
PHYSICAL REVIEW A VOLUME 49, NUMBER 5 MAY 1994

Tunneling delay times in one and two dimensions

Aephraim M. Steinberg and Raymond Y. Chiao
Department ofPhysics, Uniuersity of California at Berkeley, Berkeley, California 94720

(Received 18 May 1993)

We demonstrate that although the well-known analogy between the time-independent solutions for
two-dimensional tunneling (e.g. , frustrated total internal reflection) and tunneling through a one-

dimensional potential barrier cannot, in general, be extended to the time domain, there are certain limits

in which the delay times for the two problems obey a simple relationship. In particular, when an
effective mass is chosen such that mc2=Rco, the "classical" traversal times for allowed transmission be-

come identical for a photon of energy Ace traversing an air gap between regions of index n and for a par-
ticle of mass m traversing the analogous square barrier of height Vp in one dimension. The quantum-

mechanical group delays are also identical, given this effective mass, both for E= Vp (8=8, ) and for
E» Vp (8« 8 ). (For a smoothly varying potential or index of refraction, the agreement persists for all

values of E where the WKB approximation applies. ) The same relation serves to equate the quantum-

mechanical "dwell" times for any values of E and Vp. On the other hand, in the "deep tunneling" limit,
E « Vp (8=m./2), one must choose mc =n fuo in order to make the group delays equal for the two

problems. These equivalences simplify certain calculations, and the two-dimensional analogy may also
be useful for geometrically visualizing the tunneling process and the anomalously small group delays
known to occur in the opaque limit. We also demonstrate that the equality of the group delays for
transmission and reflection for lossless barriers follows from a simple intuitive argument based on time-
reversal invariance, and discuss the extension of the result to the case of lossy barriers.

PACS number(s): 03.65.Bz, 42.25.Bs, 73.40.Gk

I. INTRODUCTION

Over the past few years, renewed attention has been
devoted to the long-standing controversy over the dura-
tion of the tunneling process [1—9]. Most of the theoreti-
cal work has centered on electron tunneling in one di-
mension, although some recent papers [10—14] have
found it advantageous to focus on electromagnetic in-
stances of tunneling. Both one- and two-dimensional tun-
neling are important in solid-state physics as well as in
electromagnetism, and analogies between the different
processes can be fruitful [15]. Such analogies are well
known for the time-independent problems, but are non-
trivial for the time-dependent case. Here we discuss the
extent to which the dynamics of one- and two-
dimensional tunneling {as well as allowed transmission)
can be considered analogous, and present some results
about the relationship of the reflection and transmission
times for tunneling {regardless of dimensionality).

A. Group-delay times

While there have been several definitions o8'ered for
tunneling times, we are going to discuss primarily the
group-delay prediction, also known as the "phase time. "
This quantity is based on the stationary-phase approxi-
mation, and is intended to give the time at which the
peak of a tunneling wave packet wi11 appear at the far

side of a barrier, relative to the time at which the extra-
polated peak of the incident packet would reach the en-
trance face of the barrier [16]. {Toavoid confusion with
the phase velocity, we use the terminology "group-delay
time, " or simply "delay time"; when necessary, we make
a distinction between "transmission delay times" and
"reflection delay times, "and for brevity in those cases we
have on occasion dropped the word "delay. " This should
not be mistaken for an introduction of an alternate,
undefined quantity. ) In some limits, this time may be less
than the thickness of the barrier divided by the vacuum
velocity of light c, which has led researchers to question
this approach, both mathematically and interpretational-
ly [2,5,6]. Indeed, it has been stated that when the group
velocity exceeds c, it "is just not a useful concept" [17]
and that "physics has no law about a peak turning into a
peak" [18]. {For example, the transmitted pulse might be
so distorted that the method of stationary phase has no
physical content; this can be true, for instance, in the
classical limit of allowed transmission, where multiple
reflections are displaced relative to one another rather
than interfering; see discussion in Sec. III.) We proposed
an optical experiment to test this prediction at the
single-particle level. We showed that in our experiment,
the group delay was indeed a meaningful quantity, in that
the distortion of the wave packet was sufticiently slight as
to justify the identification of the peak as a robust charac-
teristic. More importantly, it correctly described the tun-
neling delay time at the single-photon level [14], even
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though the apparent tunneling velocity exceeded the vac-
uum speed of light. By using pairs of "conjugate" parti-
cles emitted essentially simultaneously, allowing only one
to tunnel, and then comparing their arrival times, we pro-
vided an unambiguous operational definition of the tun-
neling delay. We compared the particles' arrival times
before and after inserting a barrier in the path of one of
them; thus we measured the difference between the tun-
neling delay time as defined above and the delay time for
traversing free space, simply d /c for a photon. The other
proposed definitions for tunneling times may well be im-
portant in different types of experiments; in this paper,
however, we concern ourselves only with the delay.

Our original proposal [12] relied on the process of frus-
trated total internal reffection (FTIR), in which a photon
incident on a planar glass-air interface at an angle greater
than the critical angle for total reAection may "tunnel"
through an air gap of width d to a second glass region,
parallel to the first (see Fig. 1). We showed that the solu-
tions to Maxwell's equations for this problem could have
exactly the same form as the solutions to Schrodinger's
equation for an electron incident upon a one-dimensional
square barrier of the same width d. In particular, for s-

polarized light, the matching conditions for the electric
field 8 are the same as those for the wave function 4
(viz. , both the field and its derivative are continuous).
Due to translation symmetry, the y dependence in the
two-dimensional problem must be the same in all three
regions, and can thus be dropped. Setting both the x

Air gap

h.y

component k„ofthe incident wave vector and the
evanescent decay constant (in the barrier region) a. to be
the same in the one-dimensional Schrodinger and two-
dirnensional Maxwell problems leads to identical
transmission amplitudes for the two problems. This is
accomplished when the equivalences

2mE co
n cos 0,

c

2m ( Vo E)—
(n sin 8—1)

2

are drawn. (Here and throughout, m is the mass of the
electron, E is its energy, and Vo is the height of the
square barrier; co is the frequency of the photon, n is the
index of refraction in the two glass regions, and 8 is the
angle of incidence of the photon. } To this kinematic
identification, we were not immediately able to add a
dynamical identification. That is, while the transmission
probabilities have the same form for the time-
independent problems, the extension to the time-
dependent case is nontrivial. There are two reasons for
this. First of all, our proposed experiment involved pho-
tons, whose dispersion relation is different from that of
the massive particles implicit in the Schrodinger equa-
tion. (Note that in the above equations, the frequency of
the Schrodinger stationary states, E/h', is not the same as
the frequency co of the corresponding optical stationary
states, although the wave vector k„is the same in both
problems. ) The second difficulty arises because in a two-
dimensional experiment, there may be a transverse (paral-
lel to the air-glass interfaces) shift by for the transmitted
beam. This would occasion an additional phase shift of

ik hy
e ', apart from the phase shift of the transmission am-
plitude itself. For these two reasons, we originally at-
tempted no mathematical identification of the traversal
times for the two problems, but planned simply to test
the group delay in the optical (two-dimensional) problem,
allowing arguments to be made by qualitative analogy for
the one-dimensional case.
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FIG. 1. (a) Two-dimensional tunneling (FTIR) through an air
gap when 0& 0, =sin '(1/n). (b) One-dimensional tunneling
for E & Vo. If k and ~ are arranged to be the same as in (a),
then the transmission and reflection coeKcients t and r will be
the same in the two problems.

B. One- and two-dimensional experiments

The difference between. the one- and two-dimensional
problems is particularly apparent near criticality, that is,
for E = Vo or 8=8, —= sin '(1/n). In the one-
dirnensional problem, the physicality of the group delay
may be questioned in this regime for the following
reason. In order to perform an accurate time measure-
ment, one must construct a finite wave packet consisting
of many frequency components. As E~Vo, however,
these components will have very different tunneling
characteristics, and the high-energy tails will even extend
into the region of allowed transmission. The resulting
distortion of the pulse may make the group delay mean-
ingless. In the two-dimensional case, by contrast, we see
from (1) that the role of the critical parameter is played
not by ~ but rather by 0; that is, an arbitrarily short
pulse could be incident on the barrier, with every com-
ponent just "below the barrier. " As we pointed out in
[12], this should allow a regime of tunneling times to be
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studied in FTIR which would be experimentally inacces-
sible (and perhaps theoretically questionable) in the
analogous one-dimensional case.

The above is a slight oversimplification. In fact, for 0
to be perfectly well defined implies an unbounded plane
wave. For a plane-wave pulse incident on a barrier at an
angle, the group delay is a quantity of dubious
significance, regardless of how short the pulse; the infinite
transverse extent of the pulse means that even if it
reaches the origin at t=0, it has been interacting with
the barrier since r= —~ (far down along the y axis).
Thus a two-dimensionally bounded wave packet must in-
stead by considered, implying some spread in 8, analo-
gous to the spread in E discussed earlier. At an experi-
mental level, this is still preferable to the one-dimensional
case. While in the latter, the smaller the spread in E the
worse the time resolution, in the two-dimensional case
the time resolution is determined principally by m, not by
8; while some spread in 8 is unavoidable, it need not be so
large as to smear out the tunneling characteristics. (A 2-
mm-wide pulse, for example, can be constructed with a
duration up to about 1000 times smaller than its trans-
verse width. )

Despite the advantages of FTIR, the one-dimensional
problem is of more current interest, and is somewhat less
complicated at a technical level. For these reasons, be-
fore embarking on the proposed experiment, we per-
formed a simpler one [14], in which we confirmed that a
single-photon wave packet tunneling through a one-
dimensional barrier appeared essentially undistorted at
the far side of the barrier, at a time described by the
group delay, even though this implied an effective mean
velocity greater than c. In our experiment, the barrier
was a multi- (11-) layer dielectric mirror, which can be
seen as an optical realization of a Kronig-Penney band-
gap material [19]. The width of the barrier could not be
adjusted. Because there are some questions about the
identification of such a medium with a tunnel barrier, and
since one of the most striking predictions is that the
group delay becomes independent of the barrier thickness
for opaque barriers (i.e., in the limit of low transmission),
we plan to perform the FTIR experiment as well. The
size of the FTIR air gap is adjustable, and the wave in
this region is purely evanescent.

Evanescent phenomena in two dimensions are most fa-
miliar in optics, where they are of great importance and
have been extensively studied [20]. Evanescent fields
have been quantized [21], the strange behavior of the
phase shifts in FTIR has been observed [22], and theoret-
ical papers have discussed the resulting anomalously
short group delays [23,24]. However, we wish to stress
that two-dimensional tunneling is not exclusively an opti-
cal problem, and that in principle, heterostructures could
be constructed which would allow the process of frustrat-
ed total internal re6ection to occur for electrons. In par-
ticular, at a linear or planar interface where the potential
energy of an electron changes, it is "refracted" as by an
effective index of refraction n, ff proportional to the
square root of its kinetic energy [15,25]. (Effective mass
changes may also lead to refractive effects. ) For incidence
angles greater than the critical value of sin '(1/n, I), the

electron will undergo total internal re6ection. If the re-
gion of low effective index is a thin one, and is followed

by a second region of high effective index, then some
transmission is possible regardless of the angle of in-
cidence. This problem is exactly analogous to the optical
case of FTIR.

Conversely, one-dimensional tunneling exists in elec-
tromagnetism as well. Microwaves beyond the cutoff fre-
quency of a constricted waveguide may tunnel in one di-
mension, in a process mathematically equivalent to the
tunneling of an electron across a square potential barrier
[10,11]. In this paper, however, we will discuss FTIR
purely in terms of photons, and one-dimensional tunnel-
ing purely in terms of electrons. We do this on the one
hand for concreteness and to avoid confusion between the
various parameters involved in the two problems, and on
the other hand because FTIR is most frequently dis-
cussed as an optics phenomenon, while one-dimensional
tunneling is usually discussed in the context of the
Schrodinger equation.

In addition to simplifying some calculations, the fact
that analogies can be drawn between the dynamics of
one- and two-dimensional tunneling processes may be
useful in attempts to understand the qualitative features
of these processes. For example, the "classical" particle
traversal time in one dimension diverges as E~ Vo from
above, since the velocity in the barrier region tends to-
ward zero. In two dimensions, the same divergence arises
not because of any change in the photon velocity, but be-
cause its propagation direction becomes more and more
parallel to the interfaces. Of course, the group delay
remains finite in both cases; while this is clearly connect-
ed to the uncertainty principle, it is diScult to visualize
in the one-dimensional problem. In two dimensions, by
contrast, this effect manifests itself through diffraction.
It is not possible for a transversely bounded beam to
propagate indefinitely parallel to the interface without
eventually diffracting, and thus at least a part of the beam
reaches the exit face in some finite time. It is even tempt-
ing to argue that the bulk of this transmitted portion
originates closer to the right-hand side of the incident
beam (see Fig. 2), thus offering a partial explanation of
the anomalously small peak delay. The peak of the
transmitted wave packet seems to originate earlier in
time than the incident peak [26,27], thus leading to a su-
perluminal delay without implying that any individual
portion of the wave ever traveled at a superluminal speed.

C. Outline

In analyzing our proposed two-dimensional, optical ex-
periment, we have now discovered that in addition to the
qualitative analogy, there is in fact a suggestive quantita-
tive relationship between the dynamics of this process
and those of one-dimensional tunneling of a massive par-
ticle. When the mass of the particle tunneling in one di-
mension and the energy of the (massless) particle tunnel-
ing in two dimensions satisfy the relationship mc =fico,
the "dwell" times are the same for the two problems, and
the group-delay times are essentially identical both near
criticality and for the WKB limit (slowly varying poten-



3286 AEPHRAIM M. STEINBERG AND RAYMOND Y. CHIAO 49

Refle
b

Ray optics
trajectory

I

ansmitted beam
ches far side sooner
n ray optics predicts.

(v;)wKa=d/+2(E —Vo)/m

$2 2

(1 n—sin 8}
Pl C

mc d/c
A'co cosO' '( Ts }wrCa

=d

When we apply Eq. (1), we find that this is equal to
1/2

Incide
beam

FIG. 2. A simplified picture of the wave nature of transmis-
sion through an air gap. When light is incident just below the
critical angle, the ray inside the barrier region is nearly parallel
to the interfaces; at the critical angle, the ray optics traversal
time thus diverges. The wave-mechanical group delay, on the
other hand, remains finite: the transversely bounded beam un-

dergoes diffraction, and begins to couple out of the barrier soon-
er than predicted by ray optics. Depending on the various
length scales (i.e., how much diffraction occurs), the transmitted
portion may preferentially consist of wave vectors closer to the
normal or of those parts of the beam which originate closer to
the right-hand side and thus reached the barrier earliest. The
former case simply corresponds to the preferential transmission
of those components which were incident furthest from the crit-
ical angle, while the latter may offer some insight into anoma-
lously small group delays. When the angle of incidence exceeds
the critical angle, each incident k vector corresponds to an
evanescent wave in the barrier region, whose Fourier decompo-
sition includes many different angles, with a k-space distribution
of width ~.

tial, or high energy}. This relationship fails in the tunnel-

ing regime, but for "deep tunneling, '* the low-energy lim-

it, the two group delays become identical if the parame-
ters satisfy mc =n Ace instead. Section II will demon-
strate these mathematical correspondences. Sections III
and IV will treat the connection between group delays
and transverse shifts for transmission and for reflection,
and briefly discuss the implications for understanding
certain features of both. A summary is given in Sec. V,
followed by an Appendix which explicitly verifies the
equivalence of the group delays in the "opaque" limit.

~here we have defined sin8'=n sin8 according to Snell's
law. Remarkably, this proportionality is exactly what
one expects for the time delay (rr )wK& for a beam of light
which is refracted and travels through the air gap at an
angle 8' to the normal with a velocity c (see Fig. 3); if we
set

P2C =%co, (4)

A. Connection with the "dwell time"

Before calculating the quantum-mechanical group de-
lay, it may be interesting to note that (4) does serve to
make the "dwell time" equal for the two problems, in all
limits. The dwell times is an interaction time defined in
terms of the steady-state problem and without regard for
the particular scattering channel (refiection or transmis-
sion} taken by a given particle. Specifically, it can be ex-
pressed as the ratio of the probability (energy) density
within the barrier to the incident probability (energy)
flux,

(n sin 8 = sin e')

the two times are identical.
To recap, then, given the mass m of a particle and the

height Vo of a barrier, we use (1) and (4) to uniquely
determine the analogous parameters for the optical prob-
lem, that is, the frequency ~ and the index n. Each in-
cident energy E corresponds to a particular incident an-
gle 8 [also from (1)], in such a way that not only the
transmission probability but also the delay time is the
same for the two problems, at least in the classical limit.
This seeming coincidence led us to ask whether the
behavior of the two traversal times remains the same
when wave-mechanical effects are taken into account.

II. THE CORRESPONDENCE

It is instructive to examine the correspondences of (1)
in the quasiclassical or WKB limit. For the electron, this
corresponds to a classical particle model, and for the
photon, to ray optics (short-wavelength limit}. In the
former case, when the energy E of the incident electron
exceeds the height Vo of the barrier, the velocity
in the barrier is simply +2(E—Vo)/m, and thus the
traversal time

Air gap Glass
(n)

FIG. 3. In the ray optics limit for allowed traversal, the beam
travels d/cos8' in the barrier region (where 8' is determined by
SneH's law), at a velocity c.
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where e„.,=n „,is the dielectric constant of the barrier re-
gion, which we have taken to be one. The numerator is
identical for the two problems since (1) serves to equate 8
and %. The denominators will be equal, provided that we
choose an efFective mass such that the incident fiux of the
massive particle, Ak„/m, is equal to the projection of the
incident photon fiux (Poynting vector} on the x axis,
cn cos8. [The physical origin of the factor of n is the n

in the (6)-like expression for the energy density in the first
glass region, multiplied by the incident velocity c/n].
Recalling that k„=(nt0/c)cos8, we find that m =Pm/c
is precisely the necessary quantity.

We should not be too surprised that this is the same re-
lation required in the classical limit. In that limit, after
all, the dwell and delay times become identical
(mathematically, this is because the former can be seen as
a derivative with respect to barrier height, while the
latter is a derivative with respect to incident energy; for
E &) V0, as well as in the WKB limit, this distinction be-
comes unimportant [28]). In the tunneling limit, howev-

er, the dwell may not be the same as the delay; in particu-
lar, as E~0, the former vanishes (since there is very lit-
tle penetration of the particle into the barrier region)
while the latter diverges.

8. The one-dimensional group delay

Now let us de6ne the group delay for one-dimensional
electron tunneling. If the barrier extends from x =0 to d,
and the incident part of the electron wave function is

ik x iEtls-
x

ik„d—iEt/A
then the field at d is t(k„)e",where t(k„)
represents the transmission amplitude for the incident
wave vector, and the energy E=(lk„)/2m. The total
phase of the wave at x =d is then

P r =arg t (k„}+k„d Et/A—
—:Pg(k„) Et/k . —

Consider an electron wave packet.

4(x)= f A(k„)gk„(x)dk„,

with the coefficients A(k„)all real. For A sufficiently
smooth and narrow band, we may use the stationary-
phase approximation. The incident wave packet is
peaked at x=O at a time t=O, since the phase of every
component vanishes there. {The wave packet as a whole
has a more complicated behavior, due to the interference
of the incident and rejected waves. By ignoring the
latter, we are calculating the time at which the incident
particle would reach x =0 if no barrier were present}. By
the same reasoning, the transmitted wave packet arrives
at x =d at a time t =~, such that

Bgq(k„)
BE

C. The two-dimensional group delay

The situation is slightly more complicated in two di-

mensions. Due to the translation symmetry of the system
along the y axis (i.e., parallel to the interfaces), the fields

have the same y dependence in all regions,
ik y

and the common factor of e ' can be dropped for the
time-independent calculations, yielding equations similar
to those for the electron. For calculating the group de-

lay, however, the derivative in (10}and (ll) is no longer
taken with respect to E or (iit'k„) /2m, but rather with

respect to the photon frequency co. Since EPEE@, this
will not in general yield the same value for the group de-

lay.
On the other hand, let us analyze the meaning of the

group delay calculated in this fashion. The wave packet
ik„y

described above, when multiplied by e ", describes a
pulse which is incident at the origin at t=0, and which
arrives at (x =d,y =0) at a time

70
Bto s

(12)

Is this, however, the actual observable delay between the
arrival of the peak at x =0 and its departure from x =d?
No: the peak of the two-dimensional wave packet never
crosses (x =d,y =0), but rather appears at some position
(x=d,y=by} at a time somewhat later than ro. This
can be seen by applying a two-dimensional version of the
stationary-phase approximation. The locus of the peak is
now defined by the condition that the gradient in k space
of the phase must vanish. In the paraxial approximation,
we can take the derivatives with respect to the magnitude
and the direction of the k vector, i.e., with respect to to

and 8.

—O.

=Pz(k„)+ y sin8 —cot;neo
(14)

substituting into {13),we find for the shift b.y and the de-
lay ~~ of the peak

0= B4~ n+—hy sin8 —~
Bco & c y

(15)

It now becomes important to include in the total phase

PT they dependence,

PT=arg t(k„)+k„d+ky tot—



3288 AEPHRAIM M. STEINBERG AND RAYMOND Y. CHIAO

and

+ Ay cosO .

22' 1
Vo =(Ra))

2mc

n cos0
n —1

(21)

ay,
Bco g

T

e ay,
ci) Be

(18)

From (15},we see that there are two contributions to the
delay time:

ay, +—hy sin8;
B~ e c

combining this with (16), we find

As can be seen straight away, varying the incident angle
0 has no effect on the barrier height Vp, but only on the
incident energy E. And it should be noted that while
both Vp and E depend on the frequency co, their ratio
does not; the essential tunneling characteristics are deter-
mined by the relation of the incident angle to the critical
angle determined by n, and are not sensitive to the fre-
quency. The first term in (20) vanishes identically, while
the remaining term yields

or

Pl
~&=~p+ —hy sin8 . (19) Vo

—2n cos8sin8
Vp

n —1

Bp Bp Bvo Bp BE

ae. av, , ae .+ aE &, ae. (20)

In order to evaluate these derivatives, we rewrite (1}as

In addition to (12)'s ro, the frequency derivative analo-
gous to that of (11},there is a term which is proportional
to the transverse shift.

For an undistorted wave packet, this expression has a
simple physical explanation, as can be seen from Fig. 4.
If at time ~0 the intensity at (x =d,y =0) reaches a max-
imum, we can follow the corresponding wave front as it
propagates freely (at c/n) in the final medium. This wave
front is perpendicular to the propagation direction, and
at any given position, the maximum value of the field
occurs when this wave front crosses that position. It
reaches (x =d,y =by ) at a time t =~0+ (n/c)by sine, by
inspection of the figure.

From (16), we can evaluate by in terms of (Bgz/Be),
as we have done in (18). Let us try to relate this to the
electron delay time r, . Recalling the equivalence of the
transmission amplitudes (and hence of Pd ) for the elec-
tron and for the photon when (1) is satisfied, and drop-
ping the subscript, we write

1
e

(n fico—) cose sine

Pll C
(22)

Substituting this into (16), we find

n A'co sine
mc

(23)

This in turn can be substituted into (19) to yield

AN
y 7p+7e 2

PIC
(24)

leaving us with ~p to evaluate,

ay ay Bvo ay
Tp +a~,=

av, , a~, aE v, a~,
(25)

Bvo n' —1=A N
s mc

BE &z
n cose—'6 co

mc2

As remarked above, both of these terms may contribute,
since both Vo and E are functions of co: from (21),

These two derivatives are of the same order of magni-
tude, except when E(& Vp or E)&VO. We begin by
treating the former limit.

Air gap

.+Ay sin 8

KQ

Glass
(n)

h,y

FIR. 4. Regardless of incident angle B, the transmitted beam
reaches y=O earlier than it reaches y=Ay, by a delay of
(n /c)hy sinB.

D. The low-energy or "deep tunneling" limit k « cc,

or E « Vo

Near grazing incidence, O=w/2, the incident wave
vector k (we henceforth drop the subscript x) is small rel-

ative to the evanescent decay constant x; this corresponds
to the limit E« Vo for an electron. BE/Bco vanishes in

this limit, removing the second term in (25), and we are
left with



49 TUNNELING DELAY TIMES IN ONE AND TWO DIMENSIONS 3289

r =A'co +fico r, sin 8
n 1— BP
mc2 Vo E

mc2
(33)

n —12
=A o)

mc
BP

BVO
L

+Pi ~ sin 8,n By
mc~ BE v,

(27)

as we saw in the classical limit in (3). This holds just
above the barrier as well as just below the barrier, as can
be seen by analytic continuation to imaginary values of ~.
We next discuss the situation when far above the barrier.

n %co
1

y 2
1 e e

N1C
(28)

This leads naturally to the observation that if an effective
mass is chosen such that mc =n duo, the delay time for
one-dimensional tunneling of the massive particle will be
the same as that for two-dimensional tunneling of the
photon in the limit of grazing incidence. This agreement
holds for all values of d, ranging from the thick-barrier
limit ad »1 to the thin-barrier limit ~d «1. In the
two-dimensional problem, the delay time is due entirely
to the transverse shift in this limit, as ~0 vanishes.

E. The "critical" limit k &)a or I= Vo

This limit corresponds to 8=8„i.e., sin8=1/n. (The
WKB approximation is clearly inapplicable in this re-
gion, where the "classical" traversal time diverges while
the group delay remains finite. } From (26},we see that

Vo BE
B~ e Bm s

(29)

In this critical regime, the phase is primarily a function
of a and not of k, so we write

B4

BVo

By
BE v,

BP Ba'

BKk BVOE

By B~

BIC I, BE V

(30)

However, since ~ is a function of Vo —E, and not of ei-
ther variable separately (that is, A' k /2m = Vo E), we-
see that Bz/BE = —Bv/B Vo, and

BP

BV, BE v
(31)

Combining this with (29) and substituting into (2S) yields

F0=0 . (32)

When we plug this into (24}and recall that sin8= 1/n, we
are left with the final result for the delay time in the criti-
cal regime:

where we have also used (24} and (26), and rewritten the
result using (11). The prefactors are of the same order of
magnitude, and sin8~1; for very low energies, however,

P depends primarily on E and is relatively independent of
Vo, allowing us to drop the first term. (The explicit ex-
pression for the phase is given in the Appendix. ) Thus in
the deep tunneling limit we find ~0~0 and

F. The %KB or semiclassical limit

When E & Vo (8 (8, ), the wave vector in the barrier
region becomes real, i.e., ~ becomes imaginary. As
remarked in the Introduction, the stationary-phase ap-
proximation may break down in the "allowed" regime,
when multiple reflections are of comparable intensity and
travel slowly in the barrier region, separating from one
another at the output face. Mathematically, this is be-
cause the transmission phase develops rapid oscillations
as a function of frequency [29]. The WKB or semiclassi-
cal limit corresponds to a sufBciently smoothly varying
potential that multiple reflections (i.e., matching condi-
tions at the classical turning points) are unimportant: the
transmission phase depends on the local wave vector i~
and not on k.

Even for an abrupt potential such as a square barrier,
this approximation can be valid at high energies. For
E» Vo, the reflection probability becomes very small,
and stationary phase applies. In the corresponding opti-
cal problem, this is only possible for n —1 ((1,where we
may have n cos 8»n —1. In a sense, this limit is the
reverse of the deep tunneling limit, in that

BE Vo

Bco s Bco e
(34)

However, even in the high-energy limit, we cannot be too
cavalier in throwing away terms involving the right-hand
side of (34) if we wish to distinguish between the
equivalences which hold in deep tunneling and for the
dwell time [see (28)] and those which hold in a classical,
geometric approach and near criticality [see (3}and (33)].
This is because the two formulas differ only by a factor of
n, which we have implicitly assumed to be close to l.

As stated above, in the WKB limit, the multiple
reflections are very weak; interference becomes unimpor-
tant. As can be verified explicitly from the high-energy
limit of the general form of the transmission function
(given in the Appendix), this means that

P~k'd =d +2m (E—Vo)/fi, (35)

where we denote the wave vector in the barrier region byk'=—i~. As in the critical limit, we see that this depends
only on E Vo, and concl—ude that (Bp/B Vo )E= —(BPIBE)~ . In this case, however, the two terms of
(25) do not cancel, because the two derivatives in (34) are
no longer equal. It is readily shown that

Bvo Vo BE
Bco g E BN

n —1 BE
(36}

n cos8
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BP BE n fico
cos 0.

BE v, 8 mc
L

It follows that

(37)

where we have used (21). Using (26) and (11),we see that metric case for simplicity. In this section, we will discuss
the case of a lossless optical system, which is a good ap-
proxirnation for many dielectrics, including the glasses
typically used in prisms and dielectric mirrors; the same
arguments hold for real potentials in nonrelativistic quan-
tum mechanics.

cos
n cosg mc

=(1 n—)
'RN

mc
(38)

Substituting (37) and (38) into (24) and using the result in
(25), we see that all explicit 8 and n dependence cancels
out, leaving us with

f16'
2mc

(39)

as in the critical limit. For barriers smooth enough to
justify the WKB approximation, this holds throughout
the regime of allowed transmission. For abrupt barriers,
it holds in the high-energy limit (near-normal incidence
combined with low-index contrast, in the optical case},
while the stationary-phase approximation breaks down at
intermediate energies due to the effects of multiple
reflections.

III. TRANSMISSION AND REFLECTION
TIMES FOR LOSSLESS BARRIERS

While the above discussion centered on transmission
times, quite the same arguments could be made for
reflection times. In fact, due to the reciprocity relations
between the phase shifts for transmission and for
refiection [30,31], it can be shown that for any spatially
symmetric, lossless scattering system, the transmission
and reflection times are equal, when referred to the plane
of symmetry. This property follows most simply from
the assumption of time-reversal invariance, although a
more common treatment instead assumes unitarity.
While the two assumptions are equivalent, the first is
more useful for acquiring a physical understanding of this
relation, and the second is more easily modified to take
absorption into account. (The equality has been noted by
others [13,23] for special cases such as the square barrier,
and has been demonstrated elsewhere [32,33] for the gen-
eral case, but seems to have escaped general attention.
We rederive it here for two reasons: first, as a preliminary
to the following section, in which we will generalize it to
describe barriers with absorption; and second, in order to
discuss the physical reason for the equality, which is typi-
cally hidden behind the admittedly straightforward ma-
nipulation of scattering matrices and phase shifts. ) The
assumption of spatial symmetry is valid for simple sys-
tems such as square barriers or separated prism pairs, as
well as typical multilayer dielectric mirrors, which are
generally terminated with high-index layers on both ends.
For asymmetric systems, the reflection times for the two
input directions may differ, but it can be shown that their
auerage must still equal the unique transmission time.
We will restrict our mathematical discussion to the sym-

A. Phase-shift approach

This result is simplest in the one-dimensional case.
Suppose a barrier has transmission and reflection ampli-

ip ivertudes te ' and re ", respectively, where P„P„,t, and r
are taken to be real, and

t +r =1. (40)

Further suppose that light is incident on the barrier from
two directions, as in Fig. 5. In particular, let input port 1—ip,
see an incident field amplitude of I, =te ' and input—ip,
port 2 see a field amplitude of I2 =re ". (Physically,
this corresponds to time reversing the transmitted and
reflected fields which would arise had a unit-intensity
field been incident on input port 2, but for now it can be
considered an arbitrary choice; in the next subsection, the
meaning of this choice will become clear. } The total in-
cident power is then unity. The field exiting output port
1 is simply

0] =I~pe '+I2re "=g +r = 1
2 (41)

Since the total output power is equal to the total incident
power of unity, the field exiting output port 2 must van-
ish. That is,

iy,02=I&re "+I2te '=2rt cos(P, —P„)=0. (42)

Aside from the trivial case where r or t is zero (and the
phase difFerences become meaningless quantities}, this im-

plies

P, —P„=+m./2 . (43)

Of course, since the group delay is the derivative of the
relevant phase shift with respect to angular frequency,
the difference between the transmission and reflection de-
lays is simply

02——I2te" + IIre "
= 2rt cos (Pt-Pr)
=1-OI ——0!

OI ——IIte'~t+I2re' '

=t +r —].
II I +II I = t + r

FIG. 5. By considering a special case of incident fields I& and

I, on a lossless, symmetric barrier, we derive a constraint on the
phases P, and P„for transmission and for reflection. The in-

cident power is equal to 1, and this is also the power in the field

01 which exists on the bottom; thus the field 02 must be equal
to zero.
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(44) r ei$, eik„~ye
—ik„x ig, ik,&y ik„x

We have assumed that P, —P, is continuous, a necessary
assumption in order for the group delays to exist.

)(
h,y

B. Time-reversal approach

Although the above discussion of phase shifts relied
only on energy conservation, the connection with the
equivalent assumption of time-reversal invariance is made
apparent by the specific choice of incident fields used.
The properties of the delay times follow directly from the
properties of the phase shifts. Thus time-reversal invari-
ance implies the equivalence of the transmission and de-

lay times. Clearly, a more physical understanding of this
connection should be possible by remaining in the time
domain. Suppose that at time t=0 a packet were in-

cident from below the barrier. Then two packets would
emerge: a reflected one at time t=~, and a transmitted
one at time t =r, If we . time reverse this final state, we

have a packet incident from below at time t = —~„and
one incident from above at time t = —~, . The properties
of the mirror are assumed to be invariant under this
transformation, so we know that the final state will in-

volve a packet exiting from below at t =0, and nothing at
all above. Let us consider each wave packet separately.
Part of the packet incident from below is reflected, ac-
quiring a delay of +r„;as expected, it leaves the barrier
from beneath at t =0. Similarly, the transmitted part of
the packet incident from above leaves at t =0, and these
two downward-going packets interfere constructively to
reform the original unit-energy field. Clearly, the
transinitted part of the packet incident from below and
the reflected part of the packet incident from above must
interfere destructiuelY, as the final state does not contain
any energy above the barrier. For this to be the case,
they must reach the top simultaneously. The former ar-
rives at —v.„+~,and the latter at —~, +v„'setting these
two equal leads directly to the condition ~, =~„.Further-
more, this argument can be trivially extended to the case
of an asymmetric barrier, where v.„may take difFerent

values, depending on the side of the barrier from which
the reflection occurs (r, must, again by time-reversal

symmetry, have a unique value). In this case, one has
simply ~„,+~„2=2~„i.e., that the average of the two
reflection delay times is equal to the transmission delay
time.

C. Discussion

As can be seen from consideration of Fig. 6, these ar-
guments go through without modification for the two-
dimensional case, since appropriate total phase functions
or delay times can be de5ned for any incident angle, tak-
ing into account the effect of transverse shifts. (One
could also follow the approach used in Sec. II of this pa-
per, and calculate the transverse shift separately in order
to determine its contribution to the total delay time.
Since the transverse shift is also merely a derivative of the
phase [see (16)], the above argument can be used to show
that the transverse shift upon reflection is equal to the

e1kX

——————«x

(a)
-d/2

r eW re +xx t e&4 ~eikxx

)(
h,y

eikx

——————«x
-d/2

FIG. 6. (a) With the standard (one-dimensional) definition of
the phase shift, the beam acquires an additional phase due to
transverse displacement, as discussed in Sec. II. (b) This addi-
tional phase can be absorbed into the definition of the phase
shifts; thus the discussion of Sec. III applies to two dimensions

as well.

transverse shift upon transmission. )

As mentioned earlier, the group delay does not grow
indefinitely with the thickness of a tunnel barrier, but
rather saturates at a finite limit. It is straightforward to
show that the same phenomenon occurs for the trans-
verse shift sufFered by the transmitted beam. Since the
transverse shift, like the temporal group delay, is the
same for transmission and reflection, we see that in the
limit of an infinitely thick barrier, the reflected beam is
shifted transversely by a finite amount. This may be a
new way to view the Goos-Hanchen effect [20]. Con-
versely, this equivalence can be seen as an explanation for
the saturative behavior of the transmission delay. Once a
barrier is more than several attenuation lengths thick, the
reflection nears 100%%uo, and it should be intuitively clear
that increasing the thickness any further will have a
negligible impact on the delay time for reflection; the
reflected beam has not penetrated any deeper into the
barrier than several attenuation lengths. The argument
presented above shows that a direct consequence of this
very natural asymptotic behavior is the extremely coun-
terintuitive (but well-established) result that the delay
time for transmission also becomes independent of bar-
rier thickness in the thick-barrier limit.

It will be noted that in Fig. 3, for example, no trans-
verse shift was indicated for the reflected beam. As ex-
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pected in the ray optics limit, only the transmitted beam
is shifted transversely as it crosses the gap. This should
not be seen as a failure of the above relation, but merely
as an example of the breakdown of the stationary-phase
approximation. In the regime of classically allowed
transmission, multiple reflected beams are observed, and
they are typically (for wide barriers and narrow beams)
separated by a distance greater than the width of the in-
cident beam. There is no longer a unique location of the
peak, and the method of stationary phase is not of use.
The first spot is the product of an instantaneous Fresnel
reflection, and undergoes no transverse shift or time de-
lay.

It is important to note that, as discussed earlier, this
approach has assumed a unique value of the reflection

ivercoefficient re ", i.e., one which does not depend on the
choice of input port. For this assumption to be valid, it is
necessary that the barrier be symmetric, and also that the
phases (and hence the delay times) be defined in a sym-
metric fashion. That is, they should be referenced either
to the plane of symmetry or to two planes symmetrically
located with respect to it (see Fig. 7). The group delay
for transmission is the delay relative to the time at which

an undelayed pulse would arrive, and the group delay for
reflection is the delay relative to the time at which a pulse
would arrive were it instantaneously reflected upon
reaching a reference plane. Clearly, the choice of this
plane has no effect on the transmission delay, but may
have an arbitrary effect on the value of the reflection de-
lay. A particularly simple choice is to refer these delays
not to the central plane but to the two extremities of the
barrier, as in Fig. 7(b) [in the terminology of Sec. II, this
corresponds to defining P, not as argt but rather as

Pd
=a—rgt+kd; see (8)]. While not the usual definition of

the transmission amplitude, this approach has the sim-

plest interpretation in terms of delay times, in that the
transmission delay becomes the total time necessary for
the pulse to traverse the barrier; the reflection delay be-
comes the time between the arrival of the pulse at the
barrier's entrance face and its departure from the same
plane. These two times may seem to be physicaHy of very
different characters, but due to the symmetry of their
definitions, they are actually equal. The "paradox" of su-

perluminal group delays is only surprising for the
transmitted beam, which has traversed a finite region of
space. Since there is no a priori reason to suppose any
particular finite penetration length for the reflected beam,
any non-negative reflection delay seems plausible. While
negative group delays are known to exist near absorption
lines (where the reflection delay need not equal the
transmission delay, due to the presence of loss), in the
case of lossless scattering problems we know of super-
luminal group delays but no negative ones. Since anoma-
lously short group delays are understood as a form of
pulse reshaping, in which the bulk of the detected pulse
originates in the early part of the incident wave, the ab-
sence of any anomalies for reflection times may be related
to the fact that the transmitted part of a wave originates
earlier in time than the reflected part. This suggests a
connection to the Bohm —de Broglie model of quantum
mechanics, in which the trajectories of different particles
from a given ensemble may never cross [26,27j.

IV. TRANSMISSION AND REFLECTION TIMES
KITH LOSS

re'tt)re Ik~"+ / )

teitt)teak(x-d/2)

eik(x+d/2)

(b)

-d/2 d/2

FIG. 7. (a) With the symmetry plane used as the plane of
reference, the phases are defined in the familiar way, but the
definition of the delays must be referred to this same plane,
which is physically nonintuitive. (b) With the edges of the bar-
rier used as the planes of reference, the phase shifts must be
redefined to absorb the factor of e' ",but the delay times acquire
an intuitive interpretation.

The preceding section treated the case of lossless
media, which is frequently a good approximation. In
reality, however, the practical limit on the reflectivity of
a dielectric mirror is determined by the losses due to
scattering and/or absorption, however small these may
be. Current mirrors can have reflectivities as high as
99.999 84% [34], in which case the transmission and the
loss may be of the same order of magnitude. Since one
might expect the result of the preceding section, which
assumed no loss, to break down when the losses are as
large as the transmitted intensity itself, we generalize the
result in this section to place an upper bound on the
difference between the two times, as a function of the
loss. Since once energy conservation is broken even mar-

ginally, time-reversal symmetry fails categorically, we
must use the phase-shift approach for this purpose.

Let us assume that we have a barrier with small but
finite loss. In particular, suppose that the power loss for
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the case of a single incident beam is a, that is,

r+t =1—a 1. (45)

Now, it may be that the loss mechanism is completely in-
coherent, in the sense that any combination of incident
beams will suffer the same reduction in total power. In
that case, it is easy to show that the result from the
preceding section holds exactly. Here, however, we make
no such assumption. We require merely that the system
is passive, i.e., that regardless of the configuration of the
initial fields, the total output power is less than or equal
to the total input power. Suppose now that we have fields
again incident from both input ports, but now each with
amplitude I/+2, such that the total incident power is
again unity (it can be shown that this particular choice
yields the most stringent condition on the phase shifts}.
In this case, the field amplitude exiting each output port
is simply equal to (r/W2)e "+(t/~2)e '. The totalip„ ip,

output power is thus

and this has been assumed not to exceed 1. Replacing
r +t =1—a gives us 1 a+2rt c—os(b, P) &1, or
cos(bP) & a/2rt, where we have defined the phase
difFerence b,P=—P, —P„.To obtain a lower bound on the
cosine, this same argument can be carried through for in-
cident fields which are m. out of phase rather than in
phase, and we get an upper bound on the magnitude of
this cosine,

/cosh// &
2rt ' (47)

implying a bound on the deviation of the phase difference
from +n /2

Now recall that r, —~„=(d/dec)(P, P, ) =(d Idio—)hg.
Of course, we have only an upper bound on

~
b,P ~

so we
cannot make any general statement about the difference
between the transmission and reflection times. It is in
principle possible that the phase shifts display rapid, un-
correlated oscillations within these bounds, which would
allow their derivatives to differ greatly at any individual
frequency. Nevertheless, we can make a statement about
the average value of this difFerence over some bandwidth
Q. Specifically, let us define

(7t 7~ )n — f [vt(co ) 7„(N)]dN (48)

By substituting the definition of the group delay and per-
forming the trivial integral, we find

(49)

So long as 2rt remains larger than a, the cosine of the
phase difference never reaches +l. (However, if the
transmission intensity T—= t or the reflection intensityR:—r drops below approximately a /4, the bound be-

~O, ~ +~Oz~ =~re "+te '~ =r +t +2rtcos(P„—P, ),
(46)

u/2rt —————
I

—e/2rt— 45

FIG. 8. The constraint ~cosh/~ & (a/2rt) & I implies that hP
stays near km/2 but may not move from one to the other.

comes larger than 1, and hence meaningless [35)). This
restriction, coupled with the assumption of continuity,
implies that b,P either remains near n/2 or near —m/2,
but may not move from one to the other (see Fig. 8).
Then, ~hP(co+ 0/2) —b,g(t0 —0/2)

~

& 2 sin '(a/2rt).
(We have assumed that a/2rt changes little between the
limits of integration. If this is not the case, it sufBces to
replace it in what follows with the harmonic mean of its
values at the two extremes; its value at intermediate
points is irrelevant. ) We therefore have

(50)

and for a &&rt,

(51)

Thus the average of the time difference for reflection and
transmission, when taken over a suitably large band-
width, is bounded in magnitude by a time proportional to
the inverse of that bandwidth. Of course, for the infor-
mation to be useful, further assumptions will in general
need to be made about the behavior of the delay times as
a function of frequency. In particular, we have not estab-
lished an upper bound on ( ~r, r„~)n, the av—erage of the
absolute value of the time difFerence, but only on the ab-
solute value of the auerage time difference. Thus the pos-
sibility of the two times displaying large rapid oscillations
positive and negative with respect to one another, in such
a way that the average difference is vanishingly small,
cannot be ruled out on these general grounds, although it
can probably be ruled out in most specific cases.

V. CONCLUSION

In summary, we have seen that aside from the kinemat-
ic correspondence between one- and two-dimensional
tunneling processes, there exists in certain limits a
dynamical correspondence as well. That is, the
quantum-mechanical group-delay time for a particle of
mass m traversing a one-dimensional square barrier is in
some limits identical to that for a photon of energy mc
traversing a frustrated total internal reflection barrier
with index contrast n chosen according to (1). This
correspondence holds both for high incident energies and
for energies close to the barrier height. In the WKB limit
(slowly varying potential or index of refraction}, it leads
to an equality between the two group delays, regardless of
incident energy. It also serves to make the "dwell times"
equal for the two problems regardless of incident energy
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or barrier width. Unlike the time-independent analogy,
however, this correspondence cannot be applied univer-
sally; for very low energies, for exam. pie, the time depen-
dence is that of a photon of energy mc /n instead (this
seems to be connected with the breakdown of the WKB
or semiclassical approximation in the deep tunneling re-
gime). Despite the diFerences of the two problems, these
correspondences are reminiscent of the connection well
known in high-energy physics between massive particles
and massless particles in a higher-dimensional space.
Since the two-dimensional problem can be pictured
geometrically, it may be useful as an analogy for the less
visualizable one-dimensional problem. The correspon-
dence in the WKB limit does not depend explicitly on n,
and may therefore be extended to arbitrary potentials so
long as they are either slowly varying or small relative to
the incident energy. In optics, such potentials would cor-
respond to smoothly varying indices of refraction, or
low-index-contrast multilayer dielectric structures near
normal incidence, respectively. We have also demon-
strated that time-reversal symmetry implies a universal
equality between re6ection and transmission times for
lossless barriers (for photons or any other particle), and
discussed the extent to which this relationship applies
when loss is considered.

~{{)~ dk
dE Bk dE

2 m

~ 42k

and applying (11),we find

(A5)

2m

Rka
We now carry out the corresponding analysis for the

FTIR problem. In this case, recall that the total phase at
x =d and y =by is given by

dE

nu
P r =Pz + by sin8 —cot,

C

leading to the arrival of the peak at

(A7)

restrict ourselves to the case where k &&x, the phase
reduces to

2ky„=tan ' = ——+ (A4)
2k 2

For a square barrier of height VO=A' ko/Zm, we have
v =ko —k and thus 2xdx. /dE = 2k—dk/dE; conse-
quently, we can neglect the variation of ~ when we take
the derivative.
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APPENDIX: THE GROUP DELAYS
IN THE OPAQUE LIMIT

In this appendix, we calculate the group delays for
both the ID Schrodinger and 2D Maxwell problems, in
the "opaque" limit, defined by sd »1 and ~ &&k. (This
is a strong usage of the term "opaque, " restricted to low
energies and thick barriers; either condition alone could
lead to very low transmissivities. ) We thus confirm the
equivalence derived in this paper for one special case, and
note that the delay time becomes independent of barrier
thickness. We begin with the general form of the
transmission amplitude, writing k for k for simplicity:

e
—ikd

coshsd+ i[(a —k }/2k']sinh~d

From (8), we have

Pq(k, » ) =kd +arg t(k, ~)

(A 1)

2 2
K —k=kd —kd —tan tan h~d . (A2)2k'

Assuming ~d && I at this point, tanhscd~1, and we are
left with

2 2)k —xy„=tan '
2k~

(A3)

Thus in the thick-barrier limit, Pz (and therefore the
group delay) becomes independent of d. When we also

As remarked earlier, for the photon, the deep tunneling
limit corresponds to the case of near-grazing incidence,
8=m /2. Writing 8=m /2 —5, we have from (1) that
k„=(co/c)n cos8=(neo/c)5 and s=(co/c){/n sin 8—1

=(co/c+n 1. As befo—re, ~ remains relatively con-
stant, and we need only concern ourselves with deriva-
tives with respect to k. That is,

c a{{)~ dk

neo cos8 Bk„d8
c 2 —n~

ncocosO ~ c
2

v cosO

The group delay

{d n+—Ay sinO
Bco c
2n5 2n

e~ cK cosO
2n m

cack

(A9)

(A 1 1}

exactly as for the electron of (A6).

Notice that at grazing incidence, this time is entirely due
to the transverse shift; the time it takes the field at y =0
to reach a maxirnurn is negligible compared to the addi-
tional time the peak takes to reach by. (As shown in Sec.
II, it is smaller than ~ by the simple factor of cos O, here
5 .) If we now substitute co =m, ttc /kn, we find
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