(A) 0.136
(B) 0.153

'Reference [41].
fReference [36].
sReference [31].

0.135

0.155+0.011
0.193

0.138
0.152
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t =0.003 79, while in the J=—', channel, it sits at
t =0.00005. The discrepancy in the OOS values, for the
Xe [Sp ( P, /z)6s] case, between optical measurements of
Anderson [29] and Wilkinson [30] on the one hand, and
other measurements and calculations, including ours, on
the other hand, could simply indicate a much more com-
plicated structure of the analytic digerentittl cross section
near t=0, than a simple pole. The way to analyze this
structure will be the subject of a future investigation. In
this paper we wanted only to introduce the matter of ana-
lytic interpolation-extrapolation of experimental data for
atomic physics, that is, the use of momentum-transfer
dispersion relations in atomic physics and firmly set the
grounds for it.

Some remarks about the accuracy of the OOS in Tables
IV, V, and VI are appropriate. For both Xe
[5p ( P, /2)6s] and the Xe [Sp'( P3/p)6s] states our
values agree well with the Suzuki et al. measurement
within the errors. Also, the electron-energy-loss-
spectroscopy (EELS) measured OOS, except those of
references [25] and [26], are centered around the Suzuki
et al. data and are in reasonable agreement with the
theoretical values [26,31]. However, both the optical
measurements [29,30] are rather too high by comparison.
Therefore, we believe that the Suzuki et al. OOS are
close to the correct values. In the case of argon our re-
sults are in good agreement with the data of Li et al. [11]
and within the errors, with the EELS data of Chamber-
lain et al. [33]as well as reasonably well with the calcula-
tions of Dow and Knox [31]. Among the optical mea-
surements, agreement is only with Lawrence [34] and the
de Jongh and van Eck [37] data. The remaining optical

measurements [3S,36] are too high, even when the errors
are considered. We conclude that for argon, the correct
OOS are probably those of Li et aI. or there about.

For krypton Gieger [39], an EELS measurement, and
Lewis [36], an optical measurement, both overestimate
the OOS. All other measurements and calculations, in-
cluding the current one, support the EELS measurements
of Takayanagi et a/. Puzzling in this case is that our
OOS calculations (i) for 5p ( P3/z)4s state is rather high
even with the errors included. Nevertheless, the Takay-
anagi et aI. measurements are probably close to the
correct values.

In conclusion, we have introduced momentum-transfer
dispersion in atomic physics, thus providing an alterna-
tive method to calculate OOS from differential cross sec-
tions. Our method being unbiased, general, model-
independent, and based on the analytic properties of the
scattering amplitude in the scattering angle, gives
credence to the Suzuki et a/. , Li et al. , and Takayanagi
et al. fits and consequent analysis. The Chan et al.
[42,43] measurements of OOS for argon, krypton, and xe-
non are much higher than the current theoretical and the
above-mentioned experimental data.
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