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Principles of the first and second kind of balance in a varying-parameters method
for eigenvalue problems in quantum mechanics
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In this paper a method for eigenvalue problems in quantum mechanics is developed. Principles of the
first and second kinds of balance in a varying-parameters method take advantage of the standard pertur-
bation theory and the standard variational principle. According to this method, we not only obtain the
best approach for obtaining eigenvalues and wave functions, but we also determine structures of a quan-
turn system. The extended Hamiltonian in a varying-parameters method is difFerent from a standard
Hamiltonian. The parameters are inserted into a Hamiltonian by adding and subtracting appropriate
terms which contain the essential parameters. Thus it becomes possible to study the inner structure of a
quantum system by applying principles of balance. In order to interpret the physical meanings of bal-
ance parameters, several examples are described. Applications are also made to the helium atom, heli-
umlike ions, and the lithium atom. We theoretically predict energies and structure parameters and ob-
tain good agreement with experimental data, especially for high-orbit electrons {clearly this is a charac-
ter of perturbation theory). It is quite interesting that the theoretical predictions of energy levels of
parahelium in the S state are lower than the energy levels of orthohelium and that theoretical predic-
tions of singlet (triplet) states are close to the experimental data of triplet (singlet) states. It would seem
that the experimental data of triplet and singlet are reversed. Is that possible?

PACS number(s): 03.65.—w

I. THEORY

We investigate a quantum system Ho which acts under
a perturbing potential H'. We are interested in a certain
effect in the unperturbed system which is caused by the
perturbing potential H', and this effect can be described
by a number of n parameters 1(,=(A, &, . . . , A, , . . . , A,„). For
example, the electron screening effect [17] in an atomic
system is caused by the perturbing potential of interac-
tions between electrons and we can describe this electron
screening effect by a number of parameters. As is well
known, in this case these parameters are effective nuclear
charges for each orbit electron. In general we can inves-
tigate certain effects which are similar to electron screen-
ing in an interesting quantum system.

One of the main tasks of this work is developing a
method to determine these unknown parameters A,

(values of the parameters 1(, are certain: we will give a
proof later) and study this effect physically. Then it be-
comes possible to understand the inner structure of this
quantum system.

Suppose the Schrodinger equation for a system under
investigation is

tion %(x) are defined in X space. The dimensions of X
space will depend on the system investigated.

By convention we assume that there is no interaction
between an unperturbed Hamiltonian Ho and a perturb-
ing potential H', when they form the total Hamiltonian,
so that we may write Eq. (lb}. But this is not true in gen-
eral because an interaction between Ho and H' exists and
the subsystems Ho and H' will act upon each other and
may balance at a certain point.

Remark 1. As isolated Hamiltonians Ho and H' form
the total Hamiltonian H, because of the interaction be-
tween H~ and H', both H~ and H' are changed. Suppose
that the isolated, unperturbed Hamiltonian Ho contains a
set of constants C, acting under the perturbing potential
H'. These shift to another a set of constants C', so that
the unperturbed Hamiltonian Ho is changed:

EHo=HO(C') —Ho(C} .

On the other hand, the unperturbed Hamiltonian Ho
gives a reaction to the perturbing potential H' so that the
perturbing potential H' is changed as well:

H +(x)=E+(x) (la)
hH'=H' —EHo ~

and the traditionally original Hamiltonian consist of two
parts:

H=HO+H', (lb)

where Ho is the traditional unperturbed Hamiltonian and
H' the traditional perturbing Hamiltonian. We assume
that the original Hamiltonian H, Ho, H', and wave func-

As the tota1 Hami1tonian has been formed, the final un-
perturbed Hamiltonian Ho(C') and perturbing potential
H'(C') are as follows:

Ho(C') =Ho( C )+EHO

=Ho(C')
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&=Hp(A, )+H, (A, ), (2)

where Hp(A, ) is a new unperturbed Hamiltonian with n

parameters and Hi(A ) Hp Hp(A )+H' is a new per-
turbing Hamiltonian with n parameters.

Remark 2. We add and subtract appropriate terms of
Hp(A, ) in the original Hamiltonian H. Then applying the
varying-parameter A, method, we create an n-dimensional
II space. Thus the original X space is extended into
Xe II space. The extension of the Hamiltonian

&=Hp(A, )+Hi(A, ) CXs II space

and the extension of the original Schrodinger equation
(la) is

&%(x;A, ) =E(A, )%(x;A,), (3)

where % and 0'(x;A.) belong to XIII space and E(A,) be-
longs to II parameter space. Thus we are making three
basic assumptions.

(i) We suppose that the eigenvalue E' '(A, ) of the ex-
tended unperturbation Hp(A) exists and depends on pa-
rameters A, in XSII space:

(x;~)=E~ ~ ~' '(

where (aP. . .) are the quantum numbers of the eigen-
states. The unperturbed Hamiltonian Hp(A, ) contains the
parameter A, =(A,„.. . , A,;, . . . , A,„),which depends on a
(aP. . .) state, and so they give certain physical meanings
to these n parameters which are associated with the per-
turbing effect.

Remark 3: The extended unperturbed Hamiltonian
Hp{ A,), perturbing potential Hi ( A,) and eigenfunctions

~(x;k)j are defined in XIII space, the corre-
sponding eigenvalues [E~ & ~

(A, }j is defined on II pa-
rameter space.

(ii) We suppose that the extended perturbation H, (A.),
which depends on parameters A,, is an analytic function of
A. in X II space.

(iii) A certain point A,
' exists in II space. When solu-

tions of the extended Schrodinger equation (3) take that
point in XII space, the eigenvalue set [Ek(A, ) j of &
and the corresponding eigenfunction set j %k(x;A, ) j of the
kth state will identify with the eigenvalue set jEk j of the
original H and the eigenfunction [%k(x) j of kth state in

H'(C') =H' —b,Hp

=H'+Hp(C} —Hp(C') .

Now the subsystems Ho and H' will balance each other
at the point C'. We thus call C' the balance point of Ho
and H' and note that the total system formed is stable at
the point C'.

Unfortunately, the values of the balance point C' are
unknown for the quantum system investigated. In order
to determine the value of the unknown constant C', we
split the original Hamiltonian H into two parts and tech-
nically insert parameters A, into the unperturbed Hamil-
tonian Ho and the perturbation term of the Hamiltonian
H'. We obtain an extension of the original Hamiltonian
H, namely,

Eq. (la), namely,

Ek =Ek(A, ) ~~

%k(x) =4k(x;A)~

(4a)

(4b)

and

(4c)

ip"(x A, )= g C"~p'; '(x'A, )
I =0

We choose the wave function of the perturbed state such
that

&4',"(x;A)~% „(x;A,))=1,
which means that all the perturbation wave functions
4'k'(x; A, ) are orthogonal to %P'(x; A} for any parameter A,

in Xe II space, namely,

(4' '(x;A) ~4"(x;A ) ) =5p, , s =0, 1,2, . . . .

Then we obtain the total energy for the kth state of the
perturbed system:

Ek(A, ) =E„' '(A, )+Eg"(A,)+E' '(A, )+

where

=E' '(A. )+ g E"(A,)
s=1

=Ei', '(A, }+6k(A,),

E„"'(A}=(~P',"(x;A,}~H,(A, ) ~e„(x;A,) ),
E"(a)=&q""(*;Z)IH (~)lq" "(;~}&,

where S~ is the original system and S& is an extension of
the original system.

We call this point A,
' in II space "the identical point"

(or the balance point of Sn and S~ ). These parameters
0 1

A,
' have certain physical meanings and are associated

with some of the effects in the quantum system investigat-
ed. For example, in electron screening they are effective
nuclear charges for each orbital electron.

In order to solve the extended Schrodinger equation
(3), we have to extend standard perturbation theory from
X space into XSII space. We choose (4'k '(x;A, ) j, which
is a complete set of orthonormal eigenfunctions of Hp(A, },
as the function basis in X@II space. The corresponding
set of eigenvalues is designated by [Ek '(A, }j,

We take the same steps as in standard perturbation
theory [18-20] for each parameter A, in II space. Thus
we can write for the kth state of the perturbed system in
XSII space

~p (x;A, )=e' '(x;A, )+e'„"(x;A,)+e'„'(x;A,)+

E/, (A, ) =Ek '(A, )+Ek"(A,)+E' '(A, )+
and the sth-order perturbation function is expanded in
the complete set of eigenfunctions of the unperturbed
state, namely,
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5„(){,)= (~pp'(x;){,)lH, (A, )lq „(x;A,) & . (7) genvalue is obtained from Eq. (8),

where the extended Hamiltonian gf is a constant in II
space, the integral is over all X space, and the potential
energy E„()(}is a function of parameters ){, in II parame-
ter space.

Remark 5. Corresponding to assumption (iii) the in-
tegral equation (8) at the identical point ){,* converges to
the energy of the original Schrodinger equation (la). In
general we assume that there corresponds an n-

dimensional sphere around point ){," such that the in-

tegral converges. The radius of convergence is

RE[0, c].
Remark 6. The extended Hamiltonian % consists of

two parts Ho(){.) and Hi(){,) in II parameter space. This
means that the extended system S~(){,) is divided into two
subsystem SH (){,) and Stt ()(,}. Thus it is clear in Eqs. (6)

0 1

and Eq. (7) that Ho(){,) is the unique contributor of the
potential Ek '(){,} and H, (){,) is the unique contributor of
the potential hk(){,). Thus we can define potential fields

for the kth state in II parameter space as follows:

Es(){,) = (%''k '(x;){,)lHs(){,) %k(x;A, ) &, (9)

where S represents S~, SH or SH, respectively, and
0 1

Hz(){,) is the responding Hamiltonian of S system.
If one is only interested in the 5th-order approxima-

tion to the eigenvalue Ek (A, ) for kth state, the energy ei-

Remark 4. According to extended perturbation
theory, we obtain the energy for the perturbed kth state
in the extended Schrodinger equation (3),

E„(){,)=(+P'(x;){)IHo(){.)+H, (){)l+k(x;&)&

= ( e"'(x z) lal q' (x z) &

E (A, )=E' '(I, )+ g E"(A, )

=E„"'(Z)+a„(Z} . (10)

In order to determine these unknown values of identical
parameters (or the balance point) ){,, two means are
developed in this work. One of them is called the princi-
ple of the first kind of balance: It is suitable for cases in
which Ho(A, ) only has one parameter and the perturba-
tion H' is very small

(i} The principle of the first kind of balance. If a sys-
tem is in the first kind of balance, the sum of ith-order
perturbation energy will vanish at the balance points A, *,
namely

g E"(A,")=0

The extensive forces gk(A, ) and h„(){,) are defined in an
n-dimensional II space as follows:

Explanation: Because Hi(A, )=H —Ho(A, ) and H, (A,) is
the unique contributor of the potential term g;, ,Ek'(A. ),
the potential of Stt () ) vanishes at point ) ". That means

1

the contributions of H and Hz(A, } will balance each other
at the point A.

' in II parameter space. In general cases
we have n parameters ){, and the principle of the second
kind of balance will be sufhcient.

(ii) The principle of the second kind of balance. If a sys-
tem is in the second kind of balance, the total extensive
forces will vanish at the balance point A, ', namely

gk(){,')+hk(A, ') =0 .

and

aE„"'(Z)
hk(){,) =

1

Bhk(){,) Bb k(){,)

aE„"'(Z)

aA'

The explanation is as follows. The standard Hamiltonian
H can be decomposed into two parts Ho(){,) and Hi(A).
Responding to the original system, SH is extended into
two subsystem Szz (A,) and SH (A,). The nth-order ap-

0 1

proximation total energy potential Eq. (10) consists of
two parts. But Ho(A) is the unique contributor of the po-
tential Ek '(){,) and H, (){,) is the unique contributor of the

potential g;,Ez'(){,). Thus, physically the Ek '(){,)
represents the potential of the subsystem SH ()t,) and the

0

term g;=,Ek'(){,) represents the ¹h-order approxima-
tion potential of the subsystem SH (){,) at a point A. in the

I

n parameter II space. The extensive force of the subsys-
tem SH (){,) on point ){, is hk(A) and the force of the sub-

0

system SH (){,) on point ){, is gk(){,). The potential acts to

keep the total system stable. Thus the condition (12)
means that the two subsystems SH (){,) and SH (A, ) will

0 1

balance each other at point A,
' in the n parameter H

space.
Physically this balance point A,

' is identical to the point
in assumption (iii). It is easy to rewrite Eq. (12) as

aE„'"()t.) + =0, i=1,2, . . . , i, . . . , n

or

E„(){,') =min(,
) [E,'"(){)+&k(~) j li.=i
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if the balance is stable (we always assume that the balance
is stable in the cases investigated here).

Suppose the initial value of l(, is not equal to A, ', because
the total force gk(A, )+hk(A) does not vanish, under the
interaction between 00 and H'. The total system will

then tend to the balance position. Therefore parameters
A, automatically tend to A, '. Once the parameters A, take
the values of parameter A, ', the total force vanishes at
point l(,'. The extended system will then remain in the
bottom of the potential well in II parameter space. This
means that the extended Hamiltonian is only identical to
the original Hamiltonian H if parameters A, satisfy condi-
tions (12). In other words, physically, the balance param-
eter A,

' determined so is the identical point in II space.
Remark 7. We define a conventional point l{,r in II

space that is the point at which the extended unperturbed
Hamiltonian Ho(11. ) is equal to the initial unperturbed
Hamiltonian Ho and the extended perturbing H](A, } is

equal to the initial perturbing Hamiltonian H'. We have
to point out that the conventional point A, is not the bal-
ance point of subsystems of Ho(A, }and H](A, ).

Remark 8. The energy eigenvalues Ek(A, ) for the kth
state are different between the identical point A,

' and the
conventional point A, in Eq. (8},namely,

Ek(A, }AEk(A,') .

This means that the standard perturbation theory does
not give the exact solutions of the original Schrodinger
equation (la). Why is this? The reason is that the initial
H' is not the real perturbing potential for an investigated
system. One can see this conclusion explicitly in the ex-
amples given in Sec. II.

If one considers the energy in first-order approxima-
tion and the ground state only, Eq. (12) is identical to

(y(x, A. , ~ff ~y(X, A, ) &

(1(ly)

As is well known, the above equation is the standard vari-
ational principle if one chooses the eigenfunction

](A,}as a trial function for a ground state.
We substitute the balance point l{,

' (i.e., the identical
point) into Eq. (10). Finally the Nth-order approximation
energy of the original Schrodinger equation is obtained:

N

E( p )(A,')=E(]p] )(A,')+ g E"(A,'),
i=1

where (a](]]. . .) are the quantum numbers of the eigen-
states.

Remark 9. The extended Schrodinger equation (3) plus
the balance principles give us more knowledge about an
interesting quantum system than does the original
Schrodinger equation (la).

second kind of balance, we have investigated hydrogen-
like atoms and three examples will be described.

The total Hamiltonian of hydrogenlike atoms is rou-
tinely divided into two parts and a parameter is inserted
into each part, respectively,

H =Ho(A, )+H] (A, ),
where the extended unperturbed Hamiltonian is

Ho(A, ) = —
—,
' 7 —

A, /r

and the extended perturbing potential is

H](A, ) = (Z A—, )/r+—H' .

(13)

(14)

(15)

Ho(A, )= —
—,
' V~ ——,
Z —

AH (A, )=-
r 2

(16)

The zeroth-order approximation and the first-order
correction to the energy are

(g)
A E(])(g) (Z A )A

2n n

5A,

n (1+—,'}
(17)

Using the principle of the first kind of balance, we obtain
the root

Z(l+ —,
'

)E"](X)=0, X'=
1+ ,' 5/n—— (18)

and the first-order approximation to the energy can be
obtained:

Eo(A,*)=—Z 5
2n' ' 1+-'

2

(19)

With the principle of the second kind of balance, the root
obtained is

dE] (A, )

dA, di,

Z(1+—,
'

)

l+ —,
' —25/n

A,
2

2n

(Z —
A, )A,

n

5A,

n (1+—,')
=0,

(20}

We choose the nuclear charge as the varying parame-
ter, based on the idea that any perturbing potential will
cause nuclear charge screening, and change parameter A,

until a new balance position is reached.
Example 1. The initial perturbing potential, the ex-

tended unperturbed Hamiltonian, and the extended per-
turbing potential

H'= 5/r' —(0&5&1),

II. EXAMPLES OF APPLYING PRINCIPLES
OF THE FIRST AND THE SECOND KIND

OF BALANCE TO ONE-PARAMEI R;R PROBLEMS

A. Hydrogenlike atoms

In order to further interpret the physical meaning of
parameter A, and to illustrate principles of the first and

and the energy is

Z2
E](A,')=-

2n

25
(1+—,

' )n

(21)
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The exact solution [it is easy to obtain a radial equation
(R =u /r ) ] is

the solution of a standard Rayleigh-Schrodinger pertur-
bation is

Setting

I(l + 1) 5 u=Eu .
r 2

E' = Z—/2n 2Z—/n (33)

Example 3. For a uniformly charged sphere of a radius
R, the initial perturbing potential is

I ( I + 1)—25 =I'( I'+ 1),
we have a standard hydrogen radial equation

I'(I'+ 1) 1—
—,'u "+ ——u =Eu .

2r

1 r 3Z + r&RH'= r 2R 2R

0, r&R . (34)

The condition of the first kind of balance for the (1s) orbit
1S

Therefore

1
n =n, +l +1.

n

E"'(I,)=—,'Z R —(Z —
A, )A, =O .

(22) The root of Eq. (35}is
' 1/2

(35)

Setting

I'=I + b,l,
n'=n„+I+bi+1

=n+hl,

(23)

(24)

k'= —+ ——Z R
Z Z 2 4 7

2 4 5
=Z —-'Z'R'

5

and the corresponding energy eigenvalue is

Z2
(g+ )

—
[ 1+( 1 8 Z2R 2)1/2]2

0 8 5

(36)

(37)

from Eq. (23}we deduce without difficulty

I(1+ 1)—25= l(l + 1)+(2l+ 1)b I +(b I )

Omitting (b, l },we therefore obtain

b, l = —5/(I+ —')

and

1E =—,n'=n —5/(I+ —') .1f
2 2

(25)

(26)

2Z + 2Z4R
2 5

The condition of the second kind of balance for the (ls)
orbit is

2 4E)(A, )= — +—Z R —(Z —
A, )A, =0. (38)

dk ' dk 2 5

We obtain the root A,
*=Z and the corresponding energy

eigenvalue
We obtain results as in Eqs. (19) and (21}.

Example 2. The initial perturbing potential is

H'= 2/r . — (27)

Z2
E (k')= — +—Z R

2 5
(39)

For the principle of the first kind of balance, the root is
B. The harmonic oscillators

E' "(1,) = — =0, A,
"=Z+2

n

and the energy is

(28)
In this part we will follow the ideas above to study the

behavior of the harmonic oscillators when acted upon by
the perturbing potential H' and illustrate the interesting
changes of the essential properties of the harmonic oscil-
lator. The extended Hamiltonians are

E (A,')=-
2n

(29)

For the principle of the second kind of balance, the root
1S

and

d
Ho(Q) = — +—'m Q x

2m
(40}

E, (A, )=d =A
n

0 A,
* Z+2

n 2
(30) H, (Q)= ,'mw x —,'mQ x —+—H',

and the energy is

E (~') (Z+2)
2n

In the exact solution, we obtain

E„=—(Z+2) /2n

(31)

(32)

where the frequency Q is a varying parameter which is
proportional to k which is a force constant. This implies
that the harmonic oscillator changes the essential force
constant to balance the perturbing potential. We will dis-
cuss two examples.

Example I. The initial perturbing potential is

We note that this is the same as Eqs. (29) and (31), while
H =—mm x2 2

2
(42)
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and the extended unperturbed Hamiltonian and the ener-

gy eigenvalues are
The second-order approximation to the energy eigenvalue
1S

H()(Q)= — +—mQ Xd 1

2m QX2 2

E()(Q)=(n+ —,
' )()'iQ .

(43)

E'"(Q)+E' '(Q)=0

Q' =w(1+ A, )'

E (Q') =(n+ —')A'w(1+1, )'

(52)

The perturbation term of the extended Hamiltonian with
a parameter is

H, (Q) =H'+ —,'m
2 —1 QX0 (44)

n+1 fi
n+1, n n, n+1

1j2

(45)

therefore

We start from extended perturbation theory and obtain
the energy corrections up to the third-order approxima-
tion. Because the matrix elements

The third-order approximation to the energy eigenvalue
1S

E"'(Q)+E' '(Q)+E' '(Q)=0

Q' =w(1+ A, )'~~,

Eo(Q')=(n+ —,
' )()iw(1+1)'~

For the condition of the second kind of balance the
first-order approximation to the energy eigenvalue is

E, (Q)=0,

and

H„'„=[(1 +A, )w /Q —1](n+ ,')fiQ/2— (46)
Q =w{1+A,}'

E,(Q') =(n+ —,')A'w(1+A, )'

(54)

I I
Hn, n+2 =&n+2, n

=&(n +1)(n +2 }[(1+l(, )w /Q —1]i)iQ/4 .
(47)

The second-order approximation to the energy eigenvalue
1S

d Ei(Q)=0,

From Eqs. (46) and (47), it is easy to obtain the perturba-
tion energies to third order:

Q*=w(1+l(, )'

Ez(Q')=(n+ —,
' )i)iw(1+A)'

(55)

E'"(Q)=H„'„

W(1+A, ) —1 (n+ —,')i)'iQ,

E' '(Q)= [/H„' q „/ —/H„'+q „/ ]

2
W(1+A, )

—1 (n+ —')()iQ,
8 0 2

Hn! H(kHkn

(E(0) E(0))(E(0) E(0))

(E(0) E(0))2

3
W(1+A, ) —1 (n+ —')fiQ

(48)

(49}

(50)

The third-order approximation to the energy eigenvalue
1S

E3(Q)=0,
Q' =w(1+1,)'

E~(Q')=(n+ —,
' )()iw(1+A, )'

The exact energy is

E„=(n+—')(1+1,)' ()iw

=(n+ —')(1 tA, /2 —A~/8+A, /16+ )A'w .

(56)

(57)

Z„=E,+E'"+E"'+E"'

We thus obtain results similar to Eqs. (51)—(56), but the
standard Rayleigh-Schrodinger perturbation solution
[18—24] up to third-order approximation is

E"'(Q)=0,
Q' =w(1+ l(, }'

E()(Q')=(n+ —')i)iw(1+A, )' '
(51}

where from Eqs. (46}—(50) the notation H' represents the
extended perturbing potential H) (Q).

For the condition of the first kind of balance the first-
order approximation to the energy eigenvalue is

=(n+ —,')(1+A./2 —1, /8+1, /16)Aw . (58)

Example 2. If the initial perturbing potential for the
anharmonic oscillator [25—28,30] is

H'= x (59)

we calculate the perturbation energies up to second order
in the energy
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1 2
E'"(Q)=— —1 (n+ —')A'Q,

0 2 (60)
Using the principle of the first kind of balance, the bal-
ance condition is

2
E' '(Q) = —— —1 (n+ ')fi—Qn' 2

15 PR
(n +n —

—,", ),
4 m'w4

(61)

where w appears instead of 0 in last term as an approx-
imation.

The condition of the first kind of balance is

5A, /8 —2(z —k)A, =O . (71)

The root is found

A, '=(z ——') .
16 (72)

E= —(z ——')'
16 (73)

The energy in first-order approximation for the ground
state is

x —6x+5—A =0, (62}
Using the principle of the second kind of balance, the bal-
ance condition is

(63)

and

where x=w /Q and A = —30(PA'/m w ) (n +n
—

—,", )/n+ —,'.
One of roots of Eq. (62) is

' 1/2
A Ax =3—2 1+— =1——
4 4

d
di [

—
A,

—2(z —
A, )A, +5k, /8]=0 .

The root of Eq. (74) is

A. '=(z ——')
16

and the energy of the ground state is

(74)

(75)

AQ=w 1 ——
4

So the energy is

' —1/2
wA

W+
8

(64)

(76)

Example 2. For the (2S) state of heliumlike ions the
first-order approximation to the energy eigenvalue in the
(2s) state is

Eo(Q*)=(n+ —,')iiiw — (n +n —
—,", ) . (65)

15 fi

The condition of the second kind of balance is

Ez, (A, ) =Eo(A, )+E'"(A, )

= —
A, /4 —2(z —A. )A, /4+ 77K, /512, (77)

Ez(Q)= tEO(Q)+E"'(Q)+E' '(Q)] =0 . (66)
d d

where Coulombic integral J=77k, /512. On the one
hand, the condition of the first kind of balance is

We deduce the Eq. (66)

3 3w 3w+— =0
4 n' 8 n'

(z —
A, )A. /2 —77k, /512=0

and the parameter of the first kind of balance is

i'=z —77 .256

(78)

(79)

The reasonable root is 0*=w, so the energy is On the other hand, the condition of the second kind of
balance is

Ez(Q') =(n+ '}fiw — (—n +n —
—,", ) . (67)

15 Pfi
4 m'w4 d

Ei, (A, ) =(A, —z)/2+ —,",, =0 . (80)

C. The helium atom and heliumlike ions

in one-parameter cases

Example 1. The (1S)' state of heliumlike ions has the
Hamiltonian

We can also obtain the parameter of the second kind of
balance

(81)

The principles of the first and the second kind of balance
give the same value of

1 2 A. 1 2 A,
H = ——V ————V ——

2 T1 2 T2
(68) E= —(z —» P/4.256

(82}

and

0, =1/r, i —(z —A, )/r, —(z —
A, )/rz . (69)

= —A. —2(z —A. )A, +5k, /8 . (70)

The first-order approximation to the energy eigenvalue in
(ls) state is

E„(A,) =ED(A, )+E"'(A, )

For z=2, E= —0.721 836 a.u. , compared to the experi-
mental value of —0.778 164+0.0014 a.u. [31—33].

Example 3. For the helium atom in single excited
non-S state suppose the helium atom is in a single excited
state, an inner-shell electron has efFective nuclear charges
Z=2, and an outer-shell electron has efFective nuclear
charge k. Applying the varying-parameter technique to
the helium atom, we insert a parameter A, into Ho and

H)..
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H =Ho(A, )+H)(A, ),
where the extended unperturbed Hamiltonian is

H (A)= ——V — ——V—2
0 I 1 ~ p 2

1s nl

(83)

(84)

IV&=[l(ls), 2(nl), &&+eI(nl), &(is), z&]/&2

(88}

where c.=+ for singlet states, c=—for triplet states,
and the wave function

and the extended perturbation is

H&(A, )=1/r&2 —(2—
A. )/9„1 . (85)

In Eqs. (84) and (85) the state operators r&, and r„, are
defined by

l(»},=2(nI), =k& q'I (rl }q I (r I } (89)

where 4 is the hydrogenlike wave function. Obviously,
under the new concept of state operator, the symmetric
or antisymmetric wave function I4& is the zeroth order
eigenvector

(1/P, )l
' ' ' p, (r;) ' ' '

& Ho(X) 1% & =Eo(Z) Iq'& (90)

and

( I P„I) I +g(r; )

=(1/r;)I %»(r;) & (86)

=(I/r, )l e. (r, ) & . (87)

and the eigenvalue of Ho(A, } is

Eo(A, )=—(2+A, /2n ) .

We calculate the first-order energy shift for H, (A,}

a"'(x)= &+IH (~)lq'&

(91)

Since one electron is fixed in the ground state and the
other is in an excited state, the eigenfunction for the un-
perturbed Hamiltonian Ho(A, ) is

=J(A, ) —(2—
A, )A, /n +sE(A, ) . (92)

We define notations for Coulombic and exchange in-

TABLE I. Ionization potential of the helium atom in 1s2p terms followed by the numerical calcula-
tions of Eq. (92} for 3p triplet (e= —

) and 3p singlet (e=+}. Numbers in square brackets denote

powers of ten.

This work

(eV)
3.328
3.543

Perturbation'

(eV)
3.325
3.533

Experimental values

(eV)
3.368
3.623

0.995000[0]
0.100000[1]
0.100500[1]
0.101000[1]
0.101 500[1]
0.102000[1]
0.102 500[1]
0.103000[1]
0.103 500[1]
0.104000[1]

h(A, ) (a.u. )

—0.211426[ —2]—0.158 972[—2)—0.105 992[—2]—0.524 918[—3]
0.153421[—4]
0.560 828[—3]
0.111152[—2]
0.166 747[—2]
0.222 862[—2]
0.279 505[—2]

Eo(A, ) (a.u. )

1s3p triplet
—0.205 500[1]—0.205 556[1]
—0.205 611[1]
—0.205 667[1]
—0.205 723[1]
—0.205 780[1]
—0.205 837[1]—0.205 894[1]
—0.205 951[1]—0.206009[1]

J(A, ) (a.u. )

0.110208[0]
0.110756[0]
0.111304[0]
0.111853[0]
0.112401[0]
0.112949[0]
0.113497[0]
0.114045[0]
0.114593[0]
0.115 140[0]

E(A, ) (a.u.)

0.121 350[—2]
0.123 468[ —2]
0.125 608[ —2]
0.127 770[ —2]
0.129 953[—2]
0.132 159[—2]
0.134386[—2]
0.136635[—2]
0.138906[—2]
0.141 199[—2]

0.965 000[0]
0.970000[0]
0.975 000[0]
0.980000[0]
0.985 000[0]
0.990000[0]
0.995 000[0]
0.100000[1]
0.100500[1]
0.101000[1]

'Reference [34].
Reference [9).

—0.296 949[—2]—0.243 663[ —2]
—0.189 811[—2]
—0.135 391[—2]—0.804020[ —3]—0.248 489[—3]

0.312749[—3]
0.879 649[ —3]
0.145 224[ —2]
0.203 048[ —2]

1s3p singlet
—0.205 173[1]
—0.205 227[1]
—0.205 281[1]—0.205 336[1]
—0.205 390[1]
—0.205 445[1]—0.205 500[1]—0.205 556[1]
—0.205 611[1]
—0.205 667[ 1]

0.106915[0]
0.107 464[0)
0.108013[0]
0.108 561[0]
0.109 110[0]
0.109659[0]
0.110208[0]
0.110756[0]
0.111304[0]
0.111853[0]

0.109099[—2]
0.111086[—2]
0.113096[—2]
0.115 127[—2]
0.117 179[—2]
0.119254[ —2]
0.121 350[—2]
0.123 468[ —2]
0.125 608[ —2]
0.127 770[—2]
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tegrals as follows:

J=((ls), z(nl), &~(r&z) '~(ls), z(nl), &),

E=((ls), &(nl), &~(r&& j '~(nl), &(1s), z) .

(93) and

(94)

J(A, )=A./4 —2A. /(4+A. ) —
A, /4(4+A, )

K(A, ) =7k, /3(2+A, /2)

(99)

(100)

Thus we obtain the first-order approximation to the ener-

gy eigenvalue

E„l(A,)= (2—+A/2. n )+J(A) ,(2—A—)A/, n , +eK(A). ,

(95)

We wish now to apply the principle of the first kind of
balance to the helium atom and a root A.

' will be found
from

So substituting J and E into Eq. (98), we obtain

A,
—1 24k +240k +A, 7 10K, —A.+e— . -8 =0.

4(4+ A, ) 2+—
2

The numerical solutions of Eq. (101)are

A. =0.964622 a.u. , E= —2. 12239 a.u.

(101)

(102)

J(A, ) —(2—
A, )A, /n +eE(A, ) =0 . ( 6)

for e=+ and

Then the energy level is obtained

E„i(A,')= —(2+A, ' /2n ) (97)

A, =1.08803 a.u. , E= —2. 13065 a. u. (103)

for e= —.In the (ls)(3d) case, the explicit forms of
Coulombic integral and exchange integral are

The comparisons with standard Rayleigh-Schrodinger
perturbation theory for 1s2p terms are shown in Table I.

We now apply the principle of the second kind of bal-
ance to the helium atom. The condition of the second
kind of balance is

8
J(A, )= 3 A, +

81226 6 ' 7

2+— 2+
3 3

(104}

E«(A, )=(A, —2)/n + [J(A, )+eE(A, }]d

=0. (98}

and

(~)
8 27 1

81 16 5

8A,
~ 9 ~ (105)

Explicitly, we assume the helium atom is in the (Is2p)
state. The analytical forms of Coulombic integral and ex-
change integral are

2+—
3

Hence the equation of the second kind of balance is

d
&

A,
—2 8 27 1

dA, 9 81 16 5

56''
'9

2+
3

24k

2+—
3

' 10

82
36

81226

7k'
6+ 2A,

7

7
42K, 14K,

'7 ' 8 (106)

2+—
3

2+—
3

2+—
3

2+
3

The numerical solutions of Eq. (106) are

k=0.999 524 a.u. E= —2.055 55 a.u.

for c=+ and

A. =1.00085 a.u. E= —2.055 57 a.u.

(107)

(108)

and

bE=Eg'(A, ) E~(A,')=0, if A,
*=—

A,
' (109)

for e = —.It is convenient to solve Eqs. (96) and (98) nu-
rnerically. We have calculated energy levels and balance
parameter A, for P, D, F, and G terms. The results are
shown in Table II.

Remark 1. Let hE be the difference between the ener-
gies of the first and second kind of balance. Then

b E=E~ '(A, ' ) —E~(A, ') =0 [(A,
' —A, ') ] if A, 'AA, ', (110)

where EN '(I, ') and Ez(A') are ¹h-o,rder approximation
energies of the first and the second kind of balance, k is
the point of the first kind of balance, and A,

' is the point
of the second of kind of balance.

For Taylor's expansion series of EN(A, ') we find

E~(A, ') =E~(A,')+ E~(A, ')(A, ' —A, ')

2

+— Eg(A, ')(A, —
A, ') +

2 Qg2

and according to the conditions of the first and the
second kind of balance equations (11)and (12},we obtain
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E{ }(A, )=E (A, ')+ — E (A, ')(A, —
A, ') +1 z

N N 2 gg2 N

(112)

From this we conclude that the di5'erence hE is of the or-
der of (A,

' —
A,'), namely,

EE=0[(A' ,
—

A, ') ] if A, 'AA, ' (113)

and the proof of Eq. (109) is obvious.
Remark 2. We now discuss the convergence of a per-

turbation expansion series. It is a familiar problem [29]
to judge whether a perturbation expansion series is diver-
gent or convergent. We have seen that solutions of the

TABLE II. Energy eigenvalues (in a.u.) of P, D, F, and 6 states for infinite-mass helium nuclei.
(Negative signs are omitted for energies and the accuracy is estimated to be +1 in the last digit. )

State b
Emin Expt. '

Pekeris Cordes and
and co-workers Park et al. ' Altick'

2p 2.130 19
3p 2.057 21
4p 2.031 97
Sp 2.020 37
6p 2.014 11
7p 2.01034
8p 2.007 90
9p 2.006 24
3d 2.055 58
4d 2.031 27
5d 2.02000
6d 2.013 89
7d 2.01021
8d 2.007 82
9d 2.006 18
4f 2.031 25
5f 2.02000
6f 2.013 89
5g 2.02000
6g 2.013 89

2.13065
2.057 31
2.03200
2.020 38
2.014 11
2.01035
2.007 91
2.00624
2.055 57
2.031 27
2.02001
2.013 89
2.01021
2.007 82
2.006 18
2.031 25
2.02000
2.013 89
2.02000
2.013 89

2.133 18
2.058 10
2.032 35
2.020 57

2.055 655
2.031 31
2.02005

THp
1.020 547
1.014817
1.011 516
1.009 101
1.008 774
1.006402
1.005 858
1.005 344
1.000 181
1.000240
1.000000
1.000 187
1.000245
1.000 185
1.000 312
1.000001
0.999992
1.000025
0.999987
0.999997

let s=—
1.088
1.056
1.041
1.031
1.025
1.022
1.020
1.017
0.999
0.999
0.999
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.996
0.999

2.133 164
2.058 081
2.032 324

2.132931
2.057954
2.032 259

2p 2.122 30
3p 2.054 69
4p 2.030 89
Sp 2.01981
6p 2.01375
7p 2.010 13
8p 2.007 77
9p 2.006 14
3d 2.055 20
4d 2.031 25
Sd 2.02000
6d 2.013 89
7d 2.01020
Sd 2.007 81
9d 2.006 18
4f 2.031 25
5f 2.02000
6f 2.013 89
5g 2.020 00
6g 2.013 89

2.122 39
2.054 70
2.03090
2.01981
2.01378
2.010 14
2.007 77
2.006 14
2.055 55
2.031 25
2.02000
2.013 89
2.01021
2.007 81
2.006 18
2.031 25
2.02000
2.013 89
2.02000
2.013 89

2.123 85
2.055 16
2.03109
2.01993
2.013 86
2.01020

2.055 642
2.031 30
2.02004
2.01392
2.01024

Singlet s=+
0.989 153 0.965
0.992 211 0.975
0.994 257 0.980
0.995 168 0.983
0.995085 0.985
0.996 565 0.987
0.997064 0.990
0.997 588 0.991
0.996 803 1.000
1.00000 1.000
0.999249 1.000
1.000040 1.000
0.999 878 1.000
1.000032 1.000
1.000 175 1.000
1.000011 1.000
0.999987 1.000
1.000025 1.000
0.999987 1.000
0.999997 1.000

2.123 843
2.055 146
2.031069

2.121460
2.054055
2.030 575

2.123 656
2.055056
2.030 84

'The first kind of balance.
'The second kind of balance.
'Reference [9].
sReferences [11—13].
'Reference [10].
Reference [14].
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TABLE III. The numerical values of energies (in a.u. ) obtained from Eqs. (117), (19), (21), and (116).

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

—0.52000
—0.54000
—0.56000
—0.58000
—0.60000
—0.62000
—0.64000
—0.66000
—0.68000
—0.70000

—0.520 62
—0.542 53
—0.565 87
—0.590 74
—0.61728
—0.645 66
—0.67604
—0.708 62
—0.743 61
—0.781 25

—0.520 83
—0.543 48
—0.568 18
—0.595 24
—0.625 00
—0.657 89
—0.69444
—0.735 29
—0.781 25
—0.833 33

Z=1, n=1, /=O
—0.521 06
—0.544 51
—0.570 85
—0.600 74
—0.625 08
—0.675 17
—0.722 90
—0.781 25
—0.855 32
—0.954 91

0.980 58
0.962 25
0.944 91
0.928 48
0.912 87
0.898 03
0.883 88
0.870 39
0.857 49
0.845 15

0.98000
0.96000
0.94000
0.92000
0.90000
0.88000
0.86000
0.84000
0.82000
0.80000

0.979 80
0.959 17
0.938 08
0.91652
0.89443
0.871 78
0.848 53
0.824 62
0.80000
0.774 60

0.979 58
0.958 26
0.935 89
0.912 31
0.887 30
0.860 56
0.831 66
0.80000
0.764 58
0.723 61

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

—0.127 50
—0.13000
—0.132 50
—0.13500
—0.137 50
—0.14000
—0.142 50
—0.145 00
—0.147 50
—0.15000

—0.127 54
—0.130 15
—0.132 85
—0.135 63
—0.138 50
—0.141 47
—0.144 53
—0.147 68
—0.15095
—0.154 32

Z=1
—0.127 55
—0.13021
—0.132 98
—0.135 87
—0.138 89
—0.142 05
—0.145 35
—0.148 81
—0.152 44
—0.15625

, n=2, /=0
—0.127 59
—0.13039
—0.13342
—0.13673
—0.140 37
—0.14444
—0.149 03
—0.154 32
—0.160 58
—0.168 30

1.980 30
1.961 16
1.942 57
1.924 50
1.906 93
1.889 82
1.873 17
1.856 95
1.841 15
1.825 74

1.98000
1.96000
1.94000
1.92000
1.90000
1.88000
1.86000
1.84000
1.82000
1.80000

1.979 90
1.959 59
1.93907
1.918 33
1.897 37
1.876 17
1.854 72
1.833 03
1.81108
1.788 85

1.979 58
1.958 26
1.935 89
1.912 31
1.887 30
1.860 56
1.831 66
1.80000
1.764 58
1.723 61

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

—0.125 83
—0.126 67
—0.127 50
—0.128 33
—0.129 17
—0.13000
—0.13083
—0.131 67
—0.132 50
—0.133 33

—0.125 84
—0.126 68
—0.127 54
—0.128 40
—0.129 27
—0.130 15
—0.13104
—0.13194
—0.132 85
—0.13377

Z=1
—0.125 84
—0.126 69
—0.127 55
—0.128 42
—0.129 31
—0.13021
—0.131 12
—0.13204
—0.132 98
—0.13393

, n=2, /=1
—0.125 84
—0.126 69
—0.127 56
—0.128 43
—0.129 32
—0.13023
—0.131 14
—0.13208
—0.13302
—0.13398

1.993 37
1.986 80
1.980 30
1.973 86
1.967 48
1.961 16
1.954 91
1.948 71
1.942 57
1.93649

1.993 33
1.986 67
1.98000
1.973 33
1.966 67
1.96000
1.953 33
1.946 67
1.94000
1.933 33

1.993 32
1.969 62
1.979 90
1.973 15
1.966 38
1.959 59
1.952 78
1.945 94
1.93907
1.932 18

1.993 32
1.986 61
1.979 86
1.973 09
1.966 29
1.959 45
1.952 58
1.945 68
1.938 75
1.931 78

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

—0.056 30
—0.057 04
—0.057 78
—0.058 52
—0.059 26
—0.06000
—0.060 74
—0.061 48
—0.062 22
—0.062 96

—0.056 30
—0.057 07
—0.057 85
—0.058 64
—0.059 45
—0.06028
—0.061 13
—0.061 99
—0.062 87
—0.063 78

Z=1
—0.056 31
—0.057 08
—0.057 87
—0.058 69
—0.059 52
—0.060 39
—0.061 27
—0.062 19
—0.063 13
—0.064 10

, n=3, l=0
—0.056 32
—0.057 13
—0.058 01
—0.058 95
—0.059 98
—0.061 10
—0.062 36
—0.063 78
—0.065 42
—0.067 40

2.980 20
2.960 78
2.941 74
2.923 06
2.904 74
2.886 75
2.869 10
2.851 76
2.834 73
2.818 01

2.98000
2.96000
2.94000
2.92000
2.90000
2.88000
2.86000
2.84000
2.82000
2.80000

2.979 93
2.959 73
2.939 39
2.91890
2.898 28
2.877 50
2.856 57
2.835 49
2.814 25
2.792 85

2.979 58
2.958 26
2.935 89
2.912 31
2.887 30
2.860 56
2.831 66
2.80000
2.764 58
2.723 61

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

—O.OSS 80
—0.05605
—0.056 30
—0.056 54
—0.056 79
—0.057 04
—0.057 28
—0.057 53
—0.057 78
—0.058 02

—O.OSS 80
—0.05605
—0.056 30
—0.056 56
—0.056 81
—0.057 07
—O.OS7 33
—0.057 58
—0.057 85
—0.058 11

Z
—O.OSS 80
—0.05605
—0.056 31
—0.056 56
—0.056 82
—0.057 08
—O.OS7 34
—0.057 60
—0.057 87
—0.058 14

1, n=3, /=1
—0.055 80
—0.05605
—O.OS6 31
—0.056 57
—0.056 83
—0.057 09
—0.057 3S
—0.057 62
—0.057 90
—0.058 17

2.993 36
2.986 75
2.98020
2.973 68
2.967 21
2.960 78
2.954 39
2.948 05
2.941 74
2.935 48

2.993 33
2.986 67
2.98000
2.973 33
2.966 67
2.96000
2.9S3 33
2.946 67
2.94000
2.933 33

2.993 33
2.986 64
2.979 93
2.973 21
2.96648
2.959 73
2.952 96
2.946 18
2.939 39
2.932 58

2.993 32
2.986 61
2.979 86
2.973 09
2.96629
2.959 45
2.952 S8
2.945 68
2.938 75
2.931 78
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TABLE III. (Continued. )

Eb Ec Ed n' nb n' n'

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

—0.055 70
—0.055 85
—0.05600
—0.056 15
—0.056 30
—0.05644
—0.056 59
—0.056 74
—0.056 89
—0.057 04

—0.055 70
—0.055 85
—0.05600
—0.056 15
—0.056 30
—0.05646
—0.056 61
—0.056 76
—0.056 91
—0.057 07

Z=1, n =3, 1=2
—0.055 70 —0.055 70
—0.055 85 —0.055 85
—0.056 00 —0.056 00
—0.056 15 —0.056 15
—0.056 31 —0.056 31
—0.056 46 —0.056 46
—0.056 61 —0.056 61
—0.056 77 —0.056 77
—0.056 92 —0.056 92
—0.057 08 —0.057 08

2.99601
2.992 03
2.988 07
2.984 13
2.98020
2.976 28
2.972 39
2.968 50
2.964 64
2.96078

2.99600
2.992 00
2.988 00
2.98400
2.98000
2.97600
2.972 00
2.968 00
2.96400
2.96000

2.99600
2.991 99
2.987 98
2.983 96
2.979 93
2.975 90
2.971 87
2.967 83
2.963 78
2.959 73

2.99600
2.991 99
2.987 97
2.983 95
2.979 92
2.975 88
2.971 84
2.967 79
2.963 74
2.959 67

'The standard Rayleigh-Schrodinger perturbation expansion.
The first kind of balance perturbation expansion.

'The second kind of balance perturbation expansion.
The exact solutions.

first and the second kind of balance are immediately con-
vergent to the exact solutions in many of the examples
shown above. In some of the examples, although they are
not immediately convergent to the exact solutions, they
converge faster than the standard Rayleigh-Schrodinger
perturbation expansion. Such an example is a hydrogen-
like atom with the initial perturbation potential Eq. (16)

H'= —5lr

To omit repeating steps shown previously, we start from
Eq. (25)

and

'+2
(119)

To compare the convergence of the first and the second
kind of balance perturbation expansion series and the
standard Rayleigh-Schrondinger perturbation expansion
series, we compute the numerical values of energies Eqs.
(117), (19), (21), and (116). Comparisons are made in
Table III by obtaining numerical values of the parameters
Z, 5, n, and I. From Table III it is easy to conclude that

1(l+ I ) —25 = l(l + 1)+(2l + 1)b l+ (b l ) V. &Vb&V, , (120)

This will lead to a quadratic equation

x +(2l+1)x+25=0 .

Therefore the root is

(114)

EN= Z l2n'—, n'=n+b, l . (116)

Also it is easy to obtain solutions for standard Rayleigh-
Schrodinger perturbation

—(21 + 1)+[(2I+ 1) —85]'~
2

The value thus obtained can be put into Eq. (26} and the
exact energy is

where the V„V&, and V, are the speeds of convergence
of three kinds of perturbation expansions.

We also can see that energies of the first and the second
kind of balance both have the character of perturbation
theory: As a particle goes to a high orbit, energies will be
closer to exact energies.

Remark 3. It is obvious that the energies of the first
and the second kind of balance will tend toward exact en-
ergies as a particle goes to high orbits. Clearly this is a
character of perturbation theory. Thus the difference of
balance parameters A,

' and A,
' will tend toward zero for

high orbits. For example, b,A, , the difference of balance
parameter A,

' and A.
' in Eq. (19) and (21), is

E„&=(nlH~nl )

Z + (nl ~H'~nl )
2n

Z' 5Z'
2n n (I+ ')
Z

2)i
(117)

Z5

[n(l+ —,')—25] 1— 5
n(l+ —,')

where hA, =A,
*—A.',

Z(l + —,
'

)

I+—,
' —5/n

(121)

(122)

where
l+ —,

'

I+—,'+25/n

1/2

(118)

Z( I +—,
'

)

I +—' 25
1l

(123}
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and if n approaches infinity, then

lim AA, =O . (124)

[
—

—,
] b, ]

—
—,
] b ~

—1,]/r] —
A ~/r~

+1/r]z —(Z —A])Ir, —(Z —Az)/rz]

X %(r, A. „Az)=E(A,„Az)%(r, A,„lz), (125)

III. THE STRUCTURE OF THE HELIUM ATOM
AND HELIUMLIKE IONS:

APPLICATIONS OF THE PRINCIPLE
OF THE SECOND KIND OF BALANCE

A. The potential mell of the helium atom
and heliumlike ions (Z —

A,z)A, q

71 2

E(A,],iz) =—

where A, , and A,2 are structure parameters of the helium
atom and heliumlike ions, A,

&
is the effective nuclear

charge for an inner-shell electron, and A, 2 is the effective
nuclear charge for an outer-shell electron.

The energy with two parameters in first-order pertur-
bation approximation is for non-s terms:

(Z —
A, ])A, ]+

2' 27) ll

To apply the principle of the second kind of balance,
let us assume that the extended Schrodinger equation for
the helium atom and heliumlike ions is

+J(A] Az)+ek(A] A~)

and for s terms

(126)

E(A.],A~) =— + +
2' 27$

(Z —
A, ] )A, ] (Z —

A, z)A, ~ +J+s[E (2Z A] A~)Loess Jzs ]
n, ll 2

1+&Ss's
(127)

where we assumed that one electron is fixed in the S state.
Integrals Jss(A] A,z} and Jzz(A, „A,z) are defined as fol-
lows:

Sss(A], A~)= y]P]', „,(r, A], A~)]P] „,(r, i],A~)r dr dn,

(128)

Jz]t(X],Az) = J %'z „,(r, &],&z)%']„„,(r, &],Az)rdr d Q,
(129)

and the Coulomb integral

J(A] iLz)=((nl), z (n'!'), ], ~(l/r )~](znl), z (n'!'), z )

(130)
and the exchange integral

I].'(A, „Az)=((nl), z(n'l'), z ~(1/r]z)~(n'I')z](n!), z ) .

We can minimize the energy E(A, „A,z} on parameter A,z

numerically by a computer procedure also,

E;„(A,])=min[E(A, „A,z)] .

Potential wells are defined by

m„„](X])=E,„(X])

(135)

(136)

and so they can be obtained by either an analytical or a
numerical procedure.

We have calculated these potential wells Eq. (136) nu-
merically for ls2p, ls3d, ls2s, ls3s, and 2s2p. Results
are tabulated in Table IV.

Remark. Two balance positions exist for the 1s2s trip-
let state. One is E= —2.037 43, k& =0.66000, and
X2=2.095 94, and the other is E= —2. 166 64, A,

&
=2.000,

and A,2=1.5553. More detailed calculations show that
jurnp points exist for S terms. We list them below.

(131) Term A, ] (a.u.} E ;„ (a.u. )

and

E(A,„A~)=0a

2

(132)

We can minimized the energy E(A, ],Az) on parameter
A, 2 analytically. That is, we solve the equations 1s2s 0.118 14, 0. 118 15

1s3s 0.023 933, 0.023 934

—0.640 877, —0.260 184
—0.247906, —0.583064

1s2s 0.022 56, 0.022 57 —0.521 727, —0. 185 257
1s3s 0.052 1374, 0.052 137 5 —0.26971, —0.252048

Then

E;„(A]}=E(A,„A~}~
2
—

2

where A,z is a root of Eq. (132).

(133}

(134)

Except for the above jump points, the potential curves
are continuous.

B. The structure of the helium atom
and heliumlike ions

As is well known, the effective nuclear charges plays an
important role in the structure of atoms. Applying the
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TABLE IV. E;„()(,, ) (in a.u.) calculated from Eq. (135).
of ten.

Numbers in square brackets denote powers

0.2
1.2
2.2
3.2

E;„(A,i)

—0.680 765[0]
—0.179796[1]
—0.210 292[1]
—0.140424[1]

E;„(A,i+0.2)

—0.877 322[0]
—0.193 955[1]—0.204 333[1]—0.114436[1]

E,„(A,, +0.4)

1s2p c=+
—0.113516[1]
—0.204076[1]
—0.194364[1]
—0.844 463 [0]

E;„(A,&+0.6)

—0.139396[1]
—0.210 169[1]
—0.180389[1]
—0.504 545[0]

E,„(A,, +0.8)

—0.161 598[1]
—0.212 239[1]—0.162408[1]
—0.124 612[0]

0.2
1.2
2.2
3.2

0.2
1.2
2.2
3.2

0.2
1.2
2.2
3.2

—0.723 621[0]
—0.183041[1]
—0.210922[1]
—0.140629[1]

—0.451 865[0]
—0.173 547[1]
—0.203 555[1]—0.133555[1]

—0.475 097[0]
—0.173 572[1]
—0.203 557[1]
—0.133 556[1]

—0.988 563[0]—0.196 147[1]
—0.204 822[1]
—0.114606[1]

—0.774 705[0]
—0.187 551[1]
—0.197555[1]
—0.107 555[1]

—0.784 372[0]
—0.187 564[1]
—0.197 556[1]
—0.107 556[1]

1s2p e=—
—0.124213[1]
—0.205 611[1]
—0.194750[1]
—0.845 878[0]

1$3d 6=+
—0.107492[1]
—0.197 553[1]
—0.187555[1]
—0.775 555[0]

1s3d c=—
—0.107793[1]
—0.197560[1]
—0.187 558[1]
—0.775 557[0]

—0.146 855[1]—0.211 279[1]
—0.180698[1]
—0.505 734[0]

—0.133 524[1]
—0.203 554[ 1]—0.173 555[1]
—0.435 555[0]

—0.133 639[1]
—0.203 558[1]
—0.173 556[1]
—0.435 556[0]

—0.166 526[1]
—0.213 065[1]—0.162 659[1]
—0.125 619[0]

—0.155 540[1]
—0.205 555[1]
—0.155 555[1]
—0.555 553[—1]

—0.155 590[1]
—0.205 557[1]
—0.155 556[1]
—0.555 561[—1]

0.2
1.2
2.2
3.2

—0.430 297[0]
—0.184760[1]—0.215 365[1]—0.148 399[1]

—0.811 158[0]—0.198965[1]
—0.209 824[1]—0.123 147[1]

1s2s e=+
—0.114281[1]
—0.208 912[1]
—0.200 380[1]
—0.939 194[0]

—0.142 562[1]
—0.214 889[1]
—0.187005[1]
—0.607 126[0]

—0.166020[1]
—0.217039[1]—0.169683[1]
—0.235 235[0]

0.2
1.2
2.2
3.2

—0.128 074[1]—0.197962[1]
—0.214611[1]
—0.133787[1]

—0.187431[1]—0.203 120[1]—0.208 610[1]
—0.107 700[1]

1s2s c=—
—0.203 384[ 1]—0.209 932[1]
—0.198 579[1]
—0.776 525[0]

—0.201 458[1]—0.214 941[1]
—0.184481[1]
—0.436 272[0]

—0.197604[1]
—0.216 662[1]
—0.166294[1]
—0.561 612[—1]

0.2
1.2
2.2
3.2

—0.441 608[0]
—0.174712[1]
—0.204950[1]
—0.135 828[1]

—0.794 342[0]—0.188 808[ 1]—0.199081[1]
—0.110043[1]

1$3$ E, =+
—0.107025[1]
—0.198 814[1]
—0.189242[ —1]—0.802 642[0]

—0.133 889[1]
—0.204 815[1]
—0.175 424[1]
—0.464 889[0]

—0.156431[1]
—0.206 858[1]
—0.157 621[1]
—0.871 125[—1]

0.2
1.2
2.2
3.2

—0.620 117[0]
—0.175 937[1]—0.204 298[1]—0.133422[1]

—0.885 052[0]
—0.189 105[1]
—0.198 203[1]
—0.107 104[1]

1s3s c=—
—O. ill 817[1]
—0.198 668[1]
—0.188076[1]
—0.767 349[0]

—0.137 804[1]
—0.204475[1]
—0.173905[1]
—0.423 132[0]

—0.159001[1]
—0.206 377[1]
—0.155 684[1]
—0.310 131[—1]

0.2
1.2
2.2
3.2

0.2
1.2
2.2
3.2

—0.545 344[0)
—0.678 606[0]
—0.610250[0]—0.434 190[0]

—0.549 882[0]—0.717 844[0]—0.730439[0]
—0.508 000[0]

—0.587 874[0]
—0.674 381[0]—0.592 900[0]
—0.369 913[0]

—0.596 129[0]—0.737 066[0]—0.705 089[0]—0.435 191[0]

2$2p 8=+
—0.626 866[0]
—0.662 528[0]—0.567 578[0]—0.295 628[0]

2$2p E, =—
—0.633 782[0]—0.748 963[0]
—0.670096[0]—0.353 094[0]

—0.656 059[0]
—0.645 474[0]—0.532 907[0]
—0.211 314[0]

—0.665 337[0]—0.752 204[0]—0.625 528[0]
—0.261 738[0]

—0.673 084[0]
—0.626441[0]—0.488 497[0]—0.116963[0]

—0.693 332[0]—0.746 121[0]—0.571 469[0]
—0.161 126[0]
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principle of the second kind of balance to the first-order
perturbation energy Eqs. (126) and (127), we can deter-
mine these balance parameters k, and A,2 numerically.
We can predict the structure parameters and energy lev-
els for nuclear charges Z and configurations n, l, m and
obtain good agreement with experiment. However, A, , =2
and X2=1 are no longer obvious.

Explicitly we first investigate the simplest cases of the
helium atom in the configurations of (ls)(2p) and
(ls)(3d). From Eq. (126) we obtain the first-order ap-
proximation to the energy eigenvalue from the extended
perturbation theory:

+ +J(A, ]„k„])
2 271

ance, the associated equations are

a
E„](A,„,A,„])=0,

ls
(138)

nl

(139)

At 2p
J(A,„,A~ )=

and

(2A, „+A,~ ) 4(2A, „+A,~~ )

(140)

In the (Is)(2p) case, the analytical forms of J(A, ], A,z ) and
K(A, » A, zz} are as follows:

~nl )~nl—(2—
A, „)k„—

+sk(A, ]„A,„]) . (137)

E(A.„,A2 )=
24

A, ],+
(141)

According to the principle of the second kind of bal-
I

So we obtain the explicit form of Eqs. (138}and (139)

2+

—12p

4

A, 2q 10k,],A,q 7 3A, ],A, 2q 7A, ],i,2q

(2A, ],+A2 ) (2A, ]5+A,2 ) (A, ], +A2 ~2) (A, ], +A~ ~2)

(2A,„+A~ ) (2A,„+A2 ) 4(2A, „+A, 2~) (2A,„+A.~
)' 24

=0, (142)

5X]5A,p

+ A.2p
ls

7

7A ]g k2

A2p
2 Als+

. 8
=0 . (143)

The numerical solutions of Eqs. (142) and (143) are TABLE V. Non-S term single excited states (in a.u.).

82
J(A,„,A,3~)= ~ 3 A,3g—

81226
3d
7

3~1s~3d
7

A3d
~ls +

(144)

A, „=2.003 024 3 a.u. ,

Ar2p 0.964 730 a.u.

E= —2. 12239 a.u.

for c.=+ and

A, l, =1.991 186 a.u. ,

A,2p
=1.089 15 a.u. ,

E= —2. 13069 a.u.

for c= —.
In the other simple case (ls)(3d), the analytical forms

for J and K are as follows:

1s2p
1s3p
1s4p
1s5p
1s6p
1s7p
1s3d
1s4d
1s5d
1s6d
1s7d

1s2p
1s3p
1s4p
1s5p
1s6p
1s7p
1s3d
1s4d
1s5d

2.0032
2.0000
2.0000
2.0000
2.0000
2.0000
1.9988
2.0000
2.0000
2.0000
2.0000

1.9915
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000

Singlet c=+
0.9650
0.9750
0.9875
0.9900
0.9900
0.9900
1.0000
1.0000
1.0000
1.0000
1.0000

Triplet c=—
1.0875
1.0560
1.0410
1.0312
1.0250
1.0220
1.0000
1.0000
1.0000

Emirt

2.122 39
2.054 70
2.030 90
2.01981
2.013 78
2.010 14
2.055 55
2.031 25
2.02000
2.013 89
2.01021

2.13069
2.057 31
2.03200
2.020 38
2.014 11
2.01035
2.055 57
2.031 27
2.02001

Expt."

2.123 86
2.055 16
2.031 09
2.01993
2.013 86
2.01020
2.055 64
2.031 30
2.02004
2.01392
2.01024

2.133 18
2.058 10
2.032 35
2.020 57

2.055 655
2.031 31
2.02005

and
'This work
Reference [9].
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TABLE VI. S-term single excited states (in a.u.). A compar-
ison with these theroetical predictions suggests that the experi-
mental data of the triplet and singlet in the S terms are reversed.
Can it be possible~

TABLE VIII. S-terms double excited states (in a.u.). A,
&

and

A,z are the effective nuclear charges for inner-shell and outer-

shell electrons, respectively.

Emin

1s2s
1s3s
1s4s
1s5s
1s6s
1s7s

1s2s
1s3s
1s4s
ls5s
1s6s
1s7s

2.0128
2.0031
2.0025
2.0013
2.0000
2.0000

1.9925
1.9956
1.9963
1.9975
2.0000
2.0000

a

Singlet c=+
0.92S6
0.9243
0.9406
0.9406
0.9SOO

0.9547

Triplet c=—
1.5500
1.3925
1.2938
1.2359
1.1938
1.1750

Emin

2.17047
2.068 59
2.03666
2.022 73
2.01546
2.011 19

2.16664
2.063 78
2.033 90
2.02108
2.01442
2.01049

Expt b

2.145 980
2.061 291
2.033 607
2.021 200
2.014589
2.010653

2.175241
2.068 709
2.036 537
2.022 64

2$ 3$
2s4s
2s5s
2s6s
2$7$

2$3$
2s4s
2$55
2s6s
2$7$

Singlet e.=+
1.9800 1.1156
1.9925 1.0781
1.9950 1.0594
2.0041 1.0S63
2.0000 1.0500

Triplet e.=—
1.9900 1.6484
1.9900 1.4813
1.9950 1.3859
1.9950 1.3121
2.0000 1.2500

0.584998
0.543 306
0.526058
O.S17357
0.512 379

0.582 870
0.539921
0.523 691
0.515 773
0.511 278

'This work.
bReference [9].

8
A, ],—2+

81226

3A 3d

A, 3dx„+

21k,],A, 3d
-7 + . . 8

3d
A, ],+

8 271
I].(A,„,A, 3d ) =

812 16 5

~]s~3d

A 3d
1s

9 ~ (145) 8 271
81 16 5

3A ]gA3d

~3d
A, ],+

9A.],A,3d

~3d
A, ],+

. 10 =o

Similarly, the associated equation is

TABLE VII. Non-S-terms double excited states (in a.u.). k&

and A,~ are the effective nuclear charges for inner-shell and
outer-shell electrons, respectively.

Emin

iL —2 28
81226

7Ã3d

A3d
A, ],+

~ 6 +
2A 3d

+1s

(146)

7

2$2p
2$3p
2s4p
2s5p
2s6p
2$ 7p
2$3d
2s4d
2s5d
2s6d
2$7d

Singlet c=+
1.2066 1.9931
1.9200 1.3500
1.9725 1.2250
1.9900 1.1750
1.9950 1.1375
1.9937 1.1094
2.0025 0.9750
2.0000 0.9875
2.0000 1.0000
2.0000 1.0000
2.0000 1.0000

0.678 611
0.562 284
0.533 740
0.521 176
0.514 540
0.510605
0.554 746
0.530 894
0.519 816
0.513785
0.510 141

8 271
812 16 5

211„X'3d
, 7+

A 3d
A,„+

7A ]g A 3d

iL3d
A, ]g +

'9

7A ]gA 3d

3d
A,„+

3~1s~3d
'10

3d
A, ],+

(147)

2$2p
2$3p
2s4p
2ssp
2s6p
2$7p
2$3d
2s4d
2$5d
2s6d
2$7d

Triplet
1.7704
1.9800
1.9925
1.9950
1.9975
2.0025
1.9750
1.9900
1.9950
1.9950
1.9975

1.6969
1.2250
1.1500
1.1000
1.1000
1.1000
1.1000
1.1015
1.0781
1.0000
1.0000

0.752 302
0.573 943
0.538 087
0.523 301
0.515 746
0.511 360
0.558 649
0.532 695
0.520 748
0.514 324
0.510478

We determine the roots and the corresponding energy E
numerically from the above equations:

A,„=2.000021 81 a.u. ,

A, 3d =0.999 524 a.u. ,

E=—2.055 55 a.u.

for e.=+ and
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A,„=1.99996 a.u. ,

Ar3d 1.000 85 a.u. ,

E= —2.055 57 a.u.

for a= —.
The structures of the helium atom and heliumlike ions

has been investigated numerically for some interesting
cases. The results are shown in Table V for non-S terms,
in Table VI for S terms in single excited states in Table
VII for non-S terms, and in Table VIII for S terms in
double excited states. We also have tabulated the results

of calculations for heliumlike ions in 2s2p and 1s2s states
in Tables IX and X. Negative signs are omitted for ener-
gies and the accuracy is estimated to be +1 in last digit.
The results are for an infinite mass heliumlike nucleus.

IV. THE STRUCTURE OF THE LITHIUM ATOM:
APPLICATIONS OF THE PRINCIPLE
OF THE SECOND KIND OF BALANCE

A. The potential well of the lithium atom

Let us assume that the extended Schrodinger equation
for the lithium atom is

TABLE IX. Energy levels (in a.u. ) of heliumlike ions for 2s2p.

4
5
6
7
8
9

10
11
12
13
14
15

1.2066

2.2575

3.3110
4.3838
5.5000
6.3800
7.3900
8.4000
9.4000

10.4100
11.4100
12.4100
13.4100
14.4200

a

1.9931

2.9562

3.9125
4.8681
5.8250
6.8575
7.8475
8.8450
9.8375

10.8375
11.8325
12.8250
13.8250
14.825

Emin

Singlet c=+
0.678 61

1.730 35

3.285 64
5.342 45
7.900 1

10.958 2
14.5164
18.574 7
23.133 1

28.191 5

33.749 9
39.808 4
46.366 9
53.425 4

Projected"

0.692 54

1.757 01

3.318 89
5.379 58
7.939 62

10.999 27
14.558 67
18.618 64
23.176 97

Expt.

0.693 71+0.000 55'
0.692 94+0.000 37d

1.756 5+0.00 2'
1.756+0.001

4
5

6
7
8
9

10
11
12
13
14
15

'This work.
Reference [1].

'Reference [2].
Reference [3].

'Reference [4].
Reference [5].
IReference [6].
"Reference [7].
'Reference [5].
'Reference [8].

1.7704

2.7686

3.900
4.7800
5.7800
6.7800
7.7800
8.7800
9.7800

10.7800
11.7800
12.7800
13.7800
14.7800

1.6969

2.6999

3.6900
4.7000
5.7025
6.7025
7.7025
8.7025
9.7050

10.7025
11.7050
12.7050
13.7025
14.7050

Triplet c=—
0.752 30

1.869 47

3.485 15
5.603 83
8.221 01

11.338 2
14.955 4
19.072 6
23.689 8
28.806 9
34.424 1

40.543 1

47.158 5

54.275 7

0.761 471

1.879 384

3.496 955
5.614 376
8.231 723

11.349 027
14.966 302
19.083 526
23.700 775

0.760520.0011g.
0.7609+0.0011"
1.877+0.001'
1.881+0.02'
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2
3
4
5
6
7
8
9

10

Singlet c,=+
2.013 0.925
3.030 1.679
4.030 2.463
5.040 3.264
6.040 4.088
7.040 4.928
8.040 5.778
9.050 6.625

10.050 7.498

2.17047
5.090 61
9.25707

14.670 7
21.332 3
29.242 1

38.400 5

48.807 8
60.464 1

TABLE X. Energy levels (in a.u. ) of heliumlike ions for 1s2s.

(efE[e&=&efHfe& .

After the summation of spins, we obtain [15]

J f f dr, d~,dr)( ((u) (2u) (3u) —u(1)u(2)u(3))

(150}

X(H E)u—(1)u(2)v(3) =0 . (151)

where u (1) is a wave function for the ground state, v (1)
is a wave function for an excited state, and a(1) and P(1)
are spin wave functions corresponding to kfi/2, respec-
tively.

The first-order perturbation approximation to the ex-
pectation value of the energy is

2
3
4
5
6
7
8
9

10

Triplet
1.993
3.000
4.010
5.010
6.010
7.020
8.020
9.020

10.020

1.555
2.570
3.580
4.584
5.587
6.589
7.588
8.593
9.593

2.16664
5.102 58
9.289 13

14.725 9
21.412 8
29.349 7
38.536 8
48.973 8
60.660 8

We have defined the notation

E= i~ 72 T3u lu 2v 3Hu lu 2v 3

(152)

8= f f fdr, dr 12rv3(1)u(2)u(3)Hu(1)u(2)v(3),

(153)

—-''|I') —-'V2 —-'V3 — — — + + + 1
1 g 2 2 3

P) I'2 P3 P]2 P]3 F23

Sss= fd~, (v1) (ul) . (154)

Finally, the Srst-order perturbation approximation to the
energy of the lithium atom is

=E(A,„A,z)%'(r, A, „A,z), (148)

where A,
&

is effective nuclear charge for the inner-shell
electrons and A,2 is the effective nuclear charge for an
outer-shell electron. We apply the principle of the
second kind of balance to the above equation and the an-
tisymmetrical wave function is

EE=
2ss

For non-s terms

2(3—
A, , )A, i

E(A, „A,2) =— + +J(A,„A,, )—
n) 2n2 n&

(155)

u(1)a(1) u(2)a(2) u(3)a(3)
1

6
u(1)P(1) u(2)P(2) u(3)P(3)
v(1)a(1) v(2)a(2) v(3)a(3)

(149)

(3—A,z)A, q
+2J(A, i, A,2) —k(A, i, }1,2)

n2

and for s terms

(156)

2(3—
A, , )A, ,

E(A,„Az)= — + + J(A, (,}(,, )—
n 2n n)

(3—
A, q)A2

+2J(A, „A2)
n2

(3 A &)}(&&ss+(6 ~1 ~2)~ss~zR +
2 2~ss Y(~lu~2) +(~lu~2) (1 ~ss) ~

n&

(157)

where we assumed that two electrons are fixed in the S
state and Y(A,&A,2) is an integral which is deSned by

(158)

cedures

Em;„(A&}=min[E(A&,3(2)) . (159)

We minimize the energy E(A, &, A, z) and the potential
well which depends on A, , is obtained by numerical pro-

We have calculated these potential wells Eq. (159) numer-
icaHy for (ls) 2p, (ls) 3d, and (2s) 2p. Results are shown
in Table XI.
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TABLE XI. E;„ll,, ) (in a.u. ) calculated from Eq. (159). Numbers in square brackets denote powers
of ten.

1.6
2.1

2.6
3.1

E;„(k,)

—0.618019[1]
—0.700 863[1]—0.734 305[1]
—0.717921[1]

E;„(A., +0.1}

—0.638 486[1]
—0.711 526[1]
—0.735 020[1]—0.708 654[1]

E;„(A., +0.2)

(1s) 2p—0.657020[1]
—0.720 205 [1]—0.733 739[1]
—0.697 389[1]

E.,„(X,+O. 3)

—0.673 602[1]
—0.726 896[1]
—0.730 463 [1]—0.6S4 126[1]

E;„(A,(+0.4}

—0.688 219[1]
—0.731 597[1]
—0.725 191[1]—0.668 864[1]

1.6
2.1

2.6
3.1

—0.609 561[1]
—0.693 307[1]
—0.727056[1]
—0.710806[1]

—0.630 310[1]
—0.704 057[1]
—0.727 806[1]
—0.701 556[1]

(1s) 3d
—0.649 059[1j—0.712 807[1]
—0.726 556[1]
—0.690 306[1]

—0.665 808[1]
—0.719 556[ 1]—0.723 306[1]
—0.677 056[1]

—0.680 557[1]
—0.724 306[1j—0.718056[1]
—0.661 806[1]

1.6
2.1

2.6
3.1

—0.205 776[1]
—0.215 780[1]
—0.216 055 [1 ]—0.205 736[1]

—0.208 503[1]
—0.216 648[1]
—0.214 858[1]
—0.202 359[1]

(2$) 2p—0.210 875[1]
—0.217 117[1]
—0.213 230[1]—0.198 541[1]

—0.212 884[1]
—0.217 179[1]
—0.211 170[1]
—0.194279[1]

—0.214 522[1]—0.216 827[1]
—0.208 672[1]
—0.189 573[1]

TABLE XII. Non-S-term single excited states (in a.u. ) Numbers in square brackets denote powers
of ten.

Term

(1s) 2p
(ls)'3p
(15) 4p
(ls) Sp
(ls) 6p
(1s) 7p
(1s) 3d
(1$) 4d
( ls) 5d
(1s) 6d
( ls) 7d
11s)'4f

'Present paper.
~Reference [9].

2.6863
2.6863
2.6875
2.6875
2.6850
2.6888
2.6850
2.6850
2.6850
2.6850
2.6875
2.6850

1.0500
1.0500
1.0500
1.0500
1.0188
1.0344
1.0031
1.0031
1.0031
0.9953
1.0031
1.0031

Emin

7.350 39
7.279 11
7.254 32
7.242 86
7.236 66
7.232 95
7.278 21
7.253 91
7.242 65
7.236 54
7.232 87
7.253 90

Theoretical
ionization potential

0.127 73[0]
0.564 54[ —1]
0.31664[ —1]
0.202 04[ —1]
0.140 04[ —1]
0.102 94[—1]
0.555 55[—1]
0.312 54[ —1]
0.19994[ —1]
0.138 84[ —1]
0.102 14[—I ]
0.31244[ —1]

Expt b

0.13025[0]
0.572 40[ —1]
0.31981[—1 j
0.203 88[ —1]
0.141 27[ —1]

0.556 13[—1]
0.312 79[—1]
0.200 05 [—1]
0.138 85[ —1]

0.31247[ —1 j

TABLE XIII. S-term single excited states (in a.u.).

Term

(1s) 2s
( ls) 3s
(1s) 4s
(1s) 5s
(1s) 6$

'Present paper.
Reference [9].

2.6800
2.6900
2.6850
2.6850
2.6863

1.8688
1.5650
1.3969
1.2875
1.2500

Exnin

7.393 60
7.283 02
7.254 37
7.242 44
7.236 29

Theoretical
ionization potential

0.17094[0]
0.603 64[ —1]
0.317 14[—1]
0.197 S4[ —1]
0.13634[—1]

Expt b

0.198 17[0]
0.741 92[—1]
0.386 25[ —1]
0.23642[ —1]
0.15949[—1]
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TABLE XIV. Non-S-term triple excited states (in a.u.). TABLE XV. S-term triple excited states (in a.u.).

Terra A2' Emin

Theoretical
ionization potential Term E a

Theoretical
ionization potential

(2s)22p
(2s) 3p
(2s) 4p
(2s)~5p
(2s)~3d
(2s) 4d
(2s)25d
(2s)~6d
(2s}~4f
(2s}~5f
(2s}~6f
(2s)25h
(2s)~6h

2.3800
2.6725
2.6900
2.6950
2.6950
2.6950
2.6975
2.6975
2.7000
2.7000
2.7000
2.7000
2.7000

2.4763
1.5000
1.3078
1.2250
1.0500
1.0485
1.0406
1.0250
0.9937
0.9937
1.0094
0.9937
0.9937

2.172 04
1.903 68
1.862 16
1.845 89
1.878 17
1.853 34
1.841 79
1.835 55
1.852 70
1.84145
1.835 34
1.841 44
1.835 33

0.350 59[0]
0.822 35[—1]
0.407 15[—1]
0.24445[ —1]
0.567 24[ —1]
0.31895[—1]
0.203 45[ —1]
0.14105[—1]
0.31254[ —1]
0.20005[—1]
0.138 95[—1]
0.19995[—1]
0.138 85[—1]

'Present paper.
bReference [19].

S. The structure of the lithium atom

V,p= —(3—
—,', } E;„— (160)

and for (2s) (nl )

Applying the principle of the second kind of balance to
the first-order perturbation energy Eqs. (156) and (157),
we can determine these balance parameters A, , and A,2 nu-

merically. The structure of the lithium atoms has been
investigated for a few cases. The theoretical predictions
of balance parameters and energies are tabulated in Table
XII for non-S terms, in Table XIII for S terms in single
excited states, in Table XIV for non-S terms, and in
Table XV for S terms in triple excited states. Negative
signs are omitted for energies and the accuracy is estimat-
ed to be kl in the last digit. These results are for an
infinite-mass lithium nucleus and where the theoretical
values of the ionization potential V&p, which are defined
for (ls} (nl)

(2s) 3s
(2s) 4s
(2s) 5s

2.6825 2.1000 1.917 17
2.6887 1.8000 1.863 49
2.6975 1.3000 1.845 88

0.957 25[ —1]
0.42045[ —1]
0.244 35[—1]

'Present paper.
bReference [9].

V. DISCUSSION AND CONCLUSIONS
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In the present paper extended Hamiltonians which
contained structure parameters are provided in a
varying-parameters method for simple atomic systems.
Although we merely add and subtract appropriate pa-
rameters terms in a standard Hamiltonian, we show that
this can lead to interesting physical results.

We apply principles of the first and the second kind of
balance to these extended Hamiltonians, which permit
structure parameters to be determined as balance param-
eters. Balance principles indicate that a quantum system
will tend to a new balance position under the in6uence of
a perturbation Hamiltonian through varying-balance pa-
rameters. Thus balance parameters can imply the essen-
tial properties of a quantum system. Physically, if a
quantum system is acted upon by a perturbing potential,
this quantum system is essentially changing its structure
parameters until new balance positions are reached.

In this work, most of calculations have been performed
numerically. The programs which have been developed
by the author are universal for a, F,b, G, and associ-
ated integrals [16], such as J, K, Sss, Sza, etc. , and are
available for n or n'& 12, and reasonable values of z and
z'. These programs also have been verified by comparing
with individual analytical calculations. The numerical
relative error is less than 10 for a configuration of
z, n, l, rn and z', n', I', rn'

All numerical calculations have been performed on a
personal computer with software written by the author.

V,p= —(3—
—,",, )z/4 E,„, —
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