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Geometric phase and sequential measurements in quantum mechanics
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A rule is proposed to calculate the geometric phase accumulating in the course of a sequential mea-

surement process. This rule is based on the assumptions of a sequential conditioning and a geodesic hy-

pothesis. The dependence of this phase on the type of the applied measurements is explicated.

PACS number(s): 03.65.Bz

I. INTRODUC110N

In their seminal paper [1] Samuel and Bhandari have
put forward the idea that the geometric phase arising in a
cyclic sequence of measurements is a physically meaning-
ful quantity that can be measured. Hence, one is faced
with the problem of a theoretical calculation of this
phase.

The first step in solving this problem is the observation
that the change of the phase of a state vector in a se-
quence of measurements can be divided into a sum of two
contributions: a phase due to the Hamiltonian evolution
of the measured system during the time intervals between
the measurements and the phase due exclusively to the
measurement acts. If we suppose that the dynamical
phase can be calculated separately, we can forget it in the
sequel and focus our analysis only on the second one.

Samuel and Bhandari have determined the geometric
phase generated during the sequence of measurements in
the particular case of the von Neumann-Luders
schematization of a measurement process. There are,
however, both physical needs [2] and mathematical argu-
ments [2,3] to go beyond that scheme. Therefore, it is the
aim of this paper to give a more general rule for the cal-
culation of geometric phase (in the measurement context)
which applies to arbitrary measurements, and which
gives, as a particular case, the one of Samuel and Bhan-
dari [1].

One further point has to be clarified: when the problem
of the accumulation of a phase in a course of a cyclic se-
quence of measurements is brought on the basis of the
quantum theory of measurement, it becomes clear that
this theory does not lead in itself to a determination of a
phase. Some further assumptions are necessary. In their
paper Samuel and Bhandari have implicitly used a
strengthening for vector states of the von Neumann pro-
jection postulate [cf. items (1) and (2) of Sec. III], which
cannot be used in a more general setting.

The strategy we have used in our paper is the follow-
ing. First of all, there is the assumption of sequential con-
ditioning, that is, the assumption that after each individu-
al measurement a result is registered. This rather com-
mon assumption gives us a sequence of states from the in-
itial to the final state of the system. However, such a se-
quence of states does not yet determine the accumulation

of a phase. A rule has to be posed to connect the inter-
mediate states with each other. We apply a geodesic hy
pothesis which claims that the intermediate states are
connected to each other along the geodesic lines of the
projective space of the pure states of the system. These
two rules, the sequential conditioning and the geodesic
hypothesis, allow one to attach a geometric phase to any
cyclic sequential measurement process.

The theory of sequential measurements is an important
part of the quantum theory of measurement, in particu-
lar, since it gives measurement dependent predictions.
The possibility of performing sequential measurements
would therefore open also the possibility for an experi-
mental study of geometric phase. Some experimental re-
sults on this topic are already available in the literature
[4,5]. However, these investigations deal with photons in
a semiclassical state, a fact which may cause some addi-
tional interpretational problems. It would therefore be
important to have such measurements done also with in-
dividual objects, either photons or massive particles.

II. SEQUENTIAL MEASUREMENTS

Let A be a discrete observable, with the eigenvalues a;
and the eigenprojections P, , and let (y," ), ,&, be an ortho-
normal basis of eigenvectors of A:

A =pa, P, =+a; gP[q;, ] . (2.1)

Clearly, p~(ak ) depends only on the state P[tp] and not
on its vector representative y.

In the frame of the quantum theory of measurement a
(minimal) measurement of A consists of a (nondegen-
erate) pointer observable Ast=ga, P[4;] [(4;);&, an
orthonormal basis of the Hilbert space %st of the
"pointer states" [6], a;~a, ], an initial state P[4] of the
measuring apparatus, and a unitary mapping (measure-
ment coupling),

U:q&8 @~U(y 4), (2.3)

The probability that a measurement of A leads to a result
ak if the system is prepared in the state P [tp] is

(2.2)
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satisfying the probability reproducibility condition

p (ak ) & U(q e @)llP[C' ]U(((('3 +) & (2.4)

for all k =1,2, . . . and for all initial states P[(p] of the
measured system [3,7]. It can be shown [7] that any uni-
tary operator U satisfying (2.4) acts on the vector (p;J.(3)4
as

U(y, ,N)@)=P,, (3 4, , (2.5)

where g;J=g „&(I() „4;~U((I(), l(8)4)&(p „.Conversely,
given any set of unit vectors (P; ); »C% which fulfill
the orthogonality conditions & P;~ ~ P;~ &

=
51J for all

i =1,2, . . . and dim ([q),zan] )=dim([g;~84;) ), the
action (2.5) can be extended to a unitary operator U, on
the Hilbert space %(8AM, satisfying (2.4). In view of
these results we say that (2.5) defines the measurement
coupling U.

For any unit vector q we then have

ing separately [7,8]:
(a) (g;i);J&( is an orthonormal set. This choice leads

exactly to the so-called strong state correlation measure-
ments, i.e., to measurements which provide strong corre-
lations between the final component states P[csk] and

P[yk] of the measuring apparatus and the measured sys-
tern.

(b) (g;J. );J» is an orthonormal set of eigenvectors of
This choice is characteristic for the strong value

correlation measurements of A. Such measurements lead
to strong correlations between the eigenprojections
P[4k] and P), (and thus of the eigenvalues ak and ak ) of
the pointer observable AM and the measured observable
A.

(c) Finally, the choice Q,J =(p;~ corresponds to a von
Neumann- t.uders measurement of A.

In general, a measurement of the observable A on the
system in the state P[y) induces a change of the state:

P[el g p, (a;)P[r;)

~P [y„], (2.9)

(2.6)

where

r;:=g &e;, lV &0;, &V'p, (a;)

U- U' U'((pcs) =e' U((p4) V(p . (2.7)

[whenever p (a; )40; otherwise we put y; =0].
At this stage an important fact has to be stressed. The

defining condition (2.4) of the mapping U shows, in fact,
that we have to consider as equivalent different operators
U for which the Snal state of the compound system
P [U((p4)], and thus also the final states of the system
and the apparatus, are the same, that is,

where g,p (a, )P[y; ] is the state of the system after the
measurement on the condition that the measurement has
been performed (with no further assumption), whereas

P[y k ] is the final state of the system on the condition
that the pointer observable A~ assumes the value ak [9].

Henceforth, we shall restrict ourselves to consider A

measurements with de6nite outcomes so that the induced
state changes are of the form

P[q ] P[rk 1 (2.10)

where, to emphasize, the final state P[yk] of the system
depends on the pointer value ak but also on the type of
the involved A measurement, that is, on the applied mea-
surement coupling U.

Consider now a (finite) sequence of measurements of
the observables

The physically relevant results must then be invariant
with respect to the transformation

g (s) y a(s)P(s) (2.11)

U~U'=e' U . (2.g)

There are three, increasingly restrictive choices of the
measurement coupling U, or, respectively, the U-

generating sets of unit vectors (g;. ); &, worth mention-

on the system initially in the state P[y). Omitting the
temporal description of the system, the probability that a
sequential measurement of the observables
A ', . . . , A '"' leads to an outcome sequence (ak",

1

(2& (~)ak, . . . , ak ) is
2 n

Tr[2" ' ' ((ak"', . . . , ak(") ))P[(I()]]=Tr[S" ( [ak"') )o . o 2" ( [ak" ) )P[(p]]

(
(1)

)
(1) (a(2) ). . . (n —i)(a(n) )p~ ak p& ak -.

p~ a
I n —1

&
'" "IP'"'y'" "&

n —I n
(2.12)

g(l). . . g(n&
where 2 '

is the instrument defined by the
sequential A'" . A'"' measurement consisting of the
fixed A "measurements with the associated instruments

g (s)
[10,11]. The sequential measurement result

P[r'"')
which, due to

(2.13)

I

(ak", . . . , ak"' ) is accompanied with the state change
I n
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gA ~ A "((a(1) a(n) })P[q)]

([a„'"'])o . o 2" ( [a„'"] )P[q)], (2.14}

and the geometric phase developed during the cyclic evo-
lution from to to t& is given by

can formally be decomposed as

(2.15)

where S is a surface in P(&) that has the curve 8 as its
boundary and co is the "geometric phase 2-form" [12]
given by

A( '=a' 'P[q)]+a( '(I —P[q)]) (2.16)

choosing a U( '-generating set (g;, ); i &, such that
g(1

) =q). The cyclic state change

P [y]~P [(p] (2.17)

is then associated with the outcome sequence
(ak", . . . , ak"', a'+' },the probability of which being

1 n

p~(ak ')p ())(ak ') p (.)(a+ )
1 n

This sequence of state changes is, however, not given by
the above sequential A"'. . . A'"' measurement with the
result (ak", . . . , ak"'} but it is subject to a further as-

1 n

sumption, namely the sequential conditioning. This is
the assumption that after each involved A" measure-
ment the conditioning with respect to the pointer value

ak is obtained. In other words, the sequential state
S

change (2.15) is obtained in the course of the sequential
A'" . A'"' measurement if after each A" measure-
ment the outcome ak is registered. It is to be em-

S

phasized that in both cases (intermediate conditioning or
not} the probability to obtain the outcome sequence
(ak", . . . , ak"') as well as the final (conditional) state

P[rk"'] of the system are the same; they do not depend

on the type of conditioning, whether obtained stepwisely
or only terminal. To obtain also the intermediate states
P [rk'] requires, however, intermediate conditionings.

S

For the interest of this paper we close the above mea-
surement sequence with a measurement of the simple ob-
servable

())p( ](X,Y):=i(ql)[X,Y]q)) .

To explain this formula, we recall a few things. The pro-
jective space P(%}of pure states is a difFerentiable mani-
fold and, at the same time, a subset of the vector space of
bounded operators on %. Hence, the elements of the
tangent space X, YC Tp( ](P(%))are bounded operators,
self-adjoint and traceless, and a 2-form on P(8) is a map
P[q)]~cop( ], where cop( ]

is an antisymmetric bilinear
function

ci)p( ]'.Tp[ ](P(gf ))X Tp( ](P(&})~C

In this way the standard theory of integration of p forms
on differentiable manifolds can be used to give meaning
to the integral f&to [13].

To use the above analogy, we have a fundamental
problem: the sequence (2.19) gives only the n+ I points
in P(&) and not any curve connecting these points.
However, the projective space of pure states has a natural
metric arising from the inner product of & [1]. This
metric allows one to define the notion of a geodesic line in
P(%).

We call geodesic hypothesis the assumption that the
n+1 points in the projective space of the pure states
have to be connected by geodesic lines. Explicitly, we
denote 9; the shortest geodesic cornecting the states
P [rk ] and P [r'k+' ], i runs from 0 to n, with the conven-

t i+1
tion that P[rk ]=P[q))=P[rk+']. [We recall that,

given two nonorthogonal elements P[q)] and P[g] in

P(%), there are two geodesic lines connecting them. ] We
let

g= Un g. (3.1)

(2.18)

With the assumption of sequential conditioning the state
change (2.17) decomposes to a cycle

(2.19)

In this way we have a simple closed curve 9, in the space
of pure states, that connects the states of the sequence
(2.19}. In analogy with the Hamiltonian evolution, we

propose that the geometric phase acquired during the
sequential measurement process (2.19) has to be comput-
ed as

III. GEODESIC HYPOTHESIS
r= J~, (3.2)

We shall study next the geometric phase arising in a
sequential A"' . A'"'A' ' measurement leading to a
state change (2.19).

We proceed in analogy with a Hamiltonian cyclic evo-
lution. In this case, the time evolution gives us a closed
path C in the projective space P(&):=[P[q)]l(p&&,
q)+0] of the pure states of the system. The curve 8 is
given by the map

[t„t,]at~P[q)(t)], P[(p(t, )]=P[q(t, }],

q):[0,1]~&, s~q)(s) (3.3)

be a map parametrizing a simple regular closed curve 9'

of unit vectors in %, such that its projection m ( 9} on

where S is a surface that has 9 as its boundary.
In order to calculate the phase I explicitly we need to

express it with a formula that uses only quantities defined
in the Hilbert space rather than in the projective space of
states.

Indeed, let
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P(%) is Q. Using the theorem of Stokes and the "pull-
back" theorem, one tnay show [14] that

I = f (v=i f q)(s) y(s) ds=:i f &old(p) .
d

0 ds g
(3.4)

This formula can be further explicated using the follow-
ing property, due to Samuel and Bhandari [1]: for any
nonorthogonal unit vectors y and P in % their phase
difference arg((pl/) is given by

arg&qllt)= i—f ((pldq), (3.5)
C

where the line integral is calculated along any simple
curve C of unit vectors in % connecting y and t}'j, whose
image n(C) in P(%) is the shortest geodesic line connect-
ing the pure states P[y] and P[f].

Using this result we have

I =t $ &q Idq & =l y f &q ldq &

J

arg( & q IPk"' . . Pk p& } (3.7)

This result coincides with those of Samuel and Bhandari
[1], Anandan and Aharonov [12], and Benedict and
Feher [15]. In their paper Samuel and Bhandari [1]have
defined the phase I „)vL using the following assumption: in
a von Neumann-Liiders measurement the vector y un-
dergoes the change

%~X &tk, lf')tk, =pkV (3.8)

so that in the total cyclic process (2.19) the vector y
changes as

longing to the eigenvalue ak'. Using (3.6) one obtains
1

that the phase associated to this sequence of states is
given by

a«—&~Ir",'&+ +arg&rk"'I~&

g(&f lr",'& &r'"„'It&)

=«g(&~I p[rk"„'] p[r'k", lie &)

Jn

—( +Ip(&). . . P(1)+ )+
n 1

(3.9)

The last equality makes it clear that the geometric phase
depends only on the states P[r(k'] and not on the vectors

(i)
Vk. '

l

The geodesic hypothesis deserves some further com-
ments:

(1) In the case of the von Neumann —Liiders measure-
ments, the vectors r k' are (modulo normalization}

l

(1)—p(1)
Vkl k,,

(i)—p(i) (i —1)
Vk, k, Vk,

where Pk is the eigenprojection of the observable A" be-
l

and the phase accumulated is given by (3.7).
(2) We stress that the change of a state vector p~p), y

is not contained in the (non-normalized} state transforma-
tion P[(p]~P[pky] associated with the von
Neumann —Liiders measurement. Formula (3.8) has been
extrapolated from the quantum theory of measurement,
but it is not a part of that theory.

(3) The definition of the phase of Samuel and Bhandari
[1] cannot be used in the general case. Indeed, the natu-
ral extension of (3.8) is

(3.10)

which in the cyclic process (2.19) would develop a phase

I "=arg g X &v'k" Im)&~'a", ,, IO'k", „)
Jl Jn

(3.11)

However, I' is not invariant under the phase transfor-
mations (2.8), rather it undergoes the change

I'~I'+ g d(i)a, ,

where a; is the phase factor of (2.8) for the ith step of the
measurement and d(i) is the dimension of Pk('&. This

l

fact leads us to consider I' as unphysical. Of course, in
the von Neumann —Luders scheme, the condition

y,. =Q,J forces a, to zero and so I' turns out to be in-

variant.
(4) In the case of the von Neumann —Liiders measure-

ments, the geodesic hypothesis and the assumption (3.8)

give rise to the same value of the accumulated geometric
phase. Nevertheless, they are quite difFerent because the
latter allows one to define a phase after each measure-
ment of the sequence, whereas the former considers the
geometric phase as a global property of the cyclic se-
quence of the measurements and not of the single state.
In fact, if the sequence is not cyclic one cannot define a
phase under the geodesic hypothesis.

(5) The sequential measurement process (2.19) is associ-
ated with the measurement result sequence (ak"',

1

ak ', . . . , ak"', a'+'). This outcome has the sequential
2 n

probability (2.18). The state change (2.19) may also be as-
sociated with a transition probability
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(3.12)

In general, the two probabilities (2.18} and (3.12) are
different. In other words, the probability for the process
(2.19}is not, in general, the same as the transition proba-
bility for this chain of state changes. In fact, assuming
that the two probabilities are always the same is
equivalent to the assumption that the involved A" mea-
surements are von Neumann-Luders ones. As already
noted above, in this case the geodesic hypothesis is
equivalent to the rule (3.9}of Samuel and Bhandari [1].

IV. CONCLUDING REMARKS

In this paper we have investigated the assumptions un-

der which a cyclic sequential measurement process gives

rise to a geometric phase. The first assumption is the
sequential conditioning: after each participating measure-
ment a result (pointer value} is obtained. The second as-

sumption, the geodesic hypothesis, says that the inter-
mediate states thus obtained are connected with each
other along the geodesic lines. The two assumptions al-

low one to attach a geometric phase to a cyclic sequential
measurement process. The resulting phase depends also
on the involved measurements, that is, on the applied
measurement couplings. An experimental determination
of the geometric phase in a cyclic sequential measure-
ment process would thus provide a test of the validity of
the geodesic hypothesis in the context of sequential mea-
surements. The possibility of an experimental determina-
tion of the geometric phase in sequential measurements is
anticipated in Ref. [1].
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