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One-dimensional scattering: Recurrence relations and difFerential equations
for transmission and reflection amplitudes
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A recurrence method for analytical and numerical evaluation of tunneling, transmission, and
re6ection amplitudes is developed. As the 6rst step, a rule for composition of two arbitrary scatterers
separated by a region of constant potential is obtained. Transmission and re8ection amplitudes for
this double-barrier potential are expressed in terms of transmission and re6ection amplitudes for
its subparts. As the length of the constant-potential region can be arbitrary and the subparts of
a potential may, in turn, be arbitrary segmented potentials, one obtains recurrence formulas which
express the scattering amplitudes for the arbitrary segmented potential via the scattering amplitudes
for the subparts into which the complete potential can be divided. The efBciency of the method
is demonstrated by solving analytically the problem of scattering from locally periodic potentials.
Since an arbitrary potential can be approximated by a set of infinitely narrow rectangular barriers,
the recurrence formulas can be applied to any potential, giving, in the limit of zero-width segments,
difFerential equations for transmission, and reffection amplitudes.

PACS number(s): 03.65.Ca, 03.65.Nk, 02.70.—c, 73.40.Gk

I. INTRODUCTION

In many actual physical problems, such as reso-
nant tunneling in semiconductor junctions and superlat-
tices [1], conductivity of one-dimensional random scat-
terers [2,3], time analysis of tunneling processes [4,5],
and tunneling of systems with internal degrees of free-
dom through potential barriers [6], one deals with one-
dimensional quantum-mechanical potentials of the fol-
lowing general type: regions of arbitrary complicated
variation of a potential are separated by regions where
the scattering potential is constant (see Fig. 1, in this
paper we call potentials of this type "segmented").

The transfer-matrix technique is the standard method
of solving the Schrodinger equation for such systems.
The approach has, however, several inherent de6cien-
cies. One deals with elements of the transfer matrix, but
not directly with observable quantities such as scattering
(transmission and reflection) coeKcients. The amount
of computational work required grows linearly with in-

creasing number of segments in a potential, which can
become a problem for sufficiently complicated poten-
tials. The transfer-matrix technique runs into loss-of-
significant-digits problem when opaque barriers are in-
vestigated because of round-off error in sums of different
in magnitudes numbers with opposite signs.

One of the goals of the present work is to develop
a method of solving the Schrodinger equation for seg-

Ui(z) Ug(z-a)

mented potentials, dealing directly with observable quan-
tities and convenient for the analytical and numerical in-
vestigation of complicated barrier structures. We start
from the simplest case of double-barrier scattering and
obtain an expression for the re8ection and transmission
amplitudes of segmented potentials in terms of the corre-
sponding amplitudes for its subparts. As the subparts of
a potential may, in turn, be complicated multisegmented
potentials, the formulas obtained recurrently determine
the scattering amplitudes for a complete potential from
the scattering amplitudes of its elementary subparts into
which the potential can be divided.

The formulas obtained are convenient both for analyt-
ical (including the usage of systems of symbolical com-
putations) and numerical calculation of scattering data.
The amount of computations only increases logarithmi-
cally as the number of potential segments increases.

Permanent address: Institute of Physics, Estonian Acad.
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FIG. 1. Schematic representation of a segmented potential.
The two-segment case is shown.

1050-2947/94/49(5)/3310(12)/$06. 00 49 3310 1994 The American Physical Society



49 ONE-DIMENSIONAL SCA l j,'BRING: RECURRENCE. . . 3311

The lengths of the constant-potential regions of a seg-
mented potential can be arbitrary, and, in particular,
zero. Since an arbitrary potential can be approximated
by a set of infinitely narrow adjacent rectangular barri-
ers, the basic formulas can also be applied to an arbitrary
potential. In the limit of the barrier segment width going
to zero, diHerential equations for amplitudes are deduced
&om the recurrence relations. The problem of solving
the Schrodinger equation in scattering geometry and ex-
tracting scattering amplitudes &om the wave function is
therefore replaced by a boundary-value problem, which
is simpler for numerical solution.

The present article is organized as follows. In Sec. II A
we review the basic facts of one-dimensional scattering.
In Sec. IIB the recurrence formulas expressing the scat-
tering amplitudes of a segmented barrier in terms of scat-
tering amplitudes of its subparts are derived. In Sec. III
several applications are considered. In Sec. IIIA, due to
the importance of rectangular potentials, we apply the
general formulas to this particular case. In Sec. IIIB
the analytical solution of the problem of scattering from
an arbitrary finite periodic chain [7—12] is obtained. Sec-
tion IV is devoted to the differential equations that can
be derived &om the recurrence relations. In Sec. IV A
difFerential equations for transmission and reHection am-
plitudes and in Sec. IVB difFerential equations for the
transfer matrix are obtained. Analytical solutions of the
equations are considered in Sec. IVC. Numerical solu-
tions of the diHerential equations are discussed in Sec.
IV D. A final discussion is given in Sec. V.

II. BASIC FORMULAS

A. Theory of one-dimensional scattering

In this section we summarize the necessary results from
the theory of one-dimensional scattering [13].

For a quantum-mechanical potential U(z) such that

conveniently expressed in terms of a transfer matrix

plM=
i ~ )

(6)

where o. and P are generally complex and depend on the
potential U(x):

2i & ~)
The conservation of the probability current leads to the
following relation for the matrix elements of (6):

The transmission (refiection) amplitudes T (R) are de-
fined as the ratio of the amplitude of the transmitted (re-
Hected) wave and the amplitude of the incoming wave.

For a wave incident from the left, B2 ——0 and the
refiection amplitude becomes

RL, =—

1

The transmission amplitude is

A2 kg 1
TL,

Ag k2 a'

(9)

Bg 1
TR =

B2 o.'

The last equalities in (9), (10) were obtained using (4),
(5), and (8). The subscripts L (R) here and below denote
the physical quantities of the particles incident from the
left (right).

Analogously, for the wave incident from the right, Aq ——

0 and

A2
R~ =—

2

(1)
From (10), (12) and (9), (11) it follows that

A~e~4~ + B~e ~4~

A, e*"* +B,e-'", 2;-++oo. (2)

Here

1
k; = —+2m(E —u, ),

h is Plane%'s constant, m is the mass of a particle, and
E is its energy.

Between the amplitudes A; and B; of (2) there are
linear homogeneous relations:

where the constants u;, the asymptotics of the general
solution of the Schrodinger equation are

k2 )A2)2 k2 2 kg 1
&i =——,= JT'r, /' = ———

kg /Ag/ kg k2 n (14)

fBgf k2 /A2/

/Ag[2 kg /Ag/2
(15)

k2
TR = —TL7

kg

and in general Rl, g R~ although ~RL,
~

= )R~(.
Transmission (refiection) coefficients 7 (R) are defined

as the transmitted (refiected) probability current divided
by the incident probability current.

For the particle incident from the left (B2 ——0)

A2 ——aAg + pBg,

B2 ——p'Ag + a'Bg,

(4)

&I, = )RI, J

Cl
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Similarly, for the particle incident Rom the right (Ai ——())
I

AE ——AEe'"', +Ee (26)

ki IBil' ki, k, 1
'

, = —IT'Rl' = ——
k2 IB2I2 k2 k2 n

ki IBil'
IB2I' k2 IB2I'

(17)

(1s)

We deno«by n;, p;, T;(R L), R,.(R L) the scattering pa-
rameters introduced in Sec. II A corresponding to the po-
tential U;(z), i = 1, 2.

Writing down Eqs. (4) and (5) for the right barrier,
we obtain for a particle incident from the left

&R = l&RI' =— (19)

I

Bs = n2B2+ p2A2 = 0,
I I I

As = n2A2 + p2B2

(27)

(2s)

T = —' I&Ll' = —' ITRI'.
kg k2

(20)

The transmission and reBection coefficients are indepen-
dent of the direction of the wave: RL ——RR ——R and
7L = 7R = 7,

Using (8) we get

, k3
B2 = —p2 —As,

k2

~ k3
A2 = a2 —A3.

k2

(29)

B. Scattering from segmented potentials

In this section we obtain the law of composition of two
scatterers in series expressing the scattering amplitudes
for a two-segment barrier in terms of scattering ampli-
tudes for the individual sections.

I et us assume that the stationary scattering problem
for the two potentials Ui(z) and U2(z) such that

(21)

Similarly, for the left barrier

I

A2 —Aini + piBi ——A2e
I ~

B2 ——aiBi+ Aipi = B2e'"' .

Substituting (29) and (30) into (31) and (32) we get

k
3 O. ~O.2

1+ Pi%'
0!gCk2

IA3, ik..
A

(31)

(32)

(33)

Using the relations (9)—(12) this can be written as

(22) IA3, ;k,
A

T1LT2L
1 —R2LR1Re2ikg a ' (34)

has been solved exactly. Here u; =const, i = 1, 2, 3. The
origin z = 0 of the coordinate systems of each potential
we call reference point of the potential. I et us consider
scattering for the following combination of the Ui(z) and
U2(z) (see Fig. 1): —ik~a 3 i(kg —k3)aA=e =e

Ag Ag

TILT
1 —R2LRgRe2ik& a

The total transmission amplitude of the segmented po-
tential (23) can be finally expressed as follows:

Ui(z),
U(z) = (

U2(x),

x & zy
xy & z & x2
z2 & z & z3
z3 & z & z4
x)z4,

(23) Similarly, one gets from (32), (29)

(35)

such that the distance between the reference points of
the two potentials is a.

The wave function has the form
R2LTlR

A2 3+
T2

(36)

Age'"' + Bye ' ' x + —oo
A, e'"~*+B,e *"2*, x, & z —

& z,
A ei '*+B e ' ' x —+ +oo

(24)
Using (9)—(12) we get the re8ection amplitude for the
segmented potential (23):

where the k, are determined by (3). This can also be
rewritten with respect to the reference point z = a as

2ikg a TyL R2L TyR
RL =RyL+e ~ ~

1 —R2LBqRe2ik&a
(37)

where

A e~k1~+B e ~k z M —oo
e aleq (a—a) + B e

—ill (a —a)

ikg{x—a) + B' —ik3(x —a)
3 3

(25)

i(k, —k, )a T»T~R
TR = e )

1 —RqRR2L e2'k&a (3s)

One can 6nd similarly the scattering amplitudes for a
particle incident kom the right:
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—2i&s + 2i(&s —&s) T R T
R — 2Re + e ~ ~

1 —RgRR2L, e2i~&~

(39)

Formulas (35) and (37)—(39) solve the problem under
study.

Similar expressions have been obtained earlier by dif-
ferent methods for the particular cases of symmetric
rectangular [14] and double b barriers [15], respectively.
The scaling theory of localization in disordered one-
dimensional lattices [2,3] was based on heuristically de-
rived expressions of type (35) for the case u; = 0.

A clear physical interpretation can be given to formu-
las (35)—(39) using the multiple scattering approach [14].
(See also [8,15].) In this approach the scattering process
is viewed as consisting of a sequence of re6ections and
transmissions occurring at each barrier. The total scat-
tering amplitude is given by a coherent sum of individ-
ual scattering amplitudes representing different possible
paths leading to transmission.

Consider, for example, (35). Expanding (35) in series
we get

TL, = e' "' "'
(T&r,T2r, + Ta, R21,R~ge""' T2r,

+Tel, R21,RgRe ' ' R2J.RyR

x e2'~*aTzg + ). (40)

o i(r, —a, )R= Re

Td To i(I, —a, )

(41)

(42)

The nth term in this series can be interpreted as the am-
plitude corresponding to the possible path when the in-
cident wave e'"' transmitted through the first barrier
from the left with the amplitude Tql, is n times reflected
both by the second barrier with the amplitude RzL, and
by the first barrier with the amplitude Rq~, before it is
transmitted through the second barrier with the ampli-
tude T21„ the additional phase shift due to going back
and forth is e '~'~".

At the end of this section we derive for future reference
the transformation rule for the transfer matrix (6) and
scattering amplitudes (9)—(12) under the translation of
the scattering potential U(z) ~ U(z —d). Let us assume
that the Schrodinger equation for the potential U(z) lo-
cated at z = 0 has been solved, Le., TR L, , RR I, , a,
and Po are known. The translated potential may be for-
mally considered as the composition of two potentials—
zero-height barrier (T = 1, R = 0) located at z = 0 and
barrier U(z) located at z = d. Applying the composition
rule (35), (37)—(39), we get the following amplitudes of
scattering on the potential U(z —d):

III. APPLICATIONS

A. Rectangular potentials

An arbitrary complicated rectangular potential can be
considered as a segmented potential, therefore formulas

(35) and (37)—(39) give exact results for this class of bar-
riers.

The simplest "element" &om which any rectangular
potential can be built is a potential step [see Fig. 2(a)]:

(47)

The scattering amplitudes for the potential (47) are as
follows:

T(~)
)

(~) 2kz
TR ~1+ k2

R(1) ky —k2
kg + A2'
k, —I,

R k2+ kg'
(48)

where k; are determined by (3). (In this section the su-

perscripts of the scattering amplitudes denote the num-

ber of jumps of the potential. ) In accordance with (20)

7 (» —~T( ) ~z —~T( ) ~2

kg kg

R' =/R~'f =JR~ f'

For later convenience we rewrite Eqs. (48) as follows:

(s)
U(z)

(b) (c)

In this section we present several applications of for-
mulas (35) and (37)—(39).

We start in Sec. IIIA considering rectangular poten-
tials due to their importance both pedagogical and prac-
tical. Although nice formulas, useful for complicated bar-
riers, are obtained, the principal goal of this section is to
demonstrate the efBciency of the method. The simple ex-
amples are also helpful in providing better understanding
of the recurrence nature of (35) and (37)—(39).

In Sec. IIIB we present the complete analytical solu-

tion of the problem of one-dimensional scattering by a
finite periodic chain of nonoverlapping barriers or wells

(see Fig. 3).

Rd RO —2iksdR= Re

Rd Ro 2ikx d

(43)

(44)

From here, using the relation (12), (11) we get the rela-
tions for the transfer-matrix elements:

0 a
I I I I

Q a a+b a+b+c

d 0 i(kz —ks)d

pd po —i(kg+ks)d
(45)

(46)

FIG. 2. Rectangular potentials: (a) Potential step,
(b) asymmetric rectangular barrier, (c) double asymmetric
barrier.
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(y) .
g 0 2k'

D(') (k1k2)
'

T(~) —s,o

D(')(k k )
'

(49) D (a; k1k2k3) = e '"' D( ) (k2k3)D( ) (k1k2)

+ e*"~~N(') (k,k, ) [N(') (k, k, )]'

N( (a k1k2k3) = e '"' D (k k )N( (k1k2)

+ """N(')(k k )[D(')(k k )]

(58)

(1) N (k1k2)
D(') (k1k2)

'

(1) 2's o N (ICIk2)

D( )(k1k2)
(52)

where N (k1k2) = k1 —k2, and D (k1k2) = k1+ k2.

X. Asymmetric octangular baliet

An asymmetric rectangular barrier of a width a [see
Fig. 2(b)]:

ug, z(0
U(2)=& u2, 0(*«

u3, x&a,

can be considered as a combination of two potential steps
(possibly of different heights) located at a distance a from
each other.

Substituting the scattering amplitudes for a potential
step (48) into the basic formulas (35) and (37)—(39) we

get the following expression for the amplitudes of scat-
tering on the asymmetric barrier:

For the transmission and re8ection coefBcients of an
asymmetric barrier we get

(2) 4k' k2k3
, (60)(k2 —k2)(k2 —k,') cos2k2a+ (k,k3+ k,')''

—ikga 2kgk2

2k1k2 cos k2a —i(kz + k1) sin k2a
' (62)

i(k2 —kI) sin k2a

2k1k2 cos k2a —i(kz + k1) sin k2a
' (63)

R ——e (64)

2. Double octangular barmen'

Pursuing one step further we investigate a double rect-
angular barrier [see Fig. 2(c)]

(2) (k1 —k2)(k2 —k3) cos k2a+ (k1k3 —k2)

(k,' —k2)(k, —k3) cos k2a+ (k1k3+ k2)2'

For later reference we present expressions for the scatter-
ing amplitudes on a symmetric rectangular barrier. In
this case u3 ——u1, and therefore k3 ——k1. From (54) and
(61) we find

(54)

T(2) 2kgk2e ' '
(k1k2 + k2ks) cos k2a —i(kz + k1k3) sink2a

22k~ k2

D(2) (a; k1k2ks)
'

By)
Q2)

u(z) = ( u3,
Q4)

i B5)

x&0
0(z(a
a(z & a+5
a+b & x ( a+b+c
x & a+ b+ c.

(65)

(55)

(2) (klk2 k2k3) cos k2G + x(k2 klk3) 31nk2o
B~

(k1k2 + k2k3) cos k2a —i(k2 + kIk3) sin k2G

N( ) (a; kIk2k3)
D( )(a; k1k2k3)

'

It can be considered, in turn, as a combination of two
rectangular barriers of widths a and c located at some
distance b.

Substituting the expressions for scattering amplitudes
for a single barrier (54)—(57) into (35), (37)—(39) yields

(56)

(2) 2k2k3e-'"'
R (k, k2 + k2k3) cos k2a —I(k2 + k1k3) sin k2o

—icosa 2 k2k3
D( ) (a; kIk2k3)

~(4) i~ (a+~+,)
2 kgk2k3k4

Tg =e
D( ()a, b, c;k Ik 2ksk4 ks)'

(4) iA. ( +~+ )
2 k2k3k4k5

TR ——e ''
D( ) (a, b, c; kIk2k3k4k5)

'

(66)

(67)

~(2) —2iA:sa
R

(57)

(ksk2 —k2k1) cos k2a + i(k2 —k1k3) sin k2&
X

(kIk2 + k2k3) cos k2o —c(k2 + k1k3) 3111k2G

N (a; kIk2ks) j
D(2) (u; k1k2k3)

(4) N (o, b, c;kIk2k3k4ks)
D( ) (a, b, c; kIk2ksk4ks)

'

(4) 2.„(+~+ ) [N (a, b, c; kIk2k3k4ks)
D( ) (a, b, c; kIk2ksk4ks)

(68)

In formulas (54)—(57) we used Here
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D( )(a, b, c;kik3ksk4) = e '"* D (a;kik3k3)D (c;ksk4k5)

+e""N&') (c;ksk4k5) [N(') (a; k, k,k3)]',

N )(a, b, c;kik3ksk4) = e ' ' N( )(a;kik3k3)D (c;k3k4k5)
+e'"*'N(') (c k, k4k, )[D(') (a k, k,k, )]* (71)

and N( ) and D( ) are determined by (59) and (58). In the particular case of a symmetric double barrier (ui ——us ——

ic5 —01 ic3 —tL4 —ic) ki —k3 —k5 —Icl kQ —k4 —ql a = c) this expression simplifies and, for example, for the
transmission amplitude we have

16Ic2q2e 2tkEL

TL
~ ~ 2[4qkcosqa —2i(q + k ) sinqa] +4(k —q ) sin qae3'"5

(72)

The remarkable symmetry of the scattering amplitudes
T~~"r) and R~(")I expressed through D(") and N(") [com-
pare (49)—(52), (54)—(57) together with (58), (59), and
(66)—(69) together with (70), (71)] allows us to write
analytical expressions for more complicated rectangular
barriers by inspection.

B. Scattering by a locally periodic potential

r,e- ".

(b)
r (n) —ikzRg 8

XQ 2xp (n —1)zp

FIG. 3. Sketch of the potentials and scattering geoxne-
try: (a) single scatterer U(z), (b) Snite periodic potential
U" (z}= g"„U(z —kzo).

The problem of one-dimensional scattering by a finite
periodic chain of nonoverlapping barriers or wells (see
Fig. 3) is of significant interest because it exhibits the
important features of quantum mechanics: tunneling and
interference [8,9]. The solution of the problem manifests
the origin of the band energy spectrum of periodic po-
tentials —Brillouin zones and forbidden energy gaps-
as the number of scattering centers grows, making thus a
bridge between atomic scattering (one center) and solid-
state physics (n -+ oo, semi-infinite periodic chain). It
is also of practical interest for the physics of superlattice
electronic devices.

This problem was discussed in [7—12] but only the an-
alytical solution for a Snite Dirac comb was obtained.

Let us consider scattering from n equally spaced non-
overlapping potentials, centered at the positions 0, zo,
2zs, . . . , (n —1)zo. Let & = &~ = &r, and r~, l, be the
transmission and refiection amplitudes for the single po-
tential. Denote by T(")—:T&" ——Tl(" and R& )& the
total transmission and refiection amplitudes for the po-
tential chain with n sites.

The chain containing n sites may be considered as a
composition of two potentials —a finite chain of (n —1)
sites and a single scatterer.

General formulas (35), (37)—(39) applied to the case
under study give the following recurrence relations for
T(n) and RRL:

( ) T( )t
R( &) 2 a*o'

t'R'n "
R( ) r +e2ia*o t L—rL e

1 —RL rRe(n —1)

(n —X) (n —X)
R(n) —2ikap R(n &) R L

R — R ~(n —Z)1 —mL rRe

(73)

with the natural "boundary" conditions

T = 1, RRL ——0, T =t, RRL ——rRL.(0) (o) (i) (~) (74)

Introducing a notation

T(n) T(n) —iIezon

R( ) R( ) —2i&*o R( ) R( )e

(75)

&om where one can get for the single potential

t =te'i7ce rR =rRe rL =rL2ileap (76)

T
L rR

(n —1)-
tRL t

R( —)-
n —1) (n —1)-

R(n) R(n —i) TR TL rR
R R +

rR

(77)

The solutions of system (77), satisfying the conditions
(74), are of the form

T(n)

(n)
R,L

1
1

U„(z) —=U„ i (z)t' "

t
' U„,(z)

1
U„(z) —=U„ i (z)

(78)

we get the following system of equations for T(n) and
(n)R
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where eikxp
+ (87)

U„+i(z) —2zU„(z) + U„g (z) = 0 (8o)

1 ) —ikxo ikxo q

2 it t*) 2 i t t*

is a real quantity and U„are the Chebyshev polynomials
of the second kind, satisfying the recurrence relations

determines the edges of allowed and forbidden energy
bands for the infinite periodic chain.

The calculated transmission coefficient for a chain of
three inverted parabolic barriers are depicted in Fig. 4,
together with the solutions of (86), (87). The scattering
potential is of the form

and boundary conditions

U g(z) =0, Up(z) = 1. (81)
U(z) = &

Uo —-m(u x1 2 2
2

(ss)

For proving the validity of (78) the identity

U„(z) + U„+i(z) —2zU„(z)U„+g(z) = 1 (82)

T(n) ~
1

eikap
U (z) U„g (z)

TI—U„ i (z)
ikep

U„(z) — U„g (z)
T+—U„,(z)

ik~p

U„(z)— U„g (z)

—ikapne )

—ikape 7

e
—ikep {2n—1)

(83)

can be used.
Finally, the scattering amplitudes for the finite peri-

odic chain of n sites,

where m is the mass of the incident particle, ~ is the
angular frequency, and h' = gh/mu is the characteris-
tic linear size of the ground state of the particle in the
harmonic potential ~zmu2z2. Parameters for numerical
calculations were chosen as follows: xo ——sb, Up = 2k'.

The scattering amplitudes for the single inverted
parabolic barrier are calculated by the numerical method
described in Sec. IV. This combination of the numerical
method of Sec. IV with the analytical solutions (84) and
(85) has the following advantages: (a) the positions of
narrow resonance peaks, where calculations have to be
carried out very carefully, are known for chains of arbi-
trary length after the solution of the scattering problem

IT( )I

1+
I

I2U„x(z)
(84)

Using the identity (82), we get for the transmission and
reQection coefficients

arctan[z(E) j[
2.0 t-

0.0—

—2.0 i-

(b) I

r2
(z)

I&'"'I' = I&R'I' =
1+

(s5) T(&)o.s-

0.6 I-

m = 1, . . . , n —1.

where r = Irl, I

= IrnI.
The transmission resonances IT(")I = 1 occur when

either IrI = 0 or U„q(z) = 0. The former case may
happen when the single potential has an internal (for ex-
ample, double-barrier) structure and therefore is trans-
parent at some energies of the incident particles [16]. In
the latter case the energies of the incident particles are
solutions of the equation

z =cos m— (86)

In the limit n ~ oo the system of scatterers becomes a
semi-infinite periodic chain. For this limiting case the po-
tential must be opaque, i.e., T& ~ = 0, when the energies
of the scattered particles fall into the forbidden energy
gaps of the periodic potential. Indeed, lim ~ U (z) =
oo, whenever the argument of the Chebyshev polynomial
is outside the range (—1, 1). Therefore T( ) = 0, for

IzI ) 1. The equation (IzI = 1)

0.2 I-

05h~ 1h~ 15h~ 2hu; 25h(

FIG. 4. Transmission coeKcient for the periodic chain of
three inverted parabolic barriers of frequency cu. (a) Sketch
of the potential. (b) Function z(E) determined by Eq. (79)
of the text. Points of intersection of the z(E) graph with
thin lines marked by vertical arrows are the graphical solu-
tions of Eq. (86) and determine the positions of the trans-
parency resonances. Points of intersection with dotted lines
are the graphical solutions of Eq. (87) for the gap edges of
semi-intinite chain. (c) Transmission coefBcient T(E) for sin-

gle barrier (bold line) and periodic chain (thin line). Reso-
nances too narrow to be drawn on the figure are marked by
vertical arrows.
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(96)—(99) for a single barrier only; (b) the computational
time does not depend on the size of the chain.

IV. DIFFERENTIAL EQUATIONS
FOR SCATTERING AMPLITUDES

AND THE TRANSFER MATRIX

In Sec. IIB of this article we obtained formulas al-
lowing us to calculate the scattering &om a two-segment
potential barrier. Developing this approach further, we
added a third barrier to the progression of the previous
two in Sec. IIIB, and then a fourth to the progression
of the previous three, and an nth to the progression of
the previous (n —1). In the same way, as when deriv-
ing formulas (35), (37)—(39), we put limits neither on
the width of the segments nor on the distances between
them. Therefore one can use the formulas also to combine
arbitrary rectangular potentials with vanishing distance
between them.

Any potential may be considered as a limit of a set of
rectangular barriers, with the width of the barriers tend-
ing to zero. Therefore recurrence formulas (35), (37)—(39)
can be modified, allowing us to calculate the transmission
and reHection amplitudes (and therefore also the coeffi-
cients) for any potential. We will see below that in the
case of a nonsegmented potential the recurrence relations
are transformed to ordinary difFerential equations.

To obtain the differential equations we use the "trun-
cated potentials" as an intermediate tool.

The potential U(z) truncated at z = zp is defined as

coefBcients and elements of the transfer matrix for the
nontruncated potential U(z) are then the solutions of
these equations with appropriate boundary conditions in
the limit xp m +oo.

A. DifFerential equations for re8ection
and transmission amplitudes

T, =TR — . ——1+a(z)az, (91)
1 —ikgAz

1 —
2k' ~z(k,'+ k,')

1

b,*(k —k )

1 —
2k b,z(k~2+ k22)

= a(z) Az, (92)

where

Let us denote the transmission and refiection am-
plitudes for a potential truncated at the point xp by
T~ I( zp) and R~ r, (zp). Using the composition law (35),
(37)—(39) we add an infinitely narrow rectangular barrier
of width b,z and height U(xp) to a truncated potential
at x = zp so that the distance between the two barriers
is zero (see Fig. 5), obtaining thus T~ 1,(zp + b,x) and
RR r, (zp+ b,z).

From (62) and (63) we have the following expressions
for a narrow rectangular barrier of width b,z (6z m 0,
sin Az = hz, cos 6x = 1) located at the origin x = 0 of
the coordinate axis:

U (x) = U(z)8(xp —x),

where 8(z) is the unit step function:

(89)
a = (k2 —k~).

2k'
(93)

g( )
0, z(0
1, x&0. (90)

Let us choose the origin of the energy axes such that
lim ~ U(z) = 0. Then, ky —— k, k2 = k

(2m/h2) U(x), and

Solutions of the Schrodinger equation with truncated po-
tentials are investigated in [13], Sec. 2.9.

The idea is to put in series a potential truncated at the
point zp and a narrow rectangular potential of width b x
and height U(zp), such that the distance between two
segments is zero, obtaining thus a potential truncated at
the point zp+ Az (see Fig. 5). By taldng the limit b,z ~
0, the recurrence relations are converted to a system of
difFerential equations, such that all derivatives are taken
with respect to the truncation coordinate xp. Scattering

U(z)

m
a(z) = ———U(z).

I n' (94)

Taking into account that the distance between the ref-
erence points of the truncated and the narrow rectangular
potential is zp, from (35) we have for TL, (zp + bz)

TI, (zp + b,z) = Tl, (zp)

+Tl, (zp)gaza(zp) (1+R~e ) . (95)

Here (91), (92) are used, and only terms linear in Az are
kept.

Carrying out the limit Ex —+ 0 we get an ordinary
differential equation for Tr, (zp):

TL, (zp) = a(zp)TL, (zp) (1+RJte '" ') . (96)

0 &0 Xo+AX

Here and below the prime denotes difFerentiation with
respect to the truncation position xp.

Similarly, &om the recurrence relation (37)

PIG. 5. Arbitrary potential U(x) (dotted line), associated
truncated potential U (xp) (thin line), and narrow rectangu-
lar potential of height U(xp) (bold line).

T~(zp) = a(zp)TR( p) (1+RRe""*'),

from (38)
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RL, (zo) = a(zp) &L, (zp) TR(*p)e""*', (98)

and from (39)

RR(xp) = a(zp)e '" ' (1+RRe2'" ') (gg)

Let us discuss now the boundary conditions for the
system of ordinary differential equations (96)—(99). If
the potential U(x) is localized, i.e., lim ~y U(x) = 0,
then the associated potential, truncated at x = —oo, is
U (z)—:0. Therefore the boundary conditions imposed
at the point zo ———oo are as follows:

da zp = a(zp) a(xp) + e '"*'p'(zp)
dxp

~P' *Q = —a(zp) o.(zp)e2*"*' + P'(zp) .
ifxQ

(109)

(110)

~(
1+a(xp)b, x a(xp)b, xe
—a(xp)b, xe '"*' 1 —a(xp)b, z )

'

where a(x) is determined by (93), (94). Substituting
(105), (106), and (108) into (107) and taking the limit
b,z -+ 0, we get the following linear differential equa-
tions for the matrix elements of the transfer matrix:

RL, (—oo) = RR(—oo) = 0,
TL, (-oo) = TR( oo) -= 1. (100)

In the case of scattering on a localized potential, the
boundary conditions for (109), (110) are as follows:

T ( )
i(kg —kg)x2k'

kx+ k

kg —k2

kl+ k2'

( )
2 i(kq —kg)z~

k2 —k,
k2+ kl'

RL(z ) =

RR(x ) =

{101)

(102)

(103)

(104)

where kq —— &/2m(E —u ), k2 ——s/2mE, and the
relations (48), (41)—(44) were used. These conditions are
imposed at the arbitrary point x in the region, where
the scattering potential U(z) reaches its left asymptotic
value.

B. Differential equations for the transfer matrix

Let us denote by a(zp) and P(zp) elements of the trans-
fer matrix, corresponding to a scattering potential U(z),
truncated at the point zp.

If the potential U(x) is not localized, i.e., U( —oo) = u
0 [let us remember that by convention U(+oo) = 0j, then
associated potential U (z) truncated at some point z
sufBciently far to the left, is the potential step of height
u . Therefore the boundary conditions for this case are
as follows:

a(—oo) = 1, P'( —oo) = 0.

If the potential U(z) is not localized, similarly to the case
of differential equations for the scattering amplitudes we

get

( )
i(kg-kg)akg + k2

2k2

p( )
& 2 i(kq+kq)z
2k2

'
(112)

(113)

These conditions are imposed at an. arbitrary point x
in the region where the scattering potential U(x) reaches
its left asymptotic value.

C. Analytical solution of the difFerential equations

The simplest case for an analytical solution of
Eqs. {96)—(99) or (109), (110) is the symmetric rect-
angular barrier. The potential may be considered as a
truncated potential associated with a wider rectangular
barrier of the same height. It is easy to check that the
scattering amplitudes (62)—(64), where the coordinate of
the right border of the barrier is now the truncation pa-
rameter, indeed are the solution of Eqs. (96)—(99).

As a somewhat more elaborate example, consider scat-
tering on the following reflectionless potential:

Mi( )
~t' ~(zp) p(zo)

&~

( p'(») ~'(zp) )

52 1
U(z) =

m cosh (z)

(105) The solutions of Eqs. (96)—(99) are

(114)

The transfer matrix of this potential truncated at the
point xo + Au is

2k(k + i)
k + 1+ (k —i tanhxp)

(115)

M'(x, +Ax) =
~

. ' '
~. (106)

( p'(*o+ &*) '(*o+&*)
&

The transfer matrices of two truncated potentials are
connected by the relation

k+i 1/cosh (xp)
RL, zp —e""*' 116

k —i k2+1+ (k —itanhzp)2'

1/cosh (x)
R~(xo) = —e "~'

k' + 1+ (k —i tanh xp)'
M(xp + h, z) = M M(xp), (107)

Similarly, the solutions of Eqs. (109), (110) are

where M is the transfer matrix of the narrow rectan-
gular barrier. Prom Eqs. (91), (92) using (ll), (12) we

get

k' + 1+ (k + i tanh x)'
( ) = 2k(k;) (118)



49 ONE-DIMENSIONAL SCA'l IERING: RECURRENCE. . . 3319

&'(z) =— ~2iIgx

2k(k —i) cosh (z)
(119)

Taking the limit zo -+ +oo we get the correct scattering
amplitudes for the reflectionless potential (114):

T= . , B=O.k+i
k —i' (120)

e
—2ise

ez = — . — ze'"
2ik dz-

~2ika d
P(z) = —4(z)e '"* .

2ik dz-

(121)

It is possible to establish general relations between the
solutions of (96)—(99), (109), (110), and the Schrodinger
equation. Let us use the following ansatz for the solutions
of the differential equations (109) and (110):

U(*) = Up(z) + Ua (z), (124)

are solved using the boundary conditions (100). The re-
sults of the calculations are depicted in Fig. 4 and have
been discussed already in Sec. III B. They may be com-
pared with similar ones obtained by a different method
in [9].

As the second example we consider the resonant tun-
neling diode having a parabolic profile. The energy dia-
grams for zero and for nonzero voltage applied across the
diode are depicted in Figs. 6(a) and 6(b), respectively.
This system is expected to have equally spaced (unlike
the rectangular double-barrier diode) transmission res-
onances and hence peaks in current-voltage character-
istics. It can have therefore a potential application as a
quantum electron device, and was studied experimentally

[1]
The scattering potential is of the form

2 (2 2m
d, 4( z) +l I' —„,U(*)

l 4(z) =o
dz2 g

52 (123)

Substituting the ansatz (121) and (122) into the first dif-
ferential equation (109) we find that @(z) is the solution
of the following equation:

where (see Fig. 6)

Uo(z) = &

0,
%CO)

mv z
2 )

I» (a+ &)

a & zl & (a+6)
lzl & a

(125)

i.e., g(z) is the solution of the Schrodinger equation for
the potential U(z).

From this result we conclude that the system of equa-
tions (96)—(99), and (109) and (110) has analytical so-
lutions for all potentials U(z) which lead to analytical
solutions of the Schrodinger equation.

is the zero-voltage potential, m is the (effective) electron
mass, Id is the frequency, corresponding to the parabolic
Well, 'lko = 2m(d 61 2 2

(b)-

D. Numerical solution of the difFerential equations

In the general case Eqs. (96)—(99), (109) and (110)
cannot be integrated analytically and have to be solved
numerically. The algorit&m for the numerical solution
is as follows: Eq. (99) is an ordinary difFerential equa-
tion of the Riccati type, it can be integrated numerically
and RR can be calculated. If only scattering probabili-
ties are required, this is the only equation to be solved,
because the transmission and refiection coefficients are
connected by relation (15). If the complete solution of
the scattering problem is required, i.e. , scattering phases
are also of interest, one gets TR r, directly from (96) and
(97), respectively. Substituting then TR I, into (98), one
can find Bl,. Finally, the wave function may be obtained
integrating the relations (121), (122).

Formulas (96)—(99) not only allow one to find the re-
Bection and transmission amplitudes directly, instead of
extracting them from the wave function, but rather the
eigenvalue problem of the Schrodinger equation is re-
placed by a boundary-value problem, much easier to deal
with, especially in numerical calculations.

In the present work two examples demonstrating the
numerical solutions of the differential equations are pre-
sented. As the first example we consider the periodic
chain of inverted parabolic barriers [see Fig. 4(a)]. The
scattering potential is localized and differential equations

D(E)
0.8 — (c)

0.6—

0.4—

0.2—

11 F/Fice
I

0.1—

0.01—

0.001—

0.0001—

0.00001—

I I

3 5
I I I I

9 11 13 15 &/&~

FIG. 6. Resonant-tunneling diode having a parabolic pro-
Sle. Energy diagrams with no voltage bias (a) and with volt-
age bias b, (b) across the diode. (c) Transmission probabil-
ity vs energy of incident particles, E = 6M. (d) Current
(arbitrary units) vs voltage across the parabolic-well diode,
E =3~.
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U~(z) = & T (1—
0,

x ( —(a+ 6)

a+b, —a+b & x & a+b
x & (a+b)

(126)

is the voltage applied across the barrier. (Here we neglect
effects connected with the accumulation and redistribu-
tion of charges across the barrier. )

In contrast to the first example, the scattering poten-
tial for nonzero voltage 6 applied across the barrier is
not localized [lim ~ U(x) g lim ~+ U(x)] and dif-
ferential equations (96)—(99) or (109) and (110) must be
solved with the boundary conditions (101)—(104) or (112)
and (113), respectively.

Numerical calculations are carried out for the follow-

ing parameters of the parabolic barrier: a = 4b, b = 0.3b,
where h = gh/mar is the characteristic size of the ground
state in the parabolic potential. The results of the calcu-
lations are presented in Fig. 6. The probability of trans-
mission through the tunneling diode versus the kinetic
energy of the incident particle is presented in Fig. 6(c).
The approximately equally spaced progression of trans-
mission resonances corresponds to equidistant virtual lev-
els in the potential (124).

Figure 6(d) presents the calculated current-voltage
characteristics I(b, ) of the tunneling diode:

fort scales logarithmically with the number of subparts
of the potential. Indeed, if optimal order of the potential
decomposition is selected, after the nth step of the iter-
ation process 2" subparts of the potential are combined,
as it was demonstrated in Sec. III A. The method is most
suitable for the calculation of reflection and transmission
amplitudes for complicated potential structures.

The system of difFerential equations derived in Sec. IV
is expected to be suitable for the numerical calculation
of scattering amplitudes for electrons in semiconductor
electron devices or light in thin-film coatings and for the
determination of tunneling times [4,5] in complicated bar-
riers. The linear differential equations for the transfer
matrix (109) and (110) may be useful in investigating
properties of one-dimensional disordered systems.

Our interest is concentrated on the scattering states,
however, the method can be applied to investigate bound
and resonant states, considering the poles of the trans-
mission amplitude. Another approach to the numerical
determination of the energies of bound states is to convert
formally a bound potential U(z) into scattering one [for

example into U(z)e * with sufBciently sinall a], and
determine the positions of narrow scattering resonances.

Although in the present work only quantum-
mechanical systems are considered, the formulas ob-
tained are also applicable for the description of the scat-
tering of electromagnetic or elastic waves in one dimen-
sion.

I(b, ) = cg(b, )A, (127)
ACKNOWLEDGMENTS

where the factor c depends on the system of units used,
and the dimensionless conductance g(A) is expressed
through the amplitudes of scattering on the potential
barrier via the relation [2,3] (see Appendix for details)

(128)

In spite of the crudeness of the approxiination (126) the
results are in good qualitative agreement with the exper-
imental data [1].
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APPENDIX

In this appendix, following Refs. [2,3], we present the
derivation of Eq. (128),

V. CONCLUDING REMARKS ~(&) —,
In the present work interesting results for the theory

of one-dimensional scattering are obtained. We have de-
veloped a method which deals directly with scattering
amplitudes without introducing any auxiliary objects.

In Sec. IIB the algebraic recurrence approach to the
one-dimensional scattering is developed. The formulas
obtained are convenient both for analytical (including
the usage of computer algebra systems) and numerical
calculation of scattering data. In the proposed method
one deals directly with probability amplitudes, i.e., with
the complex numbers with the absolute value less than
one. Therefore the method is free from the numerical
problem of the loss of significant digits arising from the
cancellation in s»ms of different in magnitudes numbers
with the opposite signs. The outstanding feature of the
recurrence approach is the fact that computational ef-

for the conductivity of a potential barrier.
The two following assumptions are natural for the in-

vestigation of quantum electron devices.
The temperature is low enough so that one deals with a

degenerate Fermi gas and. only electrons with the energy
close to the Fermi level make a contribution to the electric
current.

The thermodynamic reservoirs at the two ends of the
barrier destroy the coherence between waves incident on
the barrier from the left and from the right such that
their incoherent superposition has to be considered (i.e.,

one has to add not amplitudes but probabilities and prob-
ability currents).

We imagine that the Fermi level of the reservoir on the
left from the barrier is raised by 4 relative to that on the
right.
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By definition the conductance G is

IG= —, (A1)

Similarly, the density of electrons on the right from the
barrier is

(A4)

where I is the electric current through the barrier. The
idea is to express I and 6 through the probability cur-
rents and changes in the density of electrons on both sides
of the barrier.

Let the probability currents of electrons incident on
the barrier from the left and from the right be j~ and

j„, respectively. Then the electric current through the
barrier is

I - (j~ —j )I&l'.

The density of electrons on the left from the barrier is
the total probability current on the left divided by the
speed of electrons:

"& -j)+ j~(1 —]2'] ) + j.(&[

where we add the current incident on the barrier from the
left, the current re8ected from the barrier, and the cur-
rent transmitted through the barrier from the right. The
averaging over a space of several wavelengths is assumed
in (A3).

(A6)

where p is the density of states.
Substituting (A6) and (A2) into (Al) and using (A5)

we get

1 —]T/z' (A7)

As it was shown in [3] the exact coefBcient in this equa-
tion is e /z'h. Finally for the dimensionless conductance

e

we get the expression (128).

(A8)

The extra density of electrons on the leB from the barrier
1s

hn = n& —n„- (j& —j„)(1—I&I').

At the same time

[1] F. Capasso, S. Sen, F. Beltram, and A. Y. Cho, in
Physics of Quantum Electron Devices, edited by F. Ca-
passo (Springer-Verlag, New York, 1990), pp. 181-252.

[2] R. Landauer, Philos. Mag. 21, 863 (1970).
[3] P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S.

Fisher, Phys. Rev. B 22, 3519 (1980).
[4] E. H. Hauge and J. A. StSvneng, Rev. Mod. Phys. 81,

917 (1989).
[5] V. Olkhovsky and E. Recami, Phys. Rep. 214, 339

(1992).
[6] M. Rozman and R. Tehver (unpublished).
[7] D. Kiang, Am. J. Phys. 42, 785 (1974).
[8] H.-W. Lee, A. Zysnarski, and P. Kerr, Am. J. Phys. 57,

729 (1989).

[9] T. M. Kalotas and A. R. Lee, Eur. J. Phys. 12, 275
(1991).

[10] D. J. GriRtihs and N. F. Taussig, Am. J. Phys. BO, 883
(1992).

[11] B. N. Zakhariev and A. A. Suzko, Diect and Inverse
Problems (Springer-Verlag, Berlin, 1990).

[12] J. M. Kowalski and J. L. Fry, J. Math. Phys. 28, 2407
(1987).

[13] J. G. L. Lamb, Elements of Soliton Theory (Wesley-
Interscience, New York, 1980).

[14] J. E. Beam, Am. J. Phys. 88, 1395 (1970).
[15] D. Lessie and J. Sparado, Am. J. Phys. 54, 909 (1986).
[16] B. Ricco and M. Y. Azbel, Phys. Rev. B 29, 1970 (1984).


