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Spectral modulation and squeezing at high-order neutron interferences
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A striking spectral-modulation effect has been observed by means of a proper postselection procedure
under conditions where the spatial shift of the wave trains greatly exceeds the coherence length of the
neutron beams traversing an interferometer. It is shown that Schrodinger-cat-like states are created by
the superposition of two coherent states generated in the interferometer. These entangled states exhibit,
under certain circumstances, characteristic squeezing phenomena, indicating a highly nonclassical
behavior. Analogies with optical experiments are discussed.

PACS number(s): 03.65.Bz, 42.50.Dv

I. INTRODUCTION

Various postselection measurements in neutron inter-
ferometry have shown that interference fringes can be re-
stored even in cases when the overall beam does not ex-
hibit any interference fringes due to spatial phase shifts
larger than the coherence length of the interfering beams
[1—3]. The coherence length in neutron optics is defined
as the inverse of the width of the momentum distribution.
The loss of interference fringes at high order indicates
that the simple picture which predicts interference only
when wave packets spatially overlap is untrue. Interfer-
ence actually occurs no matter how large the optical path
di6'erence may be. From classical optics it has been
known for many years that the coherence properties
manifest themselves in a spatial intensity variation for
phase shifts smaller than the coherence length and in a
spectral intensity variation for large phase shifts [4—9].
This phenomenon becomes more apparent for less mono-
chromatic beams and can cause overall spectral shifts
[10,11]and even squeezing phenomena [12,13].

The related phenomena for matter waves have been
discussed recently [14,15] and will be elucidated in more
detail in this paper. The experimental verification has
been performed with a perfect crystal interferometer.
Figure 1 depicts the general scheme of the measurements.
Due to the rather low intensity of any neutron source,
one deals with self-interference phenomena only.

II. GENERAL RELATIONS

The coherence function of stationarily overlapping
wave fields is defined by the autocorrelation function of
the overlapping wave functions (e.g. , [16]:

where three-dimensional wave packets have to be con-
sidered for the description of the wave fields:

'P(r)= f a(k)e'"'d k . (2)

5 represents the spatial shift of the overlapping wave
functions which can be controlled by a phase shifter in-

troduced into one of the coherent beams of the inter-
ferometer (Fig. 1). Very similar to classical optics, the
phase shift is given by the index of refraction n, the thick-
ness D of the phase shifter, and the orientation of its sur-
face s relative to the direction of the incident beam k:

(1—n)s

(k s)
(3)

where n depends on the wave length A, , the coherent
nucleus-neutron scattering length b, and the particle den-

sity N of the phase shifter n =1—(A. Nb, /2n) which

gives in the most simple case a longitudinal spatial shift
of 6=2trNb, D /k .

Standard quantum mechanics defines the momentum
distribution of the beam by

and, therefore, one gets the real part of the coherence
function as the Fourier transform of the momentum dis-
tribution:

Il (&)I" jg(k)e "d'k (5)

which simplifies for Gaussian momentum distributions:

g(k) ccexp[ —(k —ko) /25k ],
which characteristic widths 6k, to

(I"(ho)
~

= Q exp[ —(b, , 5k, )'/2] .
1 =X,P, z

(6)

The mean-square distance related to ~I (h)~ defines the
coherence length 6,' which is for Gaussian distribution
functions directly related to the minimum uncertainty re-
lation b, ', = 1/(25k, ).

The interference pattern behind the interferometer is

given by the wave functions originating from beam paths
I and II which are equal in amplitude and phase for the

1050-2947/94/49(5)/3196(5)/$06. 00 1994 The American Physical Society



319'749 S UEEZING AT HIGH-ORDER. . .SPECTRAL MODULATION AND SQ

MONOCHROMATOR

Bi PHASE
SHIFTER

He DETECTOR

SL IT

e DETECTOR

ANALYZED

C3 BEAM

FIG. 1. Scheme of the experi-
mental arrangement with a skew
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tion by a phase factor

exp[i(n —1)kD,s]=exp(i4 k.
and one gets for the individual plane wave components
an intensity

Io(r, k) = ~% (r, k)+Via'(r+4, k) ~2

ax ~a(k)~ (1+cos[4(k).k]~

han the coherence lengthshase shifts larger t an
F' 2. &4' =1 25k,. )]. This behavior is shown in ig.
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Gaussian packets it can be rewritten in t e or

and for the overall beam

I (4 ) 1+~F'(4 )~cos4 k (9)

ko
Io(k) ~exp[ —(k —ko)'/25k'] 1+cos go

where 40 represents the spatial phahase shift for the ko
of the acket. Equation (9) describes the in-

terference fringes when 60 is varie . e
'1shows that the interference fringes disappisa ear for spatia

(10)

where the mean phase shif
'

t is introduced
=I' -& ir). The surprising feature is that

e hase shifts where the
=Nb A,

I (k) becomes oscillatory for large p ase s i0
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interference fringes described by Eq. (9) disappear (see
Fig (2). This indicates that interference in phase space
has to be considered [20,21] rather than the simple wave-
function overlap criterion described by the coherence
function [Eq. (1)]. The second beam behind the inter-
ferometer (8), just shows the complementary modulation
(IH =lto~ i Io).

The amplitude function [22] of the packets arising
from beam paths I and II determines the spatial shape of
the packets behind the interferometer [Eqs. (2) and (8)]:

Io(x)=
~
4(x)+V(x +5) ~2

0=exp[ —x /25x ]+exp[ —(x+50)2/25x2]

+2exp[ —x /45x ]exp[ —(x+5, ) /45x ]cosmic,

which separates for large phase shifts into two peaks (Fig.
2). For Gaussian packets, 5x corresponds to the coher-
ence length b, and fulfills the minimum uncertainty rela-
tion 5x5k =

—,'. For an appropriately large displacement
(b, ))6, ), the related state can be interpreted as a super-
position state of two macroscopically distinguishable
states, that is, a stationary Schrodinger-cat-like state
[23,24], but here first for massive particles. These
states —separated in ordinary space and oscillating in
momentum space —seem to be notoriously fragile and
sensitive to dephasing effects [25—28]. First numerical
calculations have shown that slight variations of experi-
mental parameters (density, collimating slits, etc.) smear
out the momentum distribution at large phase shifts
much stronger than at low-order interferences [29]. This
indicates a forced transition to a statistical mixture at
high order or, equivalently, at large separations of the
wave-packet parts.

cose;cos8 ~
(2

sin(8;+8„)
where the positive sign corresponds to the parallel setting
and the negative sign to the antiparallel configuration.

Measurements of the wavelength spectrum were made
with a narrow mosaic silicon crystal which reflects in the
parallel position a very narrow band of neutrons only
(5k'/5k =0.05) causing an enhanced visibility at large
phase shifts (Fig. 3). The related coherence function
which corresponds to the amplitude (contrast} of the in-

terference pattern is shown in Fig. 4 [2]. This feature
shows that an interference pattern can be restored even
behind the interferometer by means of a proper postselec-
tion procedure. In this case the overall beam does not
show interference fringes anymore and the wave packets
originating from the two different beam paths do not
overlap.

The momentum distribution has been measured by
scanning the analyzer crystal through the Bragg position.
The related results are shown in Fig. 5 for different phase
shifts. These results clearly demonstrate that the predict-
ed spectral modulation [Eq. (10}] appears when the in-

terference fringes of the overall beam disappear. The
modulation is somehow smeared out due to averaging
processes across the beam due to various imperfections,
unavoidably existing in any experimental arrangement.
The contrast of the empty interferometer was 60%.

IV. DISCUSSION

The results clearly demonstrate that a spectral modula-
tion can be observed in neutron interference experiments
at high interference order and that interference has to be
treated in phase space rather than in ordinary space. It
seems that the plane-wave components of the wave pack-

III. EXPERIMENT FILTERED UNFILTERED

The experimental arrangement has been described in
more detail in a previous publication [2] and it is
schematically shown in Fig. 1. An additional mono-
chromatization is applied behind the interferometer by
means of various single crystals brought into Bragg posi-
tion. The measurements were performed at the Universi-
ty of Missouri Research Reactor (MURR) with a nomi-
nal wavelength of 3.0=2.36 A and a wavelength spread of
5A, =0.036 A, which is determined by the monochroma-
tor placed in front of the interferoxneter. The whole set-
up corresponds to a double-crystal arrangement between
the interferometer crystal (mosaic spread g; —+0, Bragg
angle 8;) and the additional analyzer crystal (mosaic
spread g, Bragg angle 8„).For Gaussian-shaped beams
and crystal reflectivities, the momentum distribution
behind the analyzer becomes changed according to (e.g. ,
[30])
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FIG. 3. Interference pattern of the overall beam

(5k/ko=0. 012) and the beam rejected from a nearly perfect
crystal analyzer in the antiparallel position (5k'/ko =0.0003).
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FIG. 4. Coherence function measured from the visibility of
the interference pattern for difFerent degrees of postselection of
momentum states: (a) direct beam measured without analyzer,
(b) pressed silicon analyzer, and (c) nearly perfect silicon
analyzer (see Fig. 3).

ets, i.e., narrow-bandwidth components, interact over a
much larger distance than the size of the packets. This
interaction guides neutrons of certain momentum bands
to the 0' or 0 beam, respectively. These phenomena
throw a new light on the discussion of Schrodinger-cat-
like situations in quantum mechanics and, therefore, on
the discussion about Einstein-Podolsky-Rosen (EPR) ex-
periments too [14,31—33]. Spatially separated packets
remain entangled in phase space and nonlocality appears
as a result of this entanglement. The analogy with opti-
cal experiments performed in the time-frequency domain
is striking [8]. An analog situation exists in neutron
spin-echo systems where multiple spin rotation plays a
role equivalent to that of high-order interferences as dis-
cussed here [34].

Each peak in the momentum distribution corresponds
to a different number of phase shifts experienced by the
neutrons of that wavelength band during its passage
through the interferometer. In that sense, the minimum
quantum unity of the incident wave packet becomes a
new quantity representing different quantum states with
distinguishable properties. This kind of labeling shows
that constructive interference is restricted to that wave-
length band only —a situation similar to that where new
states have been created due to lattice diffraction inside
the interferometer [35].

The new quantum states created behind the inter-
ferometer can be analyzed with regard to their uncertain-
ty properties. Analogies between a coherent-state
behavior and a free but coherently coupled particle
motion inside the interferometer have been addressed
previously [36]. In such cases, the dynamical conjugate
variables x and p minimize the uncertainty product with
identical uncertainties (Ax} =(b,k} =

—,
' (in dimension-

less units). Using Io(k) and Io(x) [Eqs. (10) and (11)] as
distribution functions we get in our case
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FIG. 5. Measured spectral modulation of the outgoing beam
and the residual interference pattern for different bismuth
phase-shifter thicknesses. The wavelength resolution of the

0
analyzer was 0.002 A. The integrated constrast is shown for
the deviated and for the forward beam; the spectral distribution
measurements relate to the forward beam only.
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((&k)'&=(k'& —(k&'=(&k)' 1—
2 —(hp/25x ) /2 —(ho/25x )

o cos 6pkp +e
25X —(bo/25x) /21+e ' cos Apkp

(14)

These relations are shown in Fig. 6, indicating that for
(hk ) a value below the coherent-state value can be
achieved, which in quantum optic terminology means
squeezing [12,37,38]. One emphasizes that a single
coherent state does not exhibit squeezing, but a state
created by superposition of two coherent states can ex-
hibit a considerable amount of squeezing. Thus, highly
nonclassical states can be made by the power of the
quantum-mechanical superposition principle.
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