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Semiclassical quantum theory and its applications in two dimensions by conformal mapping
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The semiclassical quantum theory is investigated with conformal mapping to analyze the energy levels

for a central force potential in two dimensions. The conformal mapping produces a modification in the
effective potential which provides the correct phase for the WKB wave function. With this modification
in the effective potential the semiclassical quantum theory, the so-called WKB approximation, yields the
exact energy spectrum for a central force potential in two dimensions, such as the parabolic potential,
the attractive Coulomb potential, and the donor impurity states under a plane magnetic field in a two-

dimensional system. Among these, the result for the last one is compared with experimental results and
other numerical results.

PACS number(s): 03.65.Sq, 03.65.Ge

I. INTRODUCTION

The recent advances in crystal-growth techniques, such
as molecular-beam epitaxy (MBE) [1] and metal-organic
chemical vapor deposition (MOCVD) [2], have made pos-
sible the growth of semiconductors with controlled
changes of composition and doping on a very fine scale.
With these increasingly sophisticated microelectronic fa-
brication techniques the electronic properties in reduced
dimensions are studied widely in many areas. Two-
dimensional electrons can be found in the vicinity of
junctions between insulators and semiconductors, be-
tween layers of different semiconductors, and between a
vacuum and liquid helium [3]. A wide variety of works
in two dimensions have been reviewed by Ando, Fowler,
and Stern [4]. Since the integral [5] and the fractional [6]
quantum Hall effects were discovered in two-dimensional
electron systems under a high magnetic field, the two di-
mensions have been the subject of intense investigation in
quantum solid state physics as well as in quantum field
theory [7]. The theoretical methods for the explanation
of these new phenonomena might be beyond three-
dimensional quantum physics.

After quantum theory was developed in 1926, the
Schrodinger wave equation was published for free parti-
cles [8] in one dimension. However, the exact solution
for the Schrodinger equation can be given only for some
special forms of the potential. Therefore, the approxi-
mate values of the energy levels are obtained by using the
perturbation theory or the variational method in many
cases. The WKB method provides the exact energy levels
for many cases in one dimension. For the spherical sym-
metric potential in two or three dimensions, the
Schrodinger equation is transformed into the effective
one-dimensional representation by the radial wave equa-
tion. But this method provides an undefined boundary
condition at r =0 which causes the direct application of
the WKB method to be dif5cult. In three dimensions,
several papers [9,10] reported the necessity for the
modification in an effective potential by replacing the
number 1(l+1)by (I+—,') .

In this paper, we study the WKB method to get the ex-
act energy 1evels confined in a spherical symmetric poten-
tial in two dimensions. The semiclassical quantum
theory in one dimension is reviewed in Sec. II. In Sec.
III, we present the correct quantization rule by confor-
mal mapping in two-dimensional (2D) polar coordinates.
In Sec IV, we apply this method to the various 2D elec-
tron systems such as 2D electrons under an external mag-
netic field, 2D hydrogenic impurity states, and 2D impur-
ity states under an external magnetic field. Section V
summarizes the present work and suggests the future
direction of our studies.

II. THE QUANTIZATION RULE IN ONE DIMENSION

The Schrodinger equation in one dimension can be
written as

d%(x) 1
( )2 ( )

dx

'I'(x)=A exp +i f k(x)dx for V(x)(E1 X

k(x} xo

(2)

and

1 X0'(x}=8 exp +f ~(x}dx for V(x})E
K(x ) xo

where

(3)

with

p (x)= t 2m [E—V(x)]] '~

We might try a solution of the form %'(x)=e'"'"' for the
slowly varying potential V(x) in the above difFerential
equation. A well-known WKB method for obtaining the
approximate solution consists of substituting an expan-
sion of u (x) in powers of fi into the differential equation.
Retaining only of the first term of the series one finds
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k(x) = [E—V(x)] ~

2m
f2

1/2
2mK(x)= [V(x) E—]

V(x) & E

V(x) )E

r =V x +y, g=tan

where x =r cos(8) and y =r sin(8). Evidently the radial
distance r cannot be negative. The corresponding two-
dimensional Laplacian can be written as

and xo represents the turning point. Apparently the
above procedures break down near the turning point of
the classical motion, where k (x) and K(x) are zero. Since
each of the wave functions obtained in different regions
becomes infinite at any point where k (x) is zero, neither
form can be retained during the transit from one to
another region. The so-called connection formula [11,12]
allows one to infer either of the wave functions that are
valid in intervals on opposite sides of the turning point.
Near the turning point x

&
of the slowly varying potential,

we may write

V(x) E(x)=—c(x —xi ), c =const .

When the turning point is to the right of the classical re-
gion, the appropriate WKB solution to the Schrodinger
equation is

2 1 1—cos k dx — n~ ——exp —f «dx . (5)
k 4 K x)

Meanwhile when the turning point, x2 is to the left of the
classical region, the appropriate WKB solution to the
Schrodinger equation is

1 " 2 x
—exp — Kdx ~ cos k dx ——

m . (6)
K x . Vk xp 4

For the mell-shaped potential with two classical turning
points the connection formula provides the condition

k (x)dx =(X+—,
' )n. , (7)

2

where N =0, 1,2, , Therefore, the quantization rule for
bound states in a one-dimensional continuous potential
can be expressed by the phase integral

1 8 8 1 8p2- r +-
r Br Br r2 Qg2

1 8 —
+ 1 + 1 8r+vr c}r 4r r Qg

(10)

For the central force potential, the time-independent
Schrodinger equation is given by

fi
V %(r)+ V(r)%(r) =Eel(r) (11)

2p

with

%(r)=R(r)e(8) .

|t)psd 8=mh . (12)

The 8 direction can be assumed by the plane wave,
e(8)=c exp' . Therefore

fi B m i}i
p ge(8) = — e(8)= e(8) .

r2 $82 r2
(13)

Using Eqs. (11) and (13), the effective one-dimensional
Schrodinger equation is given by

g2 d2 —$ m 2g2
zy(r) —

z y(r)+ z
y(r)+ V(r)y(r)

2P dr 2pr 2p, r

=Er (r), (14)

where g(r) =&rR (r). Equation (14) might be written in
the form

Apparently the angular momentum corresponding to
the coordinate 8 in an isotropic medium is quantized by
the condition

k x x= — 2m E —Vx x=2N+1~1 d 1

r
y(r)+ q(r) y(r)=0 (15)

and provides the discrete values of E. Here, the integral
is taken over the full period of the coordinate x. At this
moment, the connection formula yields a half wavelength
change due to the boundary condition of the continuous
potential. In one dimension, the WKB approximation
provides the correct energy levels in many cases such as
the parabolic potential well, etc [13,14]. This can also be
applied in three-dimensional polar coordinates by using
an effective potential.

III. THE QUANTIZATION RULE IN TWO DIMENSIONS

The kinetic energy is usually replaced by the
differential operator in the expansion of the Hamiltonian.
The operator can be expanded in polar coordinates if the
potential has a circular symmetry. In two dimensions the
radial distance and angle are given by

with

q(r)={2p[E—V, (r)]I'

where the effective potential is expressed by

fi
V,~(r) = V(r)+ (m ——„' ) .

2pr

Structurally, Eq. (15) has the same form as that of Eq. (1).
And the quantization condition for the r coordinate can
be expressed by

12

2p E —V,& r dr = 2N+1 m.

1

(X=0, 1,2, . . . , ) . (16)

But the condition is not completely solved because of the
undefined boundary condition at r =0.
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(m ——')(m +—')A'

2E(m —
—,')(m +—')R

pz'e4pZe 1+ 1+

Let us consider the attractive Coulomb potential,
V(r)= Z—e /r. The left turning point at which p„van-
ishes is found to be

2/2

2p1'

Zeq(r)= 2p E+ (24)

and the left turning point is found to be

The last term in Eq. (23) is originated from the kinetic en-
ergy as explained earlier. Exactly the same amount of the
potential is raised by the conformal mapping and cancels
it. For the attractive hydrogenic potential, we obtain

1/2

with

d2 1

du
U(u)+ q(u) U(u)=0 (19)

In the case of m =0, the left turning paint is found to be
negative, but the radial distance r is bounded from zero.
This result explicitly shows the failure of the application
of the %'KB approximation to the two-dimensional polar
coordinate systems. Furthermore the direct application
is incorrect because of the undefined boundary condition
at r =0. More subtle points are discussed in Refs.
[12,13,14] relating to the connection formula near r =0
in three-dimensional polar coordinates. This diSculty
can be avoided by the use of a logarithmic variable which
is the conformal mapping of the two-dimensional rec-
tangular coordinates. For this transformation, we put

ip (u +in)
7

where r =e " and P =U. In this representation the
Schrodinger equation for the coordinate u is found to be

m A'

' 1/2

Z 2 1+ 1+ 2Em A

pZ2e4

if Z)0. {25}

Compared with Eq. (17), the number (m —
—,') is replaced

by m in this result, which is the modification due to con-
formal mapping.

IV. APPLICATIONS

Using the quantization rule which is provided in Eq.
(21), we can calculate energy levels of various systems in
two dimensions. In this section, we consider three cases:
(1) The two-dimensional electron under an external mag-
netic field (parabolic potential), (2) the hydrogenic impur-
ity states (Coulomb potential} in two dimensions, and (3)
the hydrogenic impurity states under an external magnet-
ic field which is a combined system of the previous two
cases.

and

q(u)=[2pe "[E—V(u)] —mzA2]'~2
A. Two-dimensional electron

under an external magnetic field

U(u)=R(r) .
Clearly this equation has the form of (1) and is well
defined in the whole range of —00 &u & m. Then the
quantization rule for u coordinate is given by

Q2—f q(u)du =(2N+1)rr {N=0, 1,2, . . . , ) (20)
Q)

where u& and u2 are two classical turning points. Con-
verting the coordinate u into the original coordinate r, we
get the correct quantization rule in two dimensions. That
is, the quantization rule in the r representation is

2 2—f v'2p[E —V'(r)]dr =(2N+1}n (N=0, 1,2, . . . , )
r,

Consider the two-dimensional electrons confined in the
x -y plane subjected to the magnetic field perpendicular to
the plane. The uniform external magnetic field
B=(O,O, BO} can be described by a vector potential
A=(BO/2)( —y, x,0). Then, the two-dimensional
Schrodinger equation is given by

1 e
p ——A %(r)=ET(r) .

2p c
(26)

Since the symmetric gauge yields the harmonic potential
in the radial direction, the wave function can be written
as %(r)=R (r}8(8}as before. With the quantization rule
in the 8 direction, we obtain the effective one-dimensional
Schrodinger equation,

(21)
where V'(r)= V(r}+(m fi )/(2pr } and r„r2 are turn-
ing points in the representation of the polar coordinates.
Here, the effective potential in the radial direction can be
written in the form

a'
, &r-

2p~r er'
-'A)2 2g2

+ R(r)+ ,'pr co R(r)—
2pf' AT

=E'R (r)

with

1g2
V'(r) = V,e(r)+

2@p
(22)

(27)

where r =+x~+y, E'=E+mfuu, and co=eBO/ac is
the cyclotron frequency. We identify the effective poten-
tial as

m A
V,e(r) = V(r)+

2p, p
(23)

m AV'(r)= —,'pr cg) +
2pI'

(28)
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in which the radial motions of the electrons are confined.
By the application of Eq. (21), we can obtain the quanti-
zation rule for the radial motion,

B. Hydrogenic impurity states in two dimensions

Let us consider the attractive hydrogenic potential in
two dimensions,

~2 +2l2[E' —,'p—o2 r —m A /(2l2r )]2J' dr
fl

=2Nn (N=0, 1,2, . . . , ) . (29)

ZeV(r)=-
r

(31)

E„=2(n + —,
' )A'co (30)

The left-hand side can be integrated with ease and pro-
duces the discrete energy levels

As discussed in the previous section, the conformal map-
ping in two dimensions modifies the effective potential
represented by the radial distance r in the Schrodinger
equation as

with

n =N+ ~m~/2+m/2=0, 1,2, . . . .
m A'

V'(r) = V(r)+
2pr

(32)

The result represents the correct Landau levels in the
presence of a transverse magnetic field.

Equation (21) yields the quantization rule for the coordi-
nate r,

y
v 2p[E —V'(r}] "2 +2l2~E~+2pZe r —m R

P) Ar

2 —m A' 2y,Ze ( —1}0+ m'+ ( —2r)
&m'e' 2&2@lEI

2 Ze—~m~fi+ n m=2N—m'(N =0', 1,2, . . . , )
2v'2plEI

(33)

E=- Z'e4p (N=0, 1,2, . . . , ),
2 fi (N+l+1/2)

(34)

and l = ~m~ in a two-dimensional system. Therefore, the
energy levels bounded in an attractive hydrogenic poten-
tial in two dimensions are

I

are the effective mass and the dielectric constant, respec-
tively. We choose the same vector potential
A =(Bo/2)( —y, x,0) as before. Using one dimensionless
atomic units [energy in units of an effective Rydberg A'
=pe /(2' e ), length in units of an effective Bohr radius
1 a~ =fr e/(pe )], we obtain

i.e.,

l Z'e4p
E =E„=— (n =N+l+1=1,2, . . . , ) (35)

2 A'( ——')
2

and those agree with the exact results.

2H=H ——
r

with

r"'
Ho = —~2+&& +

(38)

(39)

C. Impurity states in an arbitrary
external magnetic Seld

where

In this section, we consider a two-dimensional hydro-
genic impurity under a transverse magnetic field
B=(O,O, Bo). We write the Schrodinger equation as and

p&BO %coo e A Bor= %* ZR' (p) e c

r(z2+y2)1/2
H+(r, g)=E+(r, P) . (36)

Inserting Eqs. (10) and (39) into Eq. (38},we can obtain
the Hamiltonian in dimensionless units as,

Since the electron is confined by the combined potentials
due to the impurity and the magnetic field, the system is
described by the Hamiltonian,

j. e0= p ——A
2p

2

(37)

where A is the vector potential of the field and p and e

Vr- +lg
v r Qr 4r r Qg

(40)

Writing the wave function as %(r, 8)=e' sR (r}, and in-
serting into Eq. (36), we obtain the Schrodinger equation
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FIG. 1. The 2D donor energy levels in effective Rydberg
units are shown as a function of y for the 1s, 2s, 3s, and 4s
states.

for the radial motion,

p, R(r)+ + —— —my —
—,'y r +E R(r)=0.R(r) 2 m'

4r r r

(41)

Now applying the quantization rule for the radial motion

FIG. 3. The transition energy, Ez~~ —E&„ for two-
dimensional hydrogen, in units of%' as a function of magnetic
field y. The circles represent the experimental points of Jarosik
et al. (Ref. [17])for impurities in a GaAs well. The dashed line

represents the theoretical results of MacDonald and Ritchie
(Ref. [16]). The solid line represents our results.

which is given in Eq. (21), we can obtain the correct con-
dition of energy levels E in dimensionless atomic units,

2J v'[E —V'(r)]dr =2(N+1)n (N =0, 1,2, . . . , )
Pp

(42)

where

NlV'(r) = ——+ +m y+ ,' y r—
70 702

The results are shown in Figs. 1, 2, and 3 as a function of
the magnetic field. In Fig. 1, we present the energy levels
(ls, 2s, 3s, and 4s) without the Zeeman term my(m =0).
For comparison with the exact numerical results by Zhu,
Cheng, and Xiong [15], the energy levels with the Zee-
man term are shown in Fig. 2. Our results agree exactly
with their results so that the difFerences cannot be seen in
the figure. In Fig. 3, we compare our results with the nu-
merical results which are based on the two-point Pade
approximation by MacDonald and Ritchie [16] and the
experimental results which are obtained with GaAs by
Jarosik et al. [17].

V. SUMMARY AND DISCUSSION

—1
0.0 0.2

I

0.4
I

0.6
I

0.8

FIG. 2. The 2D donor energy levels in effective Rydberg
units are shown as a function of y ranging from 0 to 1 for 2p
3d, 2s, 2p+, 3p, 4d, 3s, 3p+, 4p, 3d+, 4s, 4p+, and
4d+ states.

By replacing the number (m —
—,') by m of effective

potential in two dimensions, the semiclassical quantum
theory yields the correct energy levels for the central field
potential in two dimensions. The modification in the
effective potential for the two-dimensional polar coordi-
nates can be valid by the conformal mapping of the two-
dimensional rectangular coordinates. This is the same as
the logarithmic variable change of the radius in three di-
mensions, which results in the replacement of 1(1+1)by
(1+—,') for the application of semiclassical quantum
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theory [9].
In the applications, the energy levels calculated by the

phase integral method for the electron under an external
magnetic field or in the attractive Coulomb potential
agree with the exact results solved directly from the
Schrodinger equation. %e also obtained the correct con-
dition of energy levels for impurity states under an arbi-
trary magnetic field in a two-dimensional system. Our re-
sults for impurity states under an arbitrary magnetic field
in a two-dimensional system agree with the numerical re-
sults of the two-point Pade approximations by Mac-
Donald and Ritchie [16], the numerical exact solutions
by Jhu, Cheng, and Xiong [15], and the experimental re-
sults by Jarosik et al. [17]. This semiclassical method

can be applied to the two-dimensional bound states in
any continuous potential. This method can be used ex-
tensively to calculate the exact eigenvalues for the two-
dimensional systems such as the impurity states, the exci-
ton states, and the two electron states in a quantum well
and circular quantum dot under an arbitrary magnetic
field, etc. [18, 19].
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