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A comprehensive study is presented on the Weyl-Wigner formalism for rotation-angle and angular-

momentum variables: the elements of kinematics are extended, the elements of dynamics are established,

and the implications of rotational perodicity and angular-momentum quantization are investigated. Par-

ticular attention is paid to discreteness, and two of its consequences are emphasized: the importance of
evenness and oddness, and the need to use two difference operators in a discrete domain, whereas one

difFerential operator suSces in a continuous domain. These consequences are shown to strongly distin-

guish the Weyl-signer formalism for rotation-angle and angular-momentum variables from the well-

known Weyl-Wigner formalism for Cartesian-position and linear-momentum variables. The point is

made clear that the first of these formahsms cannot be regarded as a trivial and straightforward exten-

sion of the second. The rotational Wigner function is derived as the only bilinear form of the state vec-

tor that is real, has the natural invariances for rotational motion, and yields the correct distributions for
the rotation-angle and angular-momentum variables as well as the appropriate expression for the transi-

tion probability between states. The conditions for its uniqueness are thus established. Its properties are

described in detail and, in particular, its uniform boundedness is demonstrated. The rotational Wigner

function and the associated correspondence between quantum operators and classical-like functions, as

well as the relations they obey, are explored and are written so as to clearly exhibit the distinct contribu-

tions of evenness and oddness in the discrete domain of the angu1ar-momentum eigenvalues, thus provid-

ing a most natural way to account for periodicity. Using the derivative, which acts on the continuous

rotation-angle variable, and the forward and backward differences, which act on the discrete angular-

momentum variable, the equation of motion for the rotational Wigner function is established. This

equation is detailed for the following Hamiltonian forms: those that depend only on the angular-

momentum variable, including, in particular, the free rotator, and those that are in the cosine of the
rotation-angle variable. It is verified that the Weyl-Wigner formalism for rotation-angle and angular-

momentum variables has the correct nonperiodic limit and that it properly reduces to the Weyl-Wigner

formalism for Cartesian-position and linear-momentum variables. In order to illustrate the formalism, a
careful analysis is carried out for the rotational Wigner function representing the energy eigenstates of a
hindered rotator whose Hamiltonian is the sum of a term in the absolute value of the angular-

momentum variable with a term in the cosine of the rotation-angle variable. For this hindered rotator,
and within the approximation of a large absolute value of the angular-momentum variable, the equation
of motion for the rotational Wigner function is solved for its stationary solutions, and the time-

independent Schrodinger equation is also solved.

PACS number(s): 03.65.Ca, 05.30.—d, 02.50.—r, 02.90.+p

I. INTRODUCTION

The Weyl-Wigner formulation of nonrelativistic quan-
tum mechanics using a classical-like phase-space
language has been well established for variables such as
the Cartesian position and linear momentum of a particle
[I—3]. In this formalism, a correspondence exists be-
tween quantum operators and classical-like functions, the
Weyl correspondence, and expectation values of dynami-
cal variables are calculated as averages over a quasipro-
bability distribution, the Wigner function. For variables
such as the rotation angle and angular momentum of a
rotator, however, notorious difhculties arise due to

'Permanent address: Centro de Fusho Nuclear, Associaqho
Euratom —Instituto Superior Tecnico, Instituto Superior
Tecnico, 1096 Lisboa Codex, Portugal.

periodicity [4]. Although the rotational Wigner function
and associated correspondence between quantum opera-
tors and classical-like functions have already been intro-
duced [5,6], the implications of rotational periodicity and
angular-momentum quantization for the Weyl-Wigner
formalism have not yet been fully analyzed. Kinematic
properties such as natural invariances, uniqueness, and
uniform boundedness of the rotational Wigner function
remain to be investigated, as well as the particular
features possessed by the formalism in the discrete
domain of the angular-momentum eigenvalues. More-
over, and particularly important, the dynamics of the ro-
tational signer function is still to be derived.

It is the purpose of the present article to provide a
comprehensive and detailed study on the Weyl-Wigner
formalism in the case of rotation-angle and angular-
momentum variables. Notwithstanding the fact that the
formalism has been extensively assessed in the case of
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Cartesian-position and linear-momentum variables, such
a study is far from being a redundant exercise. In fact, as
it becomes evident in this work, the results that. apply to
the former variables can by no means be regarded as a
trivial and straightforward extension of those that apply
to the latter. This does not come as a surprise, since the
two types of variables are intrinsically different in quan-
tum mechanics.

This article is organized as follows: the existing results
on the Weyl-Wigner formalism are briefiy reviewed in
Sec. II, the kinematics of the rotational Wigner function
and of the associated correspondence between quantum
operators and classical-like functions is described and in-

vestigated in Sec. III, the dynamics of the rotational
Wigner function is derived and discussed in Sec. IV, the
Weyl-Wigner formalism is used to study a particular hin-

dered rotator in Sec. V, and the results are summarized
and conclusions are drawn in Sec. VI. For simplicity,
only pure states and one rotational degree of freedom are
considered.

II. REVIE% OF THE FORMALISM

A. Cartesian-position and linear-momentum variables

and are normalized and related according to

&qlq'& =5(q —q'),

&p Ip' & =&(p —p'),

& q Ip &=, exp(ipq/A'),
1

(2+4')'i

and that Ig(t) & is normalized to unity,

& 0(r) lp«} &
= f dq I & q lg(r) &

I'

p p t 2=1

The Wigner function representing Ig(t) & is

W(p, q, t}= f dq'exp( —i2pq'/fi)&q+q'Ig(t) &

x & y(r)lq —q'&

p'exp —i2qp' A p —p' t

(2.7)

(2.8)

For completeness, and in order to better understand

the differences encountered in the case of rotation-angle

and angular-momentum variables, as well as to facilitate
the comparison with the results to be derived in this

work, it is useful to go briefly through the Weyl-Wigner

formalism for Cartesian-position and linear-momentum

variables. The results presented below can be found in

the review works that have been published on the subject

[1—3], as well as in the bibliography there provided. The
Cartesian-position and linear-momentum operators q and

P, respectively, obey the well-known commutation and

uncertainty relations, namely,

x&g(r)lp+p'& . (2.9)

(2.10)

q t —
q g

2 (2.11)

respectively. Therefore

This function is real and gives the correct distributions

for p and q,

(2.1)

f dp f dq W(p, q, r)=1 . (2.12)

(2.2)

(2.3)

Here A is the Planck constant divided by 2~ and the fluc-

tuation, at a given time t and for a given pure state

If(t)&, of the dynamical variable corresponding to the

quantum operator A is defined, if A is Hermitian, as

&&(r)= I & [&(r)]'&—
& &(r) &'j '", (2.4)

hq(t)bp(r} & —,
2

'

and have continuous unbounded eigenvalues, represented

by the variables q and p,

Moreover, the relation between W(p, q, t) and Ig(t) & is in-

variant with respect to translation, translational motion
at constant linear velocity, position inversion, and time

reversal. These invariances are the natural ones for
translational motion, with the Srst two being the require-

ments for Galilean invariance. The function W(p, q, t} in

Eq. (2.9) may be uniquely defined as a bilinear form of

I P(t) & that is real, possesses the above stated invariances,

yields the proper distributions for the variables according
to Eqs. (2.10) and (2.11},and is such that the transition
probability between the states lf(t) & and Ig'(t) & is given,

in terms of the respective W(p, q, t}and W'(p, q, t), by

& ~«)&=&g(r}I~ Ip(r) & . (2.5)

It is understood that the eigenvectors lq & and lp & form

complete sets,

lg(r}&=f '
dqlq&&qlf(r}&= f 4 Ip&&pl@«)&,

(2.6)

I& y(r)ly (r}&I'

=2~f dp f dq W(p, q, t)W'(p, q, t) . (2.13)

Therefore these are the conditions for its uniqueness.

Setting Ig'(r)& equal to Ig(t)& in Eq. (2.13), a necessary
condition for W(p, q, t} to represent a pure state is de-

rived, which is
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gJ p q t 2 — 2 14

It may also be seen from Eq. (2.13), choosing If(t) & and
lg'(t) & to be orthogonal, that W(p, q, t) cannot be every-
where positive and so is not strictly a probability distribu-
tion but rather a quasiprobability distribution. Applying
the Schwarz inequality to Eq. (2.9), it is possible to show

that W(p, q, t) is uniformly bounded according to

IW(p, q, t)l ~ (2.15)

With a given classical-like function A (p, q) the Weyl

correspondence associates the quantum operator

f dp f dq f dq'exp( i2p—q'/fi)A(p, q)lq —q'&&q+q'I

f +"dp f +"dq f +
dp'exp( —t'2qp'/A')A (p q)lp+p'& &p

—p'I . (2.16)

Inversely, A(p, q) can be written in terms of the matrix
elements of A as

A (p, q) =2f dq'exp( i2pq—'/A)& q+q'I A lq
—q' &

=2f dp'exp( i2qp'/fi)—&p
—p'I A lp+p'& .

2M '

Eq. (2.21) becomes

a, W(p, q, t)= —P a, W(p, q, t)

(2.23)

(2.24)

(2.17}

The expectation value of the dynamical variable corre-
sponding to A may then be expressed as an average of
A (p, q) over W(p, q, t):

& A(t) &
= &y(t)IA lg(t) &

p qA p, q 8'p, q, t . 2.18

It is important to note that there is a complete formal
symmetry between q and p, as it is evident from Eqs.
(2.9), (2.16), and (2.17). Also, the classical function

A,i(p, q) corresponding to A is not, in general, A(p, q),
but it can be derived from the latter by taking the classi-
cal limit Pi~0. Namely,

A, i(p, q) = lim A (p, q) .
A~O

(2.19)

Let 8 be the quantum Hamiltonian operator and

Ig(t}& a solution of the time-dependent Schrodinger
equation

Iy(t) &=Ply(t) & .
dt

Then, the equation of motion for W(p, q, t) reads [7]

(2.20)

8, W(p, q, t)= —sin —(BvB~
—

B~Bv ) H(p, q)W(p, q, t)p u e

(2.21)

where H(p, q) is the classical like -function associated
with 8 by the Weyl correspondence, according to Eq.
(2.17). The classical limit of Eq. (2.21) is the Liouville
equation

8, W(dp, q, t)=(B 8 —8 B~}H,i(p, q)W, i(p, q, t), (2.22)

with ,W(pi, tqb}eing defined in a manner similar to Eq.
(2.19}.For the free particle with mass M, in which case

and is identical to its classical counterpart. It is worth
pointing out that the Wigner function representing an en-

ergy eigenstate corresponds to a stationary solution of
Eq. (2.21), as can be easily verified from Eq. (2.9).

bi(t) j 1 —
I & exp[i8(t)] & I ]

' —
I & exp[i8(t)] & I .

2

(2.26}

Another distinctive feature of rotational motion is the
quantization of the unbounded eigenvalues of l, which are
discrete and of the form mfi, with m an integer variable.
In this way, the eigenvalue equations for exp(i8) and i
are

exp(i8)I8& =exp(i8)I8&,

lint &=rniiilrn &,
(2.27)

and the following relations apply for the eigenvectors I8 &

and Ini & and the state lg(t)&:

B. Rotation-angle and angular-momentum variables

In the quantum mechanics of rotational motion, the
use of a rotation-angle operator 8 leads to difficulties with
the Hermiticity of the angular-momentum operator l.
This is due to the fact that the variable 8, representing
the continuous unbounded eigenvalues of 8, is not period-
ic [4]. In particular, relations similar to those of Eqs.
(2.1) and (2.2) are incorrect and lead to nonsense when
applied to 8 and 1. The use of an operator with eigenval-
ues equal to 8 mod2ir is not satisfactory, because the vari-
able representing these eigenvalues, although periodic,
has 2m.-spaced discontinuities. Such diSculties are best
circumvented by writing commutation and uncertainty
relations using the operator exp(i8} instead of 8, since
the eigenvalues of the former can be represented by a
continuous periodic variable. Then,

[l,exp(i8)] =iit'exp(i8), (2.25)
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ly(t)&= f dele&&el'(t)&=
m = —oo

( el 8') = y 5(e—8' 2—7m ),

(2.28)

similar to W(p, q, t) and yields the appropriate replace-
ments for Eqs. (2.10) and (2.11). So, the rotational
Wigner function, which is discrete in m and has period
2~ in 0, reads

W (e, t)= —f de'exp( —i2m8')(8+8'lP(t))
7T —m. /2

(mlm'&=5

1
exp(im 8),(2~)'"

(P(t)lg(t) &
= f "del& el&(t) &I'

l (m lq(t) & I'=1 .

&elm)= (2.29)

(2.30)

Few results can be found on the Weyl-Wigner formal-
ism for rotation-angle and angular-momentum variables.
The rotational Wigner function has been introduced [5]
by properly modifying W(p, q, t) given in Eq. (2.9}so as to
preserve the consistency of the kinematic relations
obeyed by the latter and has been derived [6] by using
operator algebra to set up a real function that is formally

I

x(q(t)le —e'& . (2.31)

It is real, gives the appropriate distributions for m and 8,

f de W (e, t)= l &mls(t) &I' (2.32)

and

w (e, t)=l(el&(t))l',
m = —oo

respectively, and is normalized according to

(2.33)

f deW (Ot)=1. (2.34)

The form of W (e, t) in Eq. (2.31) implies that the
quantum operator A associated with a given classical-like
function A (8) must be [6,8]

f de f de'exp( i 2m—e')A (8)l8—8')(8+8'l,
7r — —7r —n/2

m = —oo

(2.35)

if the expectation value of the dynamical variable corre-
sponding to A is to be written as

( &(t) ) =(1((t)l & ly(t) )

f d8A (8)W (e, t) .
m = —oo

(2.36)

8=co[ l
I

l

—y cos(8)],
with co and r positive constants and

(2.37)

(2.38)

Introducing in Eq. (2.31) the Wentzel-Kramers-Brillouin
eigenfunction that represents, for the branch m »1, the
energy eigenstate with energy

E -=moto%,

where mp &&1, the following expression results for the
corresponding rotational Wigner function:

(2.39)

W (8)—= Jz~ ~
cos(8)2r

+ f dP sin[2(m —mo }P]

2yX sin cos(8)sin(P)

(2.40)

A most instructive case, for which some results have
already been obtained [5], is the hindered rotator whose
Hamiltonian is

Here J (x ) denotes the Bessel function of the first kind of
order a and argument x. It is easy to show that the
second term of Eq. (2.40) does not contribute to the dis-
tributions in m and 8 given by Eqs. (2.32) and (2.33).
However, it is needed to ensure that W (8) has the

correct classical limit.
In pronounced contrast with the extensive work that

has been devoted to the Weyl-Wigner formalism in q and

p, the existing elements on the Weyl-Wigner formalism in
8 and m are somewhat scarce and incomplete. Indeed,
and as it becomes evident below, a detailed kinematic
analysis remains to be carried out and no dynamic study
has yet been performed. It is hoped, with the present ar-
ticle, to extend the ensemble of results on the Weyl-
Wigner formulation of the quantum mechanics of rota-
tional motion and, in particular, to explore the implica-
tions that discreteness, a major consequence of periodici-
ty, has on the Weyl-Wigner formalism. In the following
sections, the function W (O, t) is derived from a set of
natural requirements that uniquely determine its form,
very much in the same way as W(p, q, t) of Eq. (2.9) can
be derived [3]. This approach is somewhat more satisfac-
tory than the ones that have been proposed [5,6], in that
W (O, t) is constructed by proceeding from the condi-
tions for its uniqueness and not by 6nding the appropri-
ate formal replacements that allow to go from W(p, q, t)
to W (8, t). Properties analogous to those of Eqs. (2.14)
and (2.15) are established, and, in additionW(e, , t) and
the associated correspondence between A and A (8) are
thoroughly investigated in the discrete m domain. Most
important, the equation of motion for W (8, t) is ob-

tained. The nature of this equation is necessarily
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different from that of Eq. (2.21), since difFerential opera-
tors cannot be used in the m domain. They are replaced
here by difference operators, which are distinct in the fol-
lowing fundamental way: two operators must be used in
a discrete domain, typically the forward and backward
differences, whereas only one, the derivative, suSces in a
continuous domain. It is also shown that the Weyl-
Wigner formalism in q and p is a limiting case of the for-
malism in 0 and m. So, as it has been mentioned in Sec. I,
the second of these formalistns cannot stem from the first,
a fact that does not prevent the existence of similarities
between the two. To illustrate the features of the formal-
ism here developed, an analysis is performed of the hin-
dered rotator described by the Hamiltonian of Eq. (2.37).

III.ELEMENTS OF KINEMATICS

x (m "Iy(t) &, (3.1)

A. Derivation and uniqueness
of the rotational %igner function

The function W (H, t } is derived here starting from a
set of natural requirements that are shown to be the con-
ditions for its uniqueness, which constitutes the most ap-
propriate and straightforward way for constructing
W (H, t). In order to get familiarized with discreteness
and its features, the eigenvectors lm & are used in the
derivation, instead of I 8&. So, W (H, t) is defined as a bi-
linear form of the state vector If( t) &,

w (H, t)=&/(t)l& (8)ly(t)&

(g(t)l '
& & 'I& (8)lm" &

m = —aom = —aoI tl

it yields the correct probability distribution for 8 accord-
ing to Eq. (2.33),

+ ao

( 'I& (8)I "&=& 'IH&(HI

exp[ i—(m' m—"}8];2'
(3.7)

Here Eqs. (3.3} and (3.4} must be valid for any P and n,
and Eq. (2.29) has been used in writing Eq. (3.7). These
properties naturally replace those that apply in the case
of q and p variables. In what follows, it is shown that
Eqs. (3.1)-(3.8) suffice to determine the matrix elements
(m'IE~(8}lm" & so that Eq. (3.1) turns out to be Eq.
(2.31) for W (8, t).

Replacing P by —8 in Eq. (3.3) gives

&m'Ik (8)lm" &

=exp[ —i(m' —m")8)(m'IE (0)lm" & . (3.9)

Furthermore, from Eq. (3.4) it is inferred that, besides de-

pending on 8, (m'Ik (8)lm" & can depend only on
m —m' and m —m" or, equivalently, on 2m —m' —m"
and m' —m". Therefore, Eq. (3.9) may be written as

and it is such that the transition probability between the
states Ig(t) & and lg'(t) & is given, in terms of the respec-
tive W (8, t ) and W' (8, t), by

l&g(t)ly'(t) &I'=2~ g f d8 W (H, t)W' (H, t) .
m= —ao

(3.8)

that has the following properties: it is real,

&m'lk (8)lm" &=[&m"lk (8)lm'&]';

it is invariant with respect to rotation,

(m'Ik (8)lm" & =exp[i(m' —m")P]

(3.2)

& m lk. (8}lm"&

=exp[ —i(m ' —m "}8]K2, - ~ .. . (3.10)

with K2m —m' —m" m' —m" such that

X(m It.(8+y)lm" &, (3.3) 2m —m' —m", m' —m" (K2m —m' —m", m' —m" }

to rotational motion at constant angular velocity,

&m'IE (8)lm" &=(m'+nit +„(8)lm"+n &,

to angle inversion,

(m'Ik (8)lm" &=( —m'Ik ( —8)l —m" &,

and to time reversal,

(m'Ik (8)lm" &=[(—m'Ik (8)l —m" &]';

(3.4)

(3.5)

(3.6)

+—2m +m'+ m", m'—m"

+2m —m' —m", —m'+ m" & (3.11)

+ ao 1

277m= —ao

(3.12)

as follows from Eqs. (3.2}and (3.5)—(3.7). Next, using Eq.
(3.8), which, taking into account Eqs. (3.1), (3.10), and

(3.11},is equivalent to

+ao +ao +ao

I & P(t) lg'(t) & I'=(2~)' g g & & K2 — ' — ", ' — "K2(
n= —aom = —aomI II

X & g(t) lm'& & a +m'lg'(t) & & P'{t)In +m" & & m "lg(t) &, (3.13)
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it follows that

+ oo

2m —m' —m", m' —m "+2(m —n) —m' —m", m' —m" 1
2r+ p, 2s+ p 2m

sin r+ + m
2

(3.22)

1

2 5„0 . (3.14)
(2n. )

At this point, it is convenient to perform the following
transformation:

So, combining Eqs. (3.15) and (3.22),

2m —m' —m", m' —m"

m'+m"
r =m —m' —m" +6

2
sin m—m'+m"

m'+m"s= —m "+8
2

(3.15)
m'+m"

m
2

m'+m"p=m'+m" —28
2

+~ m'+m"
dPexp i m-

(2m ) 2
(3.23)

where e(x) denotes the largest integer not exceeding x
and p is a binary variable that is either 0 or 1 and takes
into account the evenness or oddness of m'+m". It
must be noted that r, s, and p are independent variables
and that, furthermore, Eq. (3.15) establishes a one-to-one
correspondence between each pair m ' and m" and each
set r, s, and p [9]. Henceforth, things become fundamen-
tally difFerent from the case of q and p variables and the
particular features arising from discreteness become more
and more evident, noticeably the importance of evenness
and oddness. Through Eq. (3.15), Kz ~ - can
be considered as a function of r, s, and p and can thus be
represented by

+~
K2„+„2,+„= dgexp(irg)Q, „(g),

(3.16)

Q, „(g)= g exp( irg)K2„+„z—,+„,

and then putting together Eqs. (3.1), (3.10), and (3.23),
W (H, t) reads

+co +oo
W (H, t)=

m'= —oo m"= —oo

m'+m"
sin m—

2

m'+m"

Xexp[i(m
' —m ")8]

X (m'~P(t))(P(t)~m"),

(3.24)

sin m —m'—

which, considering Eqs. (2.28) and (2.29), is indeed equal
to Eq. (2.31). Alternatively, W (8, t) can be written as

where g lies between mand +m—and Q, „(g) is a con-
tinuous function of g in this interval. This representation
is particularly useful for solving Eq. (3.14), which is a
convolution equation. Expressing Eqs. (3.11), (3.12), and
(3.14) in terms of g, s, and p gives

Q, „(g)= [Q, &(
—g) ]' =exp(ip()Q, „(—g)

@=0,1 m'= —oo

m —m'—
2

X wm +„&2(8,t )

+so
( 1)m

—m' —1= —'w (B,t)+ i Y

Q, „(0)= 1

2~ '

=Q, „„(g),

1
QSP 0 QSP

Therefore, from Eqs. (3.17) and (3.19),

[Q, „(g)] = exp(ipse),
1

(2m)

and Eq. (3.18) implies that

(3.17)

(3.18)

{3.19)

(3.20}

with

X wm' +1/2 (~8)t~

1 +~= —I' dB'exp i 2 m ++ 8'—
2

|'

+ oo

w +„)2(B,t)= — g exp i2 m'++ 8—
7T Im = —oo

S

X (m —m'~P(t) )

X (g(t)~m+m'+p)

(3.25)

Q, „(g}= exp i~/1
(3.21} X (8+8'~P(t))(P(t)IO 8') . —(3.26)

Hence
Writing W (8, t) as in Eqs. (3.25) and (3.26) is particular-
ly suggestive, since the contributions of evenness and
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oddness, associated here with w (H, t) and w +&&2(e,t},
respectively, appear clearly distinguished. The fact that
these two contributions are quite difFerent is an intrinsic
feature of the %'eyl-Wigner formalism in 0 and m, which
feature is to be encountered throughout the results estab-
lished below. Besides, evenness and oddness are related
to well-de5ned periodicities: m. for the former and 2m for
the latter, as can be seen from Eq. (3.26). Accordingly,
expressing W (H, t} in terms of w + &2(e, t), as in Eq.
(3.25},provides a most natural way to account for period-
icity. The usefulness of working with w +„&z(e,t), in-

stead of W (8, t) given by Eq. (2.31) or (3.24), is to be ful-

ly appreciated when studying the dynamics in Sec. IV.

w + )2(8+m, t)=( —1)"w~~ )2(e, t),

w,„„(8, t) = I & Oly( t) & I'
m= —oo

(3.27)

+(—1)"
I & 8+~le(t) & I', (3 2g)

+„/2, g =2 1 —p m t, 3.29

f dew (H, t}w .+,& (2et)=0.

It is worth mentioning the fact that W (H, t) is not
simply given in terms of w (8, t ). This can be under-
stood with the help of Eq. (3.28), where it is shown that
w (O, t) cannot, in general, satisfy the normalization re-
quirement imposed on W (H, t) by Eq. (2.33) and hence
the importance of w +,&z(e, t) and of its contribution to
W (O, t) The actual . relation between W (H, t) and
w (8, t) can be derived from Eqs. (3.25) and (3.27) and is

(3.30)

B. Properties of the rotational %'igner function

It is seen, from Eqs. (3.25) and (3.26), that W (8, t) is
not a straightforward discretization of the second of the
forms given in Eq. (2.9) for W(p, q, t) but is rather the re-
sult of a nontrivial summation of the real function
w +„~2(e,t}. It is this function that does look like a
discretization of that form, but a discretization per-
formed so as to reflect the importance, conveyed by the
variable p, of evenness and oddness in the discrete m
domain. It is also clear that W (O, t) is unambiguously
determined if w +„&2(e,t) is known. Important proper-
ties of the latter, directly derived from Eq. (3.26), are

sin m —m' — m
2

m —m'—
2

(3.32)

sin m —m' —
m sin m —m" — m

2 2

m —m'—
2

m —m"—
2

=5 ~ - . (3.33)

Following Eqs. (3.28) and (3.29), the probability distri-
butions for m and 8 are given, in terms of w +„&2(8,t) by

and

1&mlg(t)&I'=-,' f "dew (e, t) (3.34)

I&el/(t)&l'=-, ' y y w, „„(e,t),
@=0,1 m =—oo

(3.35)

respectively, and thus, recalling Eq. (2.30), the normaliza-
tion condition

+ oo

f dew (H, t)=1
m= —oo

(3.36)

f de[ W ( H, t)]'
m = —oo

applies. It must be noted that w +z (e2, t) does not con-
tribute to Eqs. (3.34) and (3.36). However, it does con-
tribute to Eq. (3.35). The relations in Eqs. (3.34)—(3.36)
are, of course, consistent with Eqs. (2.32)—(2.34), as it is
easy to verify with the help of Eqs. (3.25), (3.29), and
(3.32). They are to be recalled in Sec. V, in connection
with the results quoted in Sec. II regarding the hindered
rotator corresponding to Eq. (2.37).

Starting from Eq. (3.8), with lf'(t) & equal to lg(t) &,
and using Eqs. (3.25), (3.30), and (3.33), a necessary con-
dition for W (8, t) to represent a pure state can be estab-
lished, which is of the same type as that of Eq. (2.14) and
reads

W (H, t)+W (8+m, t)=w (O, t) . . (3.31) f de[w +„i2(e,t)] =

Concerning Eq. (3.27), it provides a useful boundary con-
dition when solving the equation of motion for W (H, t),
a point to be illustrated in Sec. V. Furthermore, Eq. (3.27)
states that w (O, t}and w z+(e,2t) do not have the same
periodicity, a point already mentioned above, thus imply-
ing the orthogonality property of Eq. (3.30).

Before proceeding, it is convenient to write down two
results that are of use in what follows. They are an im-
mediate consequence of Eqs. (3.12},(3.14), and (3.23},and
read

(3.37)

As it is to be shown in Sec. V, this condition may provide
a useful test on the correctness of a particular
w +„&z(8,t }. In the same manner as it has been done in
connection with Eq. (2.13}, Eq. (3.8} may be used to
demonstrate that W (8, t) cannot be everywhere positive.

A further property to be established here is the uni-
form boundedness of W (O, t). From Eq. (3.25), it is im-
mediate to see that
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p=0, 1 m'= —~

sin m —m'—
2

m —m'—
2

w +„&2(8,t ) (3.38)

Next, combining Eqs. (3.26) and (3.38), using the Cauchy inequality, and performing some straightforward algebra, it
follows that

sin m —m' — m
2

m —m' — m
2

wm'+ l2(ei t)

2 m'= —cc

sin m'+ m
2

m'+
2

exp —i2 m'+ + 8
2

X g lexp(i2m "8)&m "lP(t)) l

II
m

which, considering Eq. (2.30), is equivalent to

l exp( i 2m—8) & P(t) l

m" ) l (3.39)

sin m —m'—

m —m'—

+ 00
'

w +„i2(e,t)
7T I

sin m'+ m
2

m'+ m.

2

exp —i 2 m'+ 8
2

(3.40)

Now, recalling the equality in Eq. (3.23),

lm = —oo

sin m'+
2

m'+

n T

+ 00

exp i2 m'—+ 8 = g f dPexp i m'++ (P —28)
2K 2

+ ao

f dPexp i+(P —28) 5($ 28 2m—n) —=1 .
7T 2

(3.41)

Hence Eqs. (3.38), (3.40), and (3.41) yield

(3.42)

and then using Eq. (2.30). Another result, which can be
derived by applying the Schwartz or the Cauchy inequali-

ty to Eq. (3.26), is

which has a strong similarity with Eq. (2.15). It is in-
structive to see that Eq. (3.42) can also be established
from Eq. (2.31), by applying the Schwarz inequality to
the latter, recognizing that

f de'l&e+e ly«»l'~ f de l&e+e ly(t»l'—m./2 7r

( 1
lw + z2(e, t)l

C. Correspondence between quantum operators

and classical-like functions

(3.44)

(3.43)
Let the classical-like function associated with a given

quantum operator A be
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sin m—m'+m"

(8)=2f d8'exp( —i2m8')(8+O'I A I8—m/2

Then, taking into account that

f d8 A (8)W (B,t)
m = —00

m'= —00 m"= —00 m'+m"

Xexp[i(m' m—")8](m'I A Im")

(3.45}

+ 00

f d8a +p/2(8) wrn+p/2(8 t}
p=0, 1 m = —00

(3.48)

which can be derived in a manner analogous to Eq. (3.37),
and that

or, equivalently,

sin m —m'—
+ 00 2

+ 00

f d8a +„/z(8)w +„/z(8, t)
@=0,1 m =—00

A (8)=—,
'

with

@=0,1 m'= —00
m —m'—

2

+~a(8»

(3.46)

(3 49}

which follows from Eqs. (3.26) and (3.47), it is easy to see
that Eq. (2.36) is indeed verified. An alternative expres-
sion for the expectation value of the dynamical variable
corresponding to A is then

a +p/2(8)=2 g exp i2 —m'+ 8
m'= —00

X (m —m'I A Im+m'+p)

=2f +
d8'exp i2 m+—+ 8'

7r 2

x(8+8'IA" 18—8') . (3.47)

+ 00

(A(t))= —,
' g g f d8a +„/2(8)w +„/z(8, t) .

@=0,1 m = —00

(3.50)

inversely, A is written in terms of A (8) according «
Eq. (2.35), which, using Eqs. (2.28), (2.29), (3.33}, and
(3.46), can still be put in the form

f d8
p, =0, 1 m = —00 m'= —00 m"= —00

sin m —m'—
2

m —m'—
2

Xexp —i2 m" + 8 A (8)Im'+m "+p)(m' —m"
I

+00 +00

f "d8exp i2 m" + 8—a .+&./2(8)Im'+m "+p, )(m' m"
I

. —
@=0,1 p'=0, 1 m'= —00 m"= —00

(3.51)

It is a straightforward exercise to check that the set of
Eqs (2.35) and (3.51) is indeed consistent with the set of
Eqs. (3.45)—(3.47). These two sets of equations may be
regarded as defining a rotational Weyl correspondence
that replaces, for 8 and m, the Weyl correspondence of
Eqs. (2.16) and (2.17},valid for q and p. Quite naturally,
there is no formal symmetry between 8 and m. It is also
worth remarking that the expansion of W (8, t) and
A (8) in terms of w +„/z(8, t) and a +„/z(8), respec-
tively, as in Eqs. (3.25) and (3.46), provides a most natural
way of exhibiting the marked distinction there is between

evenness and oddness in the discrete m domain, as can be
verified by looking at the kinematic relations that have

been established in this section.

IV. ELEMENTS OF DYNAMICS

A. Equation of motion for the rotational Wigner function

Following Eq. (3.25), the dynamics of W (8, t} can be
established directly from the dynamics of w +„/2(8, t),
according to
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a, w. (e, t)=-,' y
sin m —m' —

m
2

So, it is the equation of motion for w +„/2(e, t) that is

going to be derived below. From Eq. (3.26) and the
time-dependent Schrodinger equation, written as

p, =0, 1 m'= —00

m —m' — m
2

XB,w +„/2(e, t) . (4.1)

i AB, & m ~P(t) ) = g & m ~&)m'& & m'I g(t) &,
m'= —00

it follows that

(4.2)

. 1 + 00 +00

Q, w +„/2(8, t)=i g g g exp i2—m' —m" + 8
2p'=0, 1 m'= —00 m"= —00

X [& m —m'+m" ~t/r(t) ) & P(t) ~m+m'+m "+p')

X &m+m'+m" +p'~8~m+m' —m "+p, )

—
& m m'+—m "~8~m+m'+m" +p' &

X & m+m '+m "+p'~g(t) & & g(t) ~m+m ' m "+p—& j . (4.3}

This last equation can be modified to read

1
+00 + 00 +00 +00

B,w +„/z(e, t)=i g g g g g ~ exp
p'=0, 1 m'= —00 m"= —00 n'= —00 n"= —00

L

t t t p 2pJtLi2 m'——m "+ 8 5
2

m'+ p' —Iny', —n "6m" p+ pp', n'—

t tt p 2'Xexp /2 m —m + P ™8
2

I

X & m+m' n'~A'~—m+m'+n'+p+p' 2pp, ')—
X & m+m" —n "~g(t) ) & g(t) ~m+m "+n"+p'), (4.4)

which is equivalent to

1
+" +" +~a, +~+

B,w + /2(8 t)= g g g f de'f de sin 2 m" — 8' —2 m'+ 8"
7T A i pram. ~ ~

—n/2 —m/2 2 2

+ 00

X2 g exp i 2 n '+— (8+8')
2

X &m+m' n'~P~im+—m'+n'+p+p' 2pp')—
+ 00 I

exp i 2 n" +~—(8+8")
VT II 2

X &m+m" n "~P(t) ) & P(t) ~m+m"—+n "+p'), (4.5)

or to

+ 00 + 00 I

B,w +„/2(e, t)= g g g f de' f de"sin 2 m" — 8' —2 m'+ 8"

X hm+m'+( + ' —2 ')/2(8+ )Wm+m" + '/2(

(4.6)

where Eq. (3.26) has been used and h +„/2(8} denotes the function associated with 8 through Eq. (3.47). In order to

facilitate the algebra that follows, it is convenient to rewrite Eq. (4.6) as
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I

B,w +„zz(p, t)= X X X f dp f'dtp'Im exp i2 m" — p'

0 ) m ' = — m "= —ao n/2p=, m = —corn =—oo
—m/2

—s2 m'+" "" e"
2

"hm+m +((+, 2»-)/2(8+8')~m+m-+„/2(8+8 &)-

(4.7)

Now, let the operators 5+ and 5, and their powers
(5+ )"and (5 )",be defined according to

and expanding the binomial coefficients using the equality
[10]

- s'", '

(5+ )"=[in(1+6 )]"=n!g, ,
(5 )",„n'!

n'

y g( )n(m )inn' rt
n=o

(4.1 1)

- s'", '

(5 )"=[In(1—V }]"=n!g, ,
( —V )",

n

it is possible to write [13]
(4.8)

a + +„/2(8)=exp(m'5+ )a +„/2(8),

a .+„/2(8) =exp(m'5 )a +„/2(8) .
(4.12)

These expressions are to be compared with the Taylor ex-
pansion

where S„'"' denotes the Stirling numbers of the first kind

[10] and i!), and V are the forward and backward
differences, respectively, which applied to a given func-
tion a +„/2(8) give

a + /2(8) =a +)+&/2(8) a +»2(8)

a +„/2(8)=a +»2(8) a —(+p/2(8) .
(4.9)

a + +,n(8}= g
n'=0

a +„/2(8)= g
n'=0

)le
(& )"a /p/2(8),

ill
( —7 )"a p„/2(8)

(4.10}

Then, for m'~0, starting from the Gregory-Newton ex-
pansions [11,12]

p/2(8+8') =exp(8'&())a +p/2(8), (4.13)

where 8' may take any real value [14]. In the same way
that the introduction, in Sec. III, of variables of the )M and
)u,

'
type, which are either 0 or 1, has marked a clear cut

with the Weyl-Wigner formalism in q and p at the kine-
matic level, the introduction here of the operators 5+
and 5, reflected below in variables of the v and v' type,
which are either —1 or +1, is a further step that strongly
distinguishes, now at the dynamic level, the Weyl-Wigner
formalsim in 8 and m.

Applying the results of Eq. (4.12) to the sum

p 2pp
exp —i2 m'+ 8" h +,+(„+„. 2„„,)/2(8+8')

m'= —oo

=exp[ —i (p' —2'')8" ]

X h +(~+@'—2»')/2(8+8 }+ X g exp( i2v'm'8")h +e .—+(„+p' 2»')/2(8+8 }-
v'= —1,+1 m'=1

which appears in Eq. (4.7), it follows

(4.14)

p 2pp,
exp i2 m + 8 h i +( + 2 )/2(8+8 )

pm = —oo

or, still,

=exp[ i(i2' 2@id'—)8"] —1+ g g exp(m'5& )exp( —i2v'm'8") h +(&+& 2» )/2(8+8') (4.15)
4= —1, +1 m'=1

r

p 2',
2P — m' 8" hm+m. +(&+& —2»')/2(8+8 )

oo I

=exp[ i(p' 2pp')8—"] 1+— g g exp i B&.5& exp( —i2v'm'8") h—+(„+„2„„)/2(8+,8') . .
v'= —1, +1 m'=1

(4.16)
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The sum over m' in the right-hand side of Eq. (4.16) can be calculated using the theory of generalized functions [15]and
gives

g exp( —i2v'm'8") = g cos(2m'8") —iv' g sin(2m'8")= —,
' —1+m g 5(8" vr—n )

—iv'cot(8") (4.17)

so

p 2'
2

exp ~ m + 8 hm+m'+(@+p' 2p—p')/2(8+8 )

=—exp[ i (—p' 2p—p')8" ]2

X g exp i B—&.5&
v'= —1, +1

In an analogous way,

+ oo t

5(8"—mn ) —i—cot(8") h +(„+„2„„)/2(8+8').
n= —oo

7T
(4.18)

p pexp i2 m—"+ 8' w + -+„/2(8+8",t)
ttm = —oo

exp—[ i (p— p' ,}—8' ] g exp i B&—5„~—
2

1 + 1
2

+ 00

5(8' mn—)+i co—t(8') w +„/2(8+8",t) .
n= —00

(4.19)

Hence, using Eqs. (4.18) and (4.19), and then integrating by parts in 8' and 8", Eq. (4.7) becomes

B,w +z/z(8, t)= g g g f d8'f d8"Im ~

p'=0, 1 v= —1, +1 v'= —1, +1 —m/2

+ 00

5(8' nn )—+i—cot(8')
n= —oo

'IT

+ 0O I

5(8" nn )
——i—cot(8")

n = —oo

Xexp[i((B(r5„" v —v'5"„, Be )]

Xexp[ —i(p, —(M')8' —i(p' —2p(M')8" ]
'

Xhm+(„+„. 2„„)/2(8+8')w~+„/2(8+8", t) .

(4.20)

When integrating by parts in 8' and 8", it must be borne in mind that the boundary terms appearing at —m/2 and
+n. /2 cancel each other because the integrand in Eq. (4.7) has period cboth in 8'. and 8", as can be verified with the
help of Eqs. (3.26) and (3.47). Here, the fact that periodicity is naturally taken care of reflects the usefulness of express-
ing, according to Eqs. (3.25) and (3.46), W (8, t) and H (8) in terms of w +„/2(8, t) and h +„/2(8), respectively, and
of working with the latter functions rather than with the former.

Next, considering that

exp[i —,(B(r5„v—v'5„", B(r }]exp[ i(p p'—)8' i—(p' , 2i—tp'}8,"—]h +(„+„2„„)/2(8+8')w +„/2(8+8",t)

=exp v5 — v'5" exp[ i ( p')8' —i (—p' 2pp—')8"]—

Xexp[i —,'(Be 5„v—v'5~ Be.)]h +(„+„~„„.)/2(8+8')w +„./~(8+8", t),
and that

exp[i ) (B(r5„v—v'5"„. Be.) ]h +(„+„. ~„„)/2(8+8')w ~„/2(8+8", t )

=exp(i —,'L"„~)exp(8'Be)exp(8 Be }" +(@+p 2pp, ')/2(8)w +' —p'/2(8't )

where Eq. (4.13) has been used and the operator

(4.21)

(4.22)
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L"'~ =()~P~ v —v'5"

introduced, Eq. (4.20}can be written as

(4.23)

aw et = ' y y y f"'de f"'de"ex " "v5 —" ""v'5"
'=0, 1 v= —1, +1 v'= —1, +1

XIm exp(i —,'L „" „.)
+ oo

5(8' m—n )+i c—ot(8')
pf = —(X)

Xexp[ i (—p p—')8']exp(8'8"
(})

+ oo I

5(8" m—n ) i —c—ot(8"}
n= —co

7r

Xexp[ —i (p' —2p(u')8" ]exp(8"8() }
'

Xhm+()„+) ' —2»') /2 (8)Wm+) /2(8, t) .

At this point, it is useful to define the following operators [16]:
+m/2S„=—f de'cot(8')sin(pe')exp(8'Bs),

77 —e'/2

+m/2C„=—f d 8'cot(8')cos(pe')exp(8'8()),
7T —m'/2

which enable Eq. (4.24) to take the form

(4.24)

(4.2S)

p 2pp v'5p1
Btw +„/2(8, t)= g g g exp ~ v5„

)t'=0, 1 v= —1, +1 v'= —1,+1
I

XIm[exp(i —,'L"„'& )(1+vS& &. +ivC& &. )(1 v'S&. 2»— iv'C„—z» )].

This last equation is equivalent to

Xhm+(„+„' 2»')/Z(8—)Wm+„/2(8, t ) . (4.26)

5twm+)t/2(et t ) = g g g exp v5„— v'5„".w P &PI t h

p, '=0, 1 v= —1, +1 v'= —1, +1

X [sin( —,'L"„'„.)[1+vS„" „.—v'S„

+cos( —,'L"„,. )[vC„" „.—v'C„
u ('—

X hm+()t+)t' 2»')l2(8)Wm+—)tt'/2(8, t ), (4.27)

which is a most important result. Indeed, Eq. (4.27} is the equation of motion for w +„/2(8, t), and, combined with Eq.
(4.1), it describes the dynamics of W (e, t). Moreover, through Eq. (3.SO), it also determines the time evolution of the
expectation values of dynamical variables. In principle, for a given Hamiltonian, h +„/z(8) can be obtained by Eq.
(3.47), and then Eq. (4.27) can be solved for w +„lz(e,t). In the same way as it has been pointed out in connection with

Eq. (2.21), it is worth noting that the rotational Wigner function representing an energy eigenstate must correspond to a
stationary solution of Eq. (4.27},a statement that can be verified using Eq. (3.26).

B. Particular cases of the equation of motion for the rotational Wigner function

In order to illustrate how to work with Eq. (4.27), this equation is going to be detailed for some important cases. The
erst type of Hamiltonians to be considered are those that depend only on I,

P=f(1) . (4.28)

In this case, it is easy to see, with the help of Eqs. (2.27), (2.29), and (3.47}, that
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h +„~z(8)=2(1 —p, )f(m))i) .

Then, all terms in Eq. (4.27) involving Bs vanish, and

(4.29)

B,w +„zz(8,t)=—
t t

exp " "v5;.
~ JM'=0, 1 v= —1, +1 v'= —1, +1

/ t

X sin 5—I Be (1 v'—S„. z„„.) +v'cos —5~ Bs C„z»vm p —pp 2

X(1 Iz, p—'+—2pp') f(mh)w +„&z(8,t) . (4.30)

The sums over p' and v become trivial, and therefore

I I

B,w + &z(8, t)= —— g exP v'5 ~ sin —5 ~ l)& (1+v'S„}+v'cos —5„8& C„ f(mh')w +„&z(8,t) .vm p vm p,

*

(4.31)

2r '

in which case

(4.32}

Among the Hamiltonians that obey Eq. (4.28) is the
free rotator with moment of inertia I,

which is to be compared with Eq. (2.24} for the free parti-
cle. Unlike Eq. (2.24), Eq. (4.36) is not equal to its classi-
cal counterpart, which is obvious because angular
momentum quantization is intrinsic to quantum mechan-
ics and does not have any classical analog.

Another example to be considered is

f(mfi)= (mfi)
(4.33) 8= —coy cos(8), (4.37)

(v'5~~) m =2, (4.34)

and that (5+~ )" and (5 ~ )" with n ~ 3 give zero when

applied to the function m . As a consequence the sum
over v in Eq. (4.31) is immediate, and this equation be-
comes

From Eqs. (4.8) and (4.9), it is straightforward to see that

v'5„m =2m,

which may appear in Hamiltonians describing hindered
rotators, like the one in Eq. (2.37}. Moreover, together
with Eq. (4.32), Eq. (4.37) can be used to represent the
Hamiltonian of a simple pendulum. The matrix elements

( m ~8 ~m ') corresponding to Eq. (4.37) are given by

(m ~8~m') = — f 18exp[ i(m —m')8]cos(8)—

B,w +„iz(8,t)= — (5+ m )+ (5+ ) m
2r ™ CO/

~~m —m'~, 1 ~
(4.38)

XBew + g (8,zt)

So, taking into account Eq. (4.34),

(4.35)
as follows from Eqs. (2.27) —(2.29), and thus Eq. (3.47)
yields

m+
h +„zz(8)=—2pcoy cos(8) . (4.39)

B,w +„iz(8,t)=— Bgw + yz(8 t ) (4.36) Since, in this case, h +&&z(8} is independent of m, Eq.
(4.27) reads, after some algebra,

B,w +„zz(8,t)= — g exp
CO/

v= —1, +1
v5 ~ sin —5„Be' [1—(1—2p)vS;"]+vcos —5„88" Cl"

2

Xcos(8)w~+l ) p)gz(8, t ) .

Now, from the definitions in Eq. (4.25),

(4.40)

S,cos(8) =—cos(8)f 18'[cos(8')] =
—,'cos(8),

7T 0

C,cos(8)= ——sin(8) f d8'[cos(8')] = —
—,'sin(8) .

2. ~/2, I 2

7r 0

(4.41)
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Using these results in Eq. (4.40),

a, w +„q~(8,t)= — g expNP
2A v= —1,+1

~ v5, ~ [2—(1—2p)v]sin —5, a()" cos(8)—vcos —5, a(I sin(8}

X wm +( )—p)/2(8& t ) &
(4.42}

sin(8) [ 1 —
2(M

—(2—p)exp[(1 —
(M )5 ]

+(1+(M}exp((M5+ )]

X wm (+—) )/2 (8~ t) ~ (4.43}

This last expression can be further simplified, with the
help of Eq. (4.12), to give

and then performing the explicit calculation of the
derivatives with respect to 8, the following equation is de-
rived:

a(wm+) n(8~t)

with Eq. (2.9},it is easy to see that

lim w +„&~(8,t)= lim W (8, t)=AW(p, q, t) .
g~oo g~oo

(4.47)

It must be noted that the contributions to the nonperiod-
ic limit of the two terms in the second form of Eq. (3.25)
are equal, despite the fact that the term containing
w +,&z(8, t) does not contribute to the normalization of
W (8, t), as shown in Eq. (3.36). The importance of
keeping the contribution of w +,&2(8, t} to W (8, t),
which contribution is associated with oddness, has al-

ready been stressed in connection with Eqs. (3.28) and

(3.35}. Similarly, from Eqs. (3.46) and (3.47),

a& wm+p/2(8i t) lim a + &2(8}= lim A (8)= A (p, q ),
g~ao g~oo

(4.48)

C. The nonyeriodic limit

As expected, the form of Eq. (4.27} is more complex
than the form of Eq. (2.21) [17]. In the former, the vari-
ables p, , p', v, and v' can be said to reflect the two major
modifications that have to be introduced in the Weyl-
Wigner formalism as a consequence of rotational periodi-
city, both of which result from the discrete character of
the m domain. Such modifications are the need, con-
veyed by p and p', to account for evenness and oddness, a
point already mentioned in Sec. III, and the need, con-
veyed by v and v', to use two difference operators. It is
now going to be checked that the formalism developed in
this work possesses the correct nonperiodic limit, mean-
ing that all dependence on p, p', v, and v' disappears and,
moreover, the results that have been derived for 8 and m
reduce to the known results for q and p, if the following
transformations are made:

IAg=8R, p= (4.45)

and

lq &= „,I8&, lp &=1 R
' 1/2

lm&, (4.46)

and the limit R ~ oo is then taken [18]. Here R
represents the distance to the axis of rotation, so the limit
R ~ 00 corresponds to the loss of periodicity.

By doing so with Eqs. (3.25} and (3.26), and comparing

Q)g sin(8}[w +()+„)&z(8,t) —w () & &)(28t}] .

(4.44}

Following the comment regarding Eqs. (4.32) and (4.37)
and the simple pendulum, the equation resulting from
adding Eqs. (4.36) and (4.44) describes, within the Weyl-
Wigner formalism, the rotational motion of the pendu-
lum.

and it is also straightforward to show that Eq. (3.51}goes
over to Eq. (2.16). Next, Eq. (4.23) can be transformed
according to

a, =—a, , a, =—„v5„1 R
(4.49)

as follows from Eq. (4.45}, and where the second result is
established by comparing Eq. (4.12), written now for the
continuous variable p taken at every point mfilR, with
the corresponding Taylor expansion [19]. It can then be
checked that, in the limit R ~ ao, Eq. (4.27} does become
Eq. (2.21). Therefore, in a certain sense, the Weyl-
Wigner formalism in 8 and m may be regarded as the
general case from which both the Weyl-Wigner formal-
ism in q and p as well as the classical formalism can be
derived as limiting cases. It is now particularly clear that
the formalism that has been developed for 8 and m can-
not be considered as a trivial extension of the Weyl-
Wigner formalsim in q and p.

V. ANALYSIS OF A HINDERED ROTATOR

A. Stationary solution of the equation of motion
for the rotational Wigner function

and rotational Wigner function for the energy eigenstates

The hindered rotator corresponding to Eq. {2.37) is a
nontrivial example for which an analytic treatment can
be carried out in order to iBustrate the features of the for-
malism introduced in Secs. III and IV. Moreover, it
makes possible a comparison between the known results
quoted in Sec. II and the results to be established here.
The rotational Wigner function for the energy eigenstates
of that rotator W (8) is going to be derived by solving

Eq. (4.27) for its stationary solutions w +„&~{8)and

by then introducing the latter in Eq. (3.25). The energy
eigenstates are labeled by the parameter mo, shown below
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to be an integer such that mo))1, which is consistent
with the results given in Sec. II. Recognizing that the first
term appearing in the Hamiltonian of Eq. (2.37}is of the

type described by Eq. (4.28), and that the second term is
equal to the example of Eq. (4.37), and, furthermore, re-
calling Eq. (2.38}, the right-hand side of Eq. (4.31}has to
be calculated for

f(ml}=ImIcoR (5.1}

and the result has to be added to the right-hand side of
Eq. (4.44).

Starting from the definitions in Eq. (4.9) and perform-
ing some combinatorial algebra, the following expression,
valid for n ~ 1, can be established:

(h )"Im I
={7 )"Im +n I

=~(m)fi„,)-~(-m -1) 5„)+4(m +n-1)2(-1)™
n 2

m 1
(52)

where @(x) is unity for x & 0 and is zero otherwise. Hence, from Eqs. (4.8) and (5.2),

+ g~", ' n' —2
($ )"Im I

=@(vm )$„)—4( vm ——1) 5„1+2n! g ( —1)
n'=1 —vm

(5.3)

with the sum over n' in Eq. (5.3) stemming from the
singular behavior the function I m I

exhibits at the origin
[20]. Choosing to work at Im I »1, such sum is now go-
ing to be disregarded, so that

(5„)"Im I

= [4(vrn) 4( —vm ——1)]5„,. (5.4)

It is understood that no fully rigorous mathematical ar-
gument has justified this approximation. However, it is
to be verified below that the form of w +„/2(8) ob-

tained following such approximation is adequate, as far
as the calculation of expectation values of dynamical
variables is concerned. In addition, it must be noted that
the last equation is valid not only for Im I »1, but also
for m =0, since in this case Eqs. (5.3}and (5.4) are identi-
cal. Therefore, using Eqs. (5.1) and (5.4) in Eq. (4.31),
and combining the latter with Eq. (4.44), it is possible to
write

y = cos(8},=2y
fi

k =2m+1M, (5.9}

4(k)zk+'(y)+4( k)Zk —'(y)=Wm, m~„/2(8),

where Zk+'(y) and Zk '(y) correspond to the two dis-

tinct branches k »1 and k « —1, respectively, Eq. (5.6)
gives

2a, z(+)(y) -=z„'+', (y) —z„'+', (y},

2()yZk (y}=zk+i(y} Zk —1(y} ~

(5.10)

z'+, '(y}=z':,)(y}, (5.11)

The functions Zk+'(y) and Zk '(y) are to be linked by
the relation

Wm, + 1/2( 8}=W m, —1/2( 8 )

for m =0 and p =0, and

ew, +p/2( 8}= $ (8}[W, +(1+)I)/2( 8}ImI ~ .

(5.5}
and must obey

Z'+'( —y) =(—1)"Z'+'(y),

Z„' '( —y)=( —1)"Z„' '(y),
(5.12)

Wmo, m —(1—p)/2(8)]
(5.6)

for IrnI »1. These equations together with Eqs. (3.27)
and (3.36), which take here the form

w +„/2(8+ n. ) = ( —1)"w +„/2(8), (5.7)

I d8w (8)=2,
m = —oo

(5 g)

define the stationary problem that has to be solved in or-
der to derive w +»2(8).

So, solutions have to be found for Eq. (5.6), which are
real and obey the boundary conditions of Eqs. (5.5) and
(5.7} as well as the normalization condition of Eq. (5.8}.
Changing variables according to

as follows from Eqs. (5.5}and (5.7). The general solutions
of Eq. (5.10},which are real and bounded for every y and

k, can be written as [21]

Zl"(y}=—»k-k(y»

Zk '(y)= B'Jk+)..( —y)=B'J —
k k (y),

(5.13)

where B, B', A., and A,
' are constants to be determined,

with A, and A,
' integers. Combining Eqs. (5.11) and (5.13),

it is easy to see that B and B' must be equal, as well as A,

and A, '. Furthermore, Eq. (5.12) implies that A, must be
even, so it may be replaced by 2mo, with mo an integer.
Taking these results into account, and going back to 0
and m with the help of Eq. (5.9), w +„/2(8) can be put

in the form
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w +„rz(8)=-BJiz +„i z cos(8)2y (5.14}
8=-=1

2' ' (5.16}

—= f d8 g Jz cos(8}
m= —oo

(5.15}

where the sum over m is immediate and gives unity.
Consequently,

Since ~rn~ &&1, it is seen from Eq. (5.14) that the only

values of mo for which w +„&z(8) is not vanishingly

small, and which are thus relevant, are those obeying

mo»1. It remains to calculate B making use of Eq.
(5.8), which, for rn0 » 1, can be approximated by

so that Eq. (5.14) becomes

1 2r
~mo, rn+p/2(8}=

2 J~z~+„~ z~ cos(8) (5.17)

In order to ascertain that w +„zz(8) in Eq. (5.17)

does correspond to an energy eigenstate of the hindered
rotator described by the Hamiltonian in Eq. (2.37), the
expectation value of the latter in the state represented by
w +„&z(8), denoted by (H ), can be calculated us-

ing Eq. (3.50). Thus, putting together Eqs. (3.50), (4.29),
(4.39), (5.1), and (5.17), (H ) may be written as

0

(H) = g g lt dg[(1 —p, )~m~A —pycos(8)]J~z +„~ z~ cos(8)
@=0,1 m = —oo

(5.18)

For rnp »1, elementary manipulatons transform Eq. (5.18) into

(H) =— f dg ma g Jz
2r cos(8) + g rn Jz cos(8)

+ CO

m= —oo

+ cos(8) g Jz +i cos(8)
m = —oo

4

(5.19}

In this last equation, the frat sum over m gives unity, whereas the other two give zero. Hence

(H ) =—m, a)A, (5.20)

con«ming that w +„~z(8) corresponds to the energy eigenstate whose energy is given by Eq. (2.39). It is easy to

check that this state verifies the uncertainty relation of Eq. (2.26), since the expectation value of exp(ig} obtained with

Eq. (5.17) vanishes, as can be inferred from the foregoing calculation.
Next, using Eq. (5.17}in Eq. (3.25), it follows that

+
z X i ) J[zm'+ i~ —zm (5.21)

w»ch, for m, »I and with the help of the equality in Eq. (3.23), takes the form

z(~m~ —mo)

+ f dy[sin[2(m —me)p] —sin[2(rn+mo)p]] g sin[(2m +1)p]J, 7'
cos(g)

I p

which, in turn, is equivalent to

(5.22}

2r ~/2 2r~mo, m(8) =
4 Jz((~~ — ) cos(8) +,f dg[sin[2(m —mo)P] —sin[2(m +ma)$]]sin cos(8)sin(P)

2m

m/2 2y
Jz~~

~ ~
cos(8} — dgsin(2mog)cos(2m/)sin cos(8)sin($)

4~ 0
(5.23}
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—1=T Ji i-, (5.24)

and

1&8lq &I'—= g J~()
~ ) cos(8)

+

(5.25}

respectively, as follows from Eqs. (3.34) and (3.35), and
where the numerical value of Eq. (5.25) follows for

ma »1. The fact that u) +„&2(8) does not contribute

to ( & m ~g ) ( is a consequence of the general property

stated in Eq. (3.34), whereas the fact that it does not con-
tribute to ~&8~/ ) ( stems from a particular property of

0

the form given in Eq. (5.17). These properties explain
why the first term alone of Eq. (5.23) can be retained
when calculating ) &rn ~g ) [ and [&8[&/i ) [ using Eqs.

(2.32) and {2.33) in the same way as pointed out in Sec. II
for Eq. (2.40). In addition, the result, also mentioned in
Sec. II, according to which the second term of this equa-
tion is essential to ensure that u) (8) possesses the

pt

correct classical limit, a result that obviously applies also
to Eq. (5.23}, may be interpreted in the light of the gen-
eral results derived at the end of Sec. IU and concerning
the nonperiodic limit. Indeed, as shown in that section,
such term containing t0 +„&2(8) must be kept if the

appropriate nonperiodic limit is to be recovered, which,
in turn, guarantees the correct classical limit.

The usefulness of the necessary condition written in
Eq. (3.37) can now be illustrated by checking if
w +„&2(8) in Eq. (5.17) can indeed represent a pure

state, which is here the energy eigenstate of Eq. (2.39).
Considering that, always with mp &&1,

+ oo

f d8[w +„&2(8)]
@=0,1 m = —oo

f d8 g J cos(8)
8~'

(5.26)

For m » 1 and rno »1, sin[2(m+ ma)P] becomes a rap-
idly oscillating function of (() whose average value is zero,
so its contribution to the integral in the first of the forms
of Eq. (5.23) may be neglected, and this equation reduces
to an expression that does not coincide exactly with the
result of Eq. (2.40), but is a factor 2 smaller. This
discrepancy is only apparent, being easily explained by
the fact that W (8) in Eq. (2.40) must be considered

to be normalized only on the positive half of the m

domain, since it has been derived using a Wentzel-
Kramers-Brillouin eigenfunction that is valid only for the
branch m »1. ActuaBy, Eq. (2.40) can be established
following a procedure analogous to the one utilized to ar-
rive at Eq. {5.23), but working with that branch alone.

The distributions for m and 8 corresponding to
(() +„&z(8) in Eq. (5.17) are+n.

I ~If I
=

4 f d8J2()~( ~ ) cos(8)

2

it is actually seen that Eq. (3.37) does not hold. There-
fore, the results given in Eqs. (5.17) and (5.23) are not ful-

ly correct, and more complete forms have to be found for
(J +„q2(8) and W (8).

scoA&m~P )= g &m~P~m')&m'~q ),
m'= —oo

(5.27)

corresponding to the Hamiltonian of Eq. (2.37), and use
the wave function thus derived, & m ~P ), to construct

p

W (8) from Eqs. (3.24), or (3.25) and (3.26). Here s is

an eigenvalue to be identified below, for the case where
~m ~

&&1, with the parameter mo labeling the energy
eigenstates according to Eq. (2.39). Proceeding from Eq.
(5.27) and taking into account Eqs. (2.37), (2.38), and
(4.38), the appropriate time-independent Schrodinger
problem follows:

&m~& ) =&m —l~g )+&m+l~g ),
(5.28)

&01&,&=& —llg, &+&+II&,&, (5.29)

with Eq. (5.29) an eigenvalue equation for s. This prob-
lem is, in itself, a very interesting one [22].

The general solutions of Eqs. (5.28) and (5.29), which
are bounded for every m, are of the form [21]

(5.30)

where D is a normalization constant and c is now a solu-
tion of the equation

J' + =0 (5.31)

with J' (x) denoting the derivative with respect to x of
J,(x). If solutions &m~(I( ) are to be looked for such

p

that
~
m

~
&&1, then the only values of e for which

& I ~()'j ) given by Eq. (5.30) does not become vanishing-

ly small are those obeying e »1. Hence Eq. (5.31) is to
be solved for c.» 1. A mathernaticaBy rigorous asymptot-
ic analysis of the latter equation is possible [23,24], but a
simpler approach is adopted here, starting from the rela-
tions [21]

J (x)=cos(am. )J (x)—sin(a~)1' (x},
r a

J (x)—=
(2m.a )'~

' 1/2

Y (x}-=—

(5.32)

(5.33)

8. Solution of the time-independent Schrodinger equation and

rotational Wigner function for the energy eigenstates

An alternative way to derive W (8) is to solve the

appropriate time-independent Schrodinger equation,
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ey
2cA

=—2 tan(sn. } . (5.34)

For e»1, it is readily seen that the solutions of Eq.
(5.34) are asymptotic to the positive integers, so e can be

replaced by mo and

(5.35)

The normalization condition of Eq. (2.30) becomes, con-
sidering that mo »1,

1
+—=2

D2

2

(5.36)

whence

D= 1

1/22
(5.37)

So, from Eq. (5.35),

&mI& )—= (5.38)

and, recalling Eqs. (2.28) and (2.29),

where Y (x}is the Bessel function of the second kind of
order a and argument x, and the asymptotic approxima-

tions in Eq. (5.33) are valid for a»1. Thus, combining

Eqs. (5.31)—(5.33),
2K

+ oo

, zz g exp(im8)J~2' m

, &z
cos m08+ sin(8)

1 1 2y+ cos 2m08+ sin(8)2' 2m.

' 1/2

(5.39)

Before proceeding, it must be remarked that the distri-
bution I (m Ip, ) I corresponding to Eq. (5.3g) is the

same as the one in Eq. (5.24), which has been derived
«om w, +„qz(8) in Eq. (5.17). Therefore, the latter

gives, for dynamical variables depending on m, the same
expectation values as I(m Ig ) I from Eq. (5.38). More-

over, with mo»1, I(8IQ ) I arising from Eq. (5.39) is

the sum of the uniform distribution in Eq. (5.25) with a
function of 8 that has a rapidly oscillating component
whose average value is zero. Hence, and because Eq.
(5.25) stems from Eq. (5.17), it is seen that w +„zz(8)
in this equation must yield, for dynamical variables de-
pending on 8 and up to negligible terms, expectation
values that are equal to those obtained using I(8IQ ) I

from Eq. (5.39), with the possible exception of dynamical
variables whose period in 8 is close to that of the rapid
oscillations in Eq. (5.39). It is thus verified the adequacy,
as far as expectation values are concerned, of the approx-
imation made in going from Eq. (5.3) to Eq. (5A) when
deriving w +„&z(8) from its equation of motion.

Now, making use of Eq. (5.38) in Eq. (3.26),

+„zz(8) reads

+ ao

rz(8}= g exp i2 m +-
m'= —ct}

By carefully accounting for the different branches

ten, for I
m I » 1 and mp »1, as

F L. (5.40}
lm —m'1 —mo

"Im+ m'+ pl —mo

f Irn —m'I and Im+m'+@I in Eq. (5.40), the latter can be rewrit-

1
w +„~z(8)-=exp i2 m+

2m
exp(i2m'8)J~z +„~ z +

m = —coI

+ cos 2 —m++ +ma 81

7r 2
, xcos(2m'8}J~z +„~+ ~ J ~

m = —oo1

1——sin 2 m+
7r 2

+ma 8 g sin(2rn '8)J~z~+&~+ ~.
&

J~, r, r
I

(5.41)

The sums over m ' appearing in Eq. (5.41) can be performed using the Graf theorem for the addition of Bessel functions

[21]and the result is

w z(8 =— J~z + ~
z cos(8) + [(1—p)cos(2mo8) —@sin(2m08)]Jz +„sin(8)sin 8

mp m+p/2 2 12m+pl 2mo 7r
(5A2)

The next thing to do is to check if w +„&z(8) given in Eq. (5.42} does verify the necessary condition of Eq. (3.37}.

A.fter some reduction, the following expression can be established, taking into account that mo &) 1:
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+ 00

f d 8[w +„~2(8)]
@=0,1 m = —oo

+m + 00

+ f 18cos(4mo8)
2m 8~2

2 t

J2 sin(8) — Jz +, sin(8)2y . . . 2y .
2

+ d8cos(2m08) g (
—1) J2~ ~

cos(8) J2 sin(8)
1 +m. 2y 2y .

28.2

+~ + 2y .
d8sin(2m08) g (

—1) J2~ ~+, cos(8) Jz +, sin(e)
2~2

(5.43)

where the equality in Eq. (5.26) has been used. The Graf
theorem can be utilized both to provide an adequate ex-
pansion for the Bessel functions in the second term of Eq.
(5.43) and to perform the sums over m appearing in the
last two terms. Carrying out some more algebra it is then
possible to write

+ 00

f d 8[w +„i2(8)]
@=0,1 m = —00

+ J1 1 2y
2m m o A'

+ 00

f 18[w,m+pn(8)]
@=0,1 m = —00

+O(mo ') .2' (5.46)

It can further be shown, for the form of w +»z(8)
given in Eq. (5.42), that

Consequently, the form in Eq. (5.42) satisfies Eq. (3.37}up
to terms that are vanishingly small for mp && l. Indeed,
according to Eq. (5.33), Eq. (5.45) may be written as

4 2mo —m (5.44)

which, making use of the Neumann theorem for the addi-
tion of Bessel functions [21],is equivalent to

f 18w (8)—= 1+J2
m= —00

+ 00

f 18[w +„i~(8)]
@=0,1 m = —oo

2m m o R 4

(5.45)

—= 1+O(mo '), (5.47)

so the normalization condition of Eq. (3.36) holds true up
to terms that can be neglected for mp &) 1.

Thus, putting together Eqs. (3.25) and (5.42) and using
the equality in Eq. (3.23), the following results for
W (8):

1 2y +(—1)
W (8)—= Jz~r

~
~

cos(8) + cos(2m08) Jz sin(8)2y

~r2f dg sin(2mog)cos(2m((})sin cos(8)sin(P)2r

n-/2 2y .
sin(2mo8) dg cos(2m/)sin sin(8)cos(P)

7T' 0
(5.48)

Provided that ~m r
&) 1 and mo &) I, the preceding equa-

tion gives the rotational VA'gner function for the energy
eigenstates of the hindered rotator described by the Ham-
iltonian of Eq. (2.37), which eigenstates have the energies
given in Eq. (2.39). This result is valid for both branches
m &&1 and m ((—1. Furthermore, and up to terms that—2moare of order O(ma ), it is normalized according to Eq.
(2.34), obeys the necessary condition for a pure state of

Eq. (3.37}, and yields the appropriate expectation values
of dynamical variables if used in Eq. (2.36).

VI. SUMMARY AND CONCLUSIONS

A comprehensive study has been presented on the
Weyl-%igner formulation of quantum mechanics in the
case of rotational motion. The ensemble of elements on
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the Weyl-Wigner formalism for rotation-angle and
angular-momentum variables has been extended, and the
implications for the formalistn of rotational periodicity
and angular-momentum quantization have been investi-
gated. Particular attention has been paid to discreteness,
and two of its consequences have been emphasized: the
importance of evenness and oddness, and the need to use
difference instead of differential operators. These two
consequences have been shown to strongly distinguish the
Weyl-Wigner formalism for rotation-angle and angular-

momentum variables from the well-known Weyl-Wigner
formalism for Cartesian-position and linear-momentum
variables. Consequently, it has become clear that the Srst
of these formalisms cannot be regarded as a mere exten-
sion of the second, thus re6ecting the fact that the two
types of variables are intrinsically different in quantum
mechanics.

The rotational Wigner function has been derived as the
only bilinear form of the state vector that is real, has the
natural invariances for rotational motion, and yields the
correct distributions for the rotation-angle and angular-
momentum variables as well as the appropriate expres-
sion for the transition probability between states. The
conditions for its uniqueness have been thus established.
Its properties have been investigated in detail, having
been shown that it is uniformly bounded. The rotational
Wigner function and the associated correspondence be-
tween quantum operators and classical-like functions
have been explored and have been written, as well as the
kinematic relations they obey, in such a way as to reflect
the marked difference existing, in the discrete domain of
the angular-momentum eigenvalues, between evenness
and oddness. Such difference is an intrinsic feature of
discreteness that has been encountered throughout and
has been taken advantage of in order to provide a most
natural way to account for periodicity. This has proven
to be particularly useful in deriving the dynamics of the
rotational Wigner function.

The equation of motion for this function has been es-
tablished using the derivative, which acts on the continu-

ous rotation-angle variable, and the forward and back-
ward differences, which act on the discrete angular-
momentum variable. A further intrinsic feature of
discreteness has been thus introduced, which lies in the
fact that two difference operators are necessary in a
discrete domain, whereas one differential operator sufBces
in a continuous domain. The equation of motion for the
rotational Wigner function, which has revealed a more
complex structure than the equation of motion for the
well-known Wigner function, has been detailed for some
important Hamiltonian forms, namely, those that depend
on the angular-momentum variable alone, including, in
particular, the free rotator, and those that are in the
cosine of the rotation-angle variable. Moreover, it has
been shown that the Weyl-Wigner formalism for
rotation-angle and angular-momentum variables
possesses the correct nonperiodic limit and that it proper-
ly reduces to the Weyl-Wigner formalism for Cartesian-
position and linear-momentum variables.

A detailed analysis has been provided of a hindered ro-
tator whose Hamiltonian consists of two terms: one in
the absolute value of the angular-momentum variable and
the other in the cosine of the rotation-angle variable.
The rotational Wigner function representing the energy
eigenstates of this rotator has been analytically derived
within the approximation of a very large absolute value
of the angular-momentum variable. This has been done
following two distinct methods: by obtaining the station-
ary solutions of the equation of motion for the rotational
Wigner function, as well as by solving the time-
independent Schrodinger equation and using the wave
function thus obtained to construct the rotational Wigner
function. Such analysis has been carried out to illustrate
the features of the formalism that has been developed.
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