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Lowest-order perturbative calculations of the electron-positron production probability in relativistic
heavy-ion collisions exceed unitarity bounds for the heaviest collision systems at extreme relativistic en-
ergies and sufficiently small impact parameters. Starting with the exponential representation of the
time-evolution operator in the Furry picture, we derive manifestly unitary and gauge-invariant expres-
sions for transition amplitudes and probabilities associated with the created electron-positron pairs by
employing the Magnus expansion to first order. The time-evolved ground state of the electron-positron
field around the heavy nuclei is expressed as a superposition of the unperturbed vacuum state and virtual

excitation modes consisting of electron-positron pairs.

PACS number(s): 12.20.Ds, 11.80.—m

I. INTRODUCTION

In recent years the process of electromagnetic produc-
tion of electron-positron pairs in fast peripheral collisions
of heavy ions became a subject of considerable theoretical
and experimental interest. The transverse components of
the electromagnetic fields associated with the moving
ions steadily increase with collision energy, giving rise to
sizable pair-production cross sections. Lepton-pair pro-
duction is a process of basic interest but one that also has
important practical implications in the design and opera-
tion of heavy-ion colliders. For example, the case of pair
production with the electron bound to one of the collid-
ing ions is a major limitation of the beam lifetime.

Most of the theoretical approaches to the electromag-
netic production of e *e ™ pairs are based on lowest-order
time-dependent perturbation theory [1-4] or on the
Fermi-Weizsacker-Williams method of virtual photons
[5-7]. For a review of the theoretical and experimental
status in this field, see, e.g., [8]. An important point was
recently addressed by Baur and Bertulani [3], namely,
that in almost central heavy-ion collisions, lowest-order
perturbative calculations violate unitarity bounds for
sufficiently high collision energies (E,;, >10° GeV/u),
i.e., the probability for single-pair creation exceeds unity.
This indicates the breakdown of lowest-order perturba-
tion theory and the possibility of multiple-pair produc-
tion. It was demonstrated by Baur [9], by employing the
sudden and quasiboson approximations and neglecting
rescattering effects, that the probability distribution of
creating N pairs in a single collision is described by a
Poisson distribution and that the average number of
created pairs is just equal to the value of the perturbative
single-pair creation probability in lowest order. Essen-
tially, the same result was independently derived by
Rhoades-Brown and Weneser [10] and by Best, Greiner,
and Soff [11].

The difficulties associated with the unitarity violation
in lowest-order perturbative calculations clearly necessi-
tate radically new theoretical treatments of this problem.
At moderate relativistic energies, nonperturbative calcu-
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lations based either on the direct solution of the time-
dependent Dirac equation on the lattice [12—-14] or on
the single-center coupled-channel formalism [15-17] in-
dicate that higher-order effects are of major importance
for the electromagnetic production of lepton pairs in rela-
tivistic heavy-ion collisions. While in the direct solution
of the Dirac equation convergence problems arise due to
the small lattice size [13], coupled-channel calculations
have been recently criticized [18] as being extremely
gauge dependent due to basis truncation. In spite of their
power in the realistic treatment of the collision dynamics,
these nonperturbative methods require extremely large
computation times and, due to limited computer storage,
at high energies one still has to rely on perturbative
methods.

The purpose of this work is to show how unitarity can
be restored by employing an alternative expansion of the
time-evolution operator associated with the system under
consideration, namely, the Magnus expansion [19]. The
structure of the Magnus expansion has been studied by
several authors [20-23], and in Refs. [24-30] various ap-
plications are presented. An application of the Magnus
expansion in first order to the problem of pair creation
with the electron bound to one of the colliding ions has
been performed in [16], based on a single-particle formu-
lation of the ionization process [30], in which only a sin-
gle bound state below the Fermi level and the positive-
energy continuum are taken into account. Moreover, due
to the use of distorted wave functions, such a treatment is
not invariant under local gauge transformations.

In the present paper we present a systematic treatment
of electron-positron pair production by external fields
within the Magnus approach. In particular, we include
the many-particle features of this process explicitly and
maintain local gauge invariance of the theory. The major
theoretical ingredients of our investigation are presented
in Sec. II, where our approximations are specified and an
analytic expression for the time-evolved ground state of
the electron-positron field is derived. The application of
this formula to the calculation of transition amplitudes is
presented in Sec. III. Section IV contains a summarizing
discussion and some concluding remarks.
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II. FORMULATION OF THE PROBLEM

The conventional perturbative series expansion ob-
tained by iterating the integral equation for the time-
evolution operator O(t) (we use natural units
fi=m=c=1),

Ow=1-i[' arB(n0r)
=T—lf: d‘rﬁl(‘r)
+(_l)2f_t de: dTlﬁI(T)ﬁI(Tl)+ ttt (1)

where H 1(7) represents the interaction Hamiltonian in
the interaction picture, has two practical disadvantages
associated with the truncation after a finite number of
terms. First, one obtains a manifestly nonunitary approx-
imation for U(¢) and second, the interaction strength has
to be small enough in order to obtain accurate results by
taking into account only a few terms. While the last
condition is well fulfilled in processes involving singly

d=—i[" drA;n),

A (—i)? T
O="Z=[" drf7 dnBy), 8],
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charged ions, the situation is fundamentally different in
collisions with fully stripped heavy ions since, due to the
presence of the large external charge —eZ, in such sys-
tems the effective coupling constant aZ approaches unity
(where a=e? is the fine-structure constant and we use
e <0).

By considering the differential equation for the time-
evolution operator 9,0 ()=H (8)U(¢), with the initial
condition O( t )=1 for t;— — o, Magnus started with an
exponential ansatz and obtained a representation of the
solution in the form

N

U(1)=exp{Q(1)} =exp , (2)

where the operator Q(¢) is anti-Hermitian (8'=—0)
and each term ﬁ,, in the infinite sum can be expressed in
terms of n-fold time integrals over (n —1)-fold nested
commutators of the interaction Hamiltonian A,(7):

—1 3 t T 7 A
Q3(t)=%f_ dr [T dr, [ ary{ (18,0, B )L A1+ [y (r), By (r)] A1)

Terms of higher order can be generated recursively
[21,31], but in some special cases the expansion actually
terminates after a few terms. The series {(¢) can be re-
garded as the continuous analog to the Baker-Campbell-
Hausdorff formula for discrete operators. An inspection
of Egs. (3) shows that terms with n >2 are sensitive to
correlations between the strength of the interaction at
different times, while in the term with n =1 only the total
time-integrated interaction strength enters. Clearly, for
time-independent perturbations, expansion (2) ends after
the first term, i.e., ﬁl is the exact solution. Therefore,
one can expect contributions from terms with n =2 to be
of minor importance in the case that the interaction de-
pends weakly on time. We also note that in the opposite
limit of infinitely short interaction times, terms with n > 2
vanish. A major advantage of the Magnus expansion (2)
is that it guarantees unitarity, independently of where the
series is truncated, and therefore conserves probability.
By employing the exponential representation (2) of the
time-evolution operator U(t), we investigate the elec-
tromagnetic production of electron-positron pairs in col-
lisions of fast and fully stripped heavy ions by making the
usual assumptions of (i) a coordinate system fixed on the
target nucleus (charge number Z;) which is at rest, (ii) an
unperturbed motion of the projectile nucleus (charge
number Zp) with constant velocity v=(0,0,v) along a
rectilinear trajectory parallel to the z axis at an impact
parameter b=(b,,b,,0), (ii) neglecting QED-radiative
corrections, and (iv) neglecting the fermionic current con-
tained in the Maxwell equations of motion, as it is much

f

smaller than the strong, external heavy-ion current,
which is regarded as classical. These simplifying assump-
tions decouple the Maxwell-Dirac field equations of
motion [13] and we have to deal with a classical, time-
dependent external source interacting with the electron-
positron field 121\(x). Here and in the following, the “hat”
symbol indicates second-quantized fields, while the argu-
ment x denotes space-time coordinates. The time-
dependent electromagnetic field associated with the mov-
ing projectile creates e "e ~ pairs in the strong Coulomb
field of the target nucleus by exciting electrons from the
negative-energy states below the Fermi energy Ep=—m
(this choice corresponds to a fully ionized atom) into
empty states above —m. The Lorentz transformation of
the Coulombic projectile potential from the projectile
into the target frame yields the Liénard-Wiechert poten-
tial [we use the metric g, =diag(1,—1,—1,—1)]

eZ
yr, 2(1,0,0,—B) , @

(P)(yy— _
A, (x)=

where B=v, y=(1—pB?)"1"2, and the lepton-projectile
distance, as seen in the projectile system, is denoted by

r'=1(x—b, )2+(y—by Y4+yHz—ut).

For a systematic iteration procedure it is convenient to
perform the investigation in the Furry (bound-state in-
teraction) picture with respect to the lepton-target in-
teraction; this corresponds to an expansion in terms of
the electric charge —e and not in the external charge
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—eZr [32]. In this representatlon the second-quantized
electron field operator 1/J(x) satisfies the time-dependent
Dirac equation in the presence of the strong external

Coulomb field of the target nucleus ALT)(x)=
—eZ(1,0)/r
{(r#[id,—ed D (x)]—m}P(x)=0, (5)

and its evolution in the static field is solved by an eigen-
function expansion,

dx)=3 b.g.re '+ 3 dlg, (e (6)

e>F p<F

with the help of a complete set of solutions of time-
dependent single-particle solutions of the Dirac equation:

{y“[iaﬂ—eALT)(x)]—m}q:e,p(x)=0 . 7

In Eq. (6) the first summation comprises all states above
the Fermi level (electron states) and the second incorpo-
rates all states below —m (positron states); E, and E, are
the energy eigenvalues of @,(r) and @,(r), respectively,
while b, and dJ are single-electron and single-positron
annihilation and creation operators, respectively, satisfy-
ing the same anticommutation relations for fermions as
in the free-field case:

(6,6} =1d,,d]} =8, , ®)
while all other combinations anticommute. The interac-
tion Hamiltonian ﬁ (¢) in Egs. (1) and (3) is expressed in
this specific approach as the space- -integrated product of
the fermion current in the Furry picture j}‘(x) and the
projectile potential 4|/ (x) which is, as stated before, a ¢
number:

n=[d’rjix)
=e [ drpx)ydix)

The adjoint lepton field is defined by J(x)={/l\f(x)y° and
the four-current operator is normal ordered as indicated
by the colons (creation operators stand to the left of an-
nihilation operators) such that the vacuum energy is sub-
stracted.

By inserting the eigenfunction expansion (6) in expres-
sion (9), one obtains an alternative representation for
A ;(t) in terms of the single-fermion creation and annihi-
lation operators, i.e.,

(P)
4,7 (x)

40 (x) 9)

/\/\

ﬁ zbszszj )+ 2 AT aXta (1) + (

=
—_—

— 3d}d Xap1) - (10)
a,B

Here, the minus sign in front of the last term on the
right-hand side stems from the normal ordering pro-
cedure, and latin (greek) indices 7,/,. . . («,B,...) denote
appropriate quantum numbers for electron (p081tron)
states. In a spherically symmetric basis, we have to deal
with a radial quantum number #, a total angular momen-
tum quantum number J, a magnetic quantum number u,
and parity [33]. The explicitly time-dependent functions
Xap(t) are transition-matrix elements between arbitrary

single-fermion states a and b in the external target poten-
tial

Ta(=e [ d’r g, (5,007 @, (r,0) AP (1,0)

a;
; (pb(r,t) s (11

1_
=——7/eZZPfd3r Pir,1)

where a=7"y, and we introduced the explicit represen-
tation of the projectile potential (4), while the four spi-
nors @,(x) and @,(x) are solutions of the time-dependent
Dirac equation (7). We now introduce the vacuum state
|0) at t— oo as the state of lowest energy in the external
field of the target nucleus such that the boundary be-
tween particle and antiparticle (hole) states is just the
Fermi energy Ez= —m [34]. This definition of the vacu-
um state is consistent with the Dirac sea picture in the
sense that the particle number operator has the eigenval-
ue O for states with energy E, above the Fermi energy
Ep, and the eigenvalue 1 for states with energy below E,
ie.,

56,10)=0 for E,>E, ,
5,6/10)=0 for E, <Ej , (12)
313n|0>=0 for E, > |Eg| ,

where we introduce positron (or “hole”) creation opera-
tors d, 4! for the electron annihilation operators b, of
negative-energy modes.

Under the action of the time-evolution operator O
defined in Eq. (2), the free vacuum state |0) evolves into
the perturbed ground state |0) at t — o according to

\o) , . a3

such that the exact amplitude for the vacuum state at
t——c to remain unchanged, i.e., the vacuum-to-
vacuum amplitude, is expressed as

[0) = lim O(z) ’o>= lim

t— t— o

exp

3,
n=1

(0]0) = lim <0|O07(1)0)

= lim <O
l—> 0

where the minus sign in the exponent stems from the
anti-Hermitian nature of the operators Q (¢) in the
Magnus expansion (3). It is instructive to remember that
the corresponding vacuum-to-vacuum amplitude, which
is obtained in a first-order calculation by truncating the
Dyson expansion (1) for O(t) after the second term, is
just unity independent of the interaction strength. This is
easily verified by employing the representation (10) for
A 1(¢) and making use of the action of the single-fermion
operators on the free ground state (12), which is normal-

ized to 1:
=(o|[i=i [~ arfn) | |o)

=(0l0)=1. (15)

o> , (14)

exp ‘-— > Q,()
n=1

(Ola)(!)

In order to obtain an explicit representation of the
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time-evolved state [0) from Eq. (13), we make the follow-
ing three approximations

(i) We consider only the first term ,(¢) in the Magnus
expansion (3), i.e., we neglect contributions from terms
with n 22 which, as we argued before, are associated
with the temporal extent of the interaction. This should
be a fairly good approximation for highly relativistic en-
ergies and impact parameters of the order of the electron
Compton wavelength, since in this case the duration of
the external perturbation, which is estimated to be of the
order t ~b /(yf), is much smaller than characteristic ex-
citation times T=2w/(E, +E,) of the unperturbed sys-
tem, such that time correlations are of minor importance.

(i) We ne lect rescattermg effects, i.e., all terms pro-
portional to b ; and d Bd « contained in the first and last
summations of the interaction Hamiltonian ﬁ (¢) from
Eq. (10), respectively, will be ignored.

(iii) We allow for only one particle and one hole in the
intermediate states, i.e., terms containing combinations of
single-fermion - operators describing the simultaneous
creation or annihilation of more than one ete ™ pair,
such as (bJréV\Jr )(b*dﬂ) or (b,da)(b dﬂ) will be set equal
to zero. This leads to a selective summation of diagrams.
In our case these are just electron-positron loops, or bub-
ble diagrams i.e., this assumption has essentially the same
physical content as the Tamm-Dancoff approximation
[35].

With these assumptions it becomes possible to sum the
interaction to all orders in the external charge —eZp.
We first define an electron-positron state |e e =) by the
action of the single-fermion operators on the Dirac vacu-
um:

lete™)=bld]l0) , (16)

such that with assumptions (i) and (ii) the transition am-
plitude for the creation of one electron-positron pair is
expressed by projecting the time-evolved ground state (1)
on the |e e ™) state (16) as

A,=(eTe[0)

=(o

where we introduced the two-fermion operators
6iL=3iT3 Z and 6 =d, b,, which create and annihilate
electron-positron palrs, respectively. The transition am-
plitudes x;, are represented with definition (11) as

0) ) (17)

0 CXp [Z[OIaXta_aiaX;‘ra] ]

iLa

Xia=—i [ dig10), (18)

and if one regards the functions ¢}L(x),
Vp(x)=ey°y“ALP)(x), and @,(x) in Eq. (11) as matrices
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depending on the continuous space-time variables, one
may write in a symbolic notation

Xoi=—i@LVp; =(i@lVE@*)* = (i@} Vpg)' = —xlo

(19

which reflects just the fact that the interaction is Hermi-
tian. This last relation also explains the presence of the
minus sign in the exponent of Eq. (17) which constitutes
the basic relation for the calculation of the single-pair ex-
citation amplitude 4,,

Now it is useful to analyze some properties of the pair
operators O,t, and O . Due to their fermionic character,
the single-lepton operators satisfy the obvious relations

~

bP=p?>=d"?=32=0 fori>F and a<F, (20)

which express the Pauli principle. As a consequence of
these relations, the pair operators satisfy

6,-];6]TB=O\MO\J~B=O ifi=jora=p. (21)

At this point we implement the third approximation (iii)
as stated earlier, namely, that only excitations consisting
of one particle and one hole contribute to the creation of
a single electron-positron pair. In other words, we as-
sume that relation (21) holds for all pair indices. Making
use of the anticommutation relations (8) and Egs. (12),
one easily finds

[Ojs, 6i1;1]=8ij8aﬂ—8aﬁgi b —8"3233 (22)

and

0,,10)=(0|0},=0 for i>F and a<F . (23)

In order to simplify the notation, we denote in the follow-
ing pairs of indices (i,a),(j,B),..., corresponding to
different e Te ™ pairs by 01,0, . ;, such that the approx-
imated time-evolution operator % which enters into the
amplitude (17) can be expressed as

U=exp 2‘,[00)(0 0,x}
=2 lz(Oaxa ax(,)‘"- 24)
n=0

As a direct consequence of considering only 1p-1h excita-
tions, i.e., Eq. (21) without restrictions, each term in ex-
pansxon (24) contalns solely combinations of the type
(0! 70,)and (0, O ), such that each created pair is sub-
sequently anmhllated etc. Consequently, different con-
tributions contained in the expansion (24) are of the form
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o1 _at Ty to ot
U == 2170,0,,X5Xs) 70,05 (X5 X515
7192
YEIN Y _ote ot t A AT A (J
U'=75 2 17050,,00,XXoXo)T0,05.0, (Xo Xo X5 )], (25)
719293
n even
A 1 . .
U=l s =0k 0, (X, )40, O ()]
Ot g,
n odd:
2(n 1 n— A A A A
Ui=h T O, 0L X )04, e 00 (G o )]

Now we are in a position to evaluate the action of the operator U on the Dirac vacuum |0). It is convenient to con-
sider terms with n even and r odd, separately. It follows with (24) and (25)

20y = i WMoY = s (42 - 4om+1Yj0) (26)
= m=0

n=0

for odd terms (n =2m +1)

frem+ gy = ()" ot ..ot
u 10) 2m +1)! 2 [0‘71 O”2m+1(X”1 Xalm+l)
LETREE Ty +1
_H T i
0‘71 02m+l(XUI X"zmu)]lO) ’
= (——)m T A “ e |
2m+1) 2 O”i 002m+lX01 X"zmq)lo> ’ 27)
Ip-- Toam +1

since the term represented in the second line of these relations vanishes due to Eq. (23). Expression (27) can be reduced
further if one employs the commutator relation (22) satisfied by the pair operators Oj, and O, :

/\T A AT . A A+ |
001[0"20‘73] [Of’zm U2m+l]|0>

_A'f' /\T A ATA At oA

—00'1[003002+80203_8a2a3bi3bi2_Sizilda3da2]

. /\T A _ ~F ~ _ At A
X [Oazm +10‘72m +8‘72m”2m+1 8a2ma2m J'Ibi2m+l Iam Famiom +1da2m+1d"2m ]iO)
—AT
—00180203...802”102'"*110) : (28)

Here we used the action of the single-fermion operators on the ground state, Eq. (12), with the result that contributions
from expressions contained in one of the m brackets are simply Kronecker symbols. This is, of course, a remarkable
simplification of expression (27), since we obtain for odd terms in (26)

2m +1) - o 9170293 92m%2m +1
| LA 2m +

(z\l(lm-i-l)'())zg_ 2 (/)\T b} RN} (Xa)'..X02m+|)‘O)
1

(—)"
(2m +1)

300x,10) {;lelz ]m : (29)

We emphasize that the summations over o and 7 comprise all electron-positron states, respectively. For even contribu-
tions U™ (n =2m) we obtain with Eqgs. (25) and (26)
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(2m)| ()} = bt ... b ..
w*)\0) 2m)! 3 05,0, (X
Opees Tom
_ (o ATy h At
- 2m) 2 (0"1 "2) (Oglm—loabn
""" 2m
=" ty ..
- 2m) 20 8"1‘72 °2m-x"2m(X"1X"2

(2m), [ElXTIZ]'"Im

where we employed, as before, the relations (22), (23), and
(28). By inserting results (29) and (30) into Eq. (26), the
action of the time-evolution operator on the free vacuum
state yields the final formula for the time-evolved ground

state [0):
S| o)
]o) . 31)

[0)= 2
In the last step we introduced the c-number quantities

ElX‘rlz =°°S\/E Xep, ’
T ep

amt | om +1)' 20°X“

(=) (= ]

u +v262x0
g

= Z 2m

(32)
Sian Xep
&p

0 (_)m ) .
\/Exepz

V= 2 om+

leflzl =

Expression (31) reflects just the fact that the time-evolved
vacuum state can be represented as a superposition of the
free vacuum state and virtual excitations consisting of
one electron and one positron.

III. TRANSITION AMPLITUDES

Returning to the problem of calculating transition am-
plitudes, this is now a rather simple task due to the com-
pact structure (31) of the time-evolved ground state.
First, we consider the vacuum-to-vacuum amplitude from
Eq. (14), which in our approach can be expressed as

)

=cosy /3 X > (33)
e’p

Aoy 10 =<0 u ""onep)(ep

where the free ground state is assumed to be normalized
to unity. Evidently, this result demonstrates that in our
approach the vacuum state is not stable under external
perturbations, in contrast to the perturbative evaluation
from Eq. (15). In addition, it is clear from (33) that the
probability for the ground state to remain unchanged
cannot exceed unity. To be more precise, we notice that,

xh, )0, 0L (L -y, 010D

9om

xS e X, )10)

X Xey, N0)

2m—1

(30)

in a proper normalization, the quantity 3, , | Xep |2
represents just the total probability for the creation of a
single electron-positron pair P‘P” as calculated in first-
order perturbation theory with respect to the lepton-
projectile interaction. Thus, the probability for the vacu-
um state to remain unchanged is just

P10>_,,0>=cos2\' P(PT) . (34)

Secondly, the amplitude A4,, (17) associated with the
creation of a single electron-positron pair out of the vacu-
um is easily written with Eq. (31) and the commutation
relation (22) as

Ay _jetem)

=<o

=0 3, 8eeBypXerp(010)
e ’p

O u+020ep)(ep

)

sing /STt
\/ 2 Xep

_ sinV PP
Xep VP(PT)

“Xep (35)

By summing the expression for | A4,,|* over all single-
fermion states, one obtains the total probability for the

creation of a single pair to be

Plo>a|e+e->=sin2\/2 X =sin?V PFD | (36)
ep

which, obviously, cannot exceed unity. We would like to
note that this expression is formally similar to results ob-
tained in the treatment of ionization [30] and charge-
transfer [36] processes, where the negative-energy contin-
uum is not taken into account.

Third, the total probability for the special case of pair
production with the electron bound to one of the collid-
ing ions, i.e., the so-called process of bound-free pair
creation, is obtained from (35) by summing the expression
for | A, |2 over the positron states as

sin? S Xep 2
P

P(bound free) — |Xe |2 e
ng ’ 2|Xep12
2‘/ (PT)
=3 Ixe,,lzﬂp—— 37

p<F P(PT)
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Finally, we note that from the explicit representation
of the single-fermion amplitudes, Egs. (11) and (18),

Xia=—ie [ d* 3, (x)ytex) 4P (x) (38)

which is invariant under local gauge transformations
[15,18], the expressions (34), (36), and (37) for the total
probability are also gauge invariant.

At this point we remark that our approach is not
directly applicable to multiple electron-positron pair pro-
duction, since all excitation amplitudes associated with
the creation of more than one pair are just zero in the
present formulation. This is, of course, the direct conse-
quence of neglecting virtual excitation modes consisting
of several electron-positron pairs. To be more precise,
for multiple-pair creation one must go beyond the
Tamm-Dancoff approximation by allowing for many
electron-positron pairs to be simultaneously excited in in-
termediate states as is, for example, the case in the
random-phase approximation to many-particle systems.

By assuming that the pair operators O, and OZ satisfy
the commutation relation defining the quasiboson ap-
proximation employed in Ref. [9], i.e.,

[0,,0] 1=5,, , (39)
the time-evolution operator U from Eq. (24) is factorized
as

U=exp{ 3b,d,x!, lexp{ 3b)d]x,, Jexp{ —LPPT} . (40)
&p

ep

Since this formula is similar to the expression used in Eq.
(8) of Ref. [9], it leads to the same expressions for
creation probabilities as in Refs. [9-11]. Of course, the
approximate equation (39) permits to allow for any num-
ber of pairs in intermediate states, which is reflected by
the appearance of additional terms of the type
(I1:210,, X ]’Ij>10j,j ) in the expansion of the exponen-
tial functions from Eq. (40). However, the error intro-
duced by neglecting interference effects between different
real or virtual pairs, i.e., by disregarding the fermionic
nature of the constituents, is difficult to estimate. We no-
tice that contributions of the type ([];> 16(,[ NI > 162}, )

describing the simultaneous excitation of several pairs
can be represented with the exact commutation relation
(22) as

0,,0}0! =010, 0! +(5,, —8,.bb

o3 010, CoyayiyT

=8, 404,105, @D
where the term with i =1 and j =2 was considered for
simplicity. The first contribution on the right-hand side
of this equation represents just an excitation of the 1p-1h
type, while the other terms are associated with the
creation of a single pair. In particular, the last two terms
with an extra minus sign describe the additional rescat-
tering of created pairs and are neglected in an approxi-
mation of the quasiboson type. Since the total probabili-
ty for the creation of any number of pairs is just unity, an
overestimation of total probabilities corresponding to
more than one pair leads to an underestimation of the to-
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tal probability for the creation of a single pair. If one in-
terprets the earlier result [9-11]

P(1 pair)=exp(—P'FD)

as a lower limit of the total single-pair probability, the
corresponding expression (36) obtained in this work is to
be regarded as an upper limit of the probability, since our
approach does not include the possibility of simultaneous
creation of several electron-positron pairs.

Concerning the probability for the creation of a specific
pair (e,p), i.e., the partial probability P,,, we obtain from
the amplitude (35)

.24/ p(PT)
_ 2 sin“V P
Pep_|Xepl P(PT) ’ (42)
where | )(epl2 represents the corresponding partial proba-

bility in first order. The factor sin?V/ P'FT)/PPT) takes
into account all possible single-particle transitions from
the negative-energy states below Ep=—m into empty
levels above the Fermi level incorporating the many-
particle features of the pair creation process. In particu-
lar, it includes the effect of the depopulation of the initial
negative-energy state caused by transitions to all final
states providing a renormalization of the lowest-order
perturbative probability |x,,|>. We would like to note
that the corresponding earlier formula [9-11] for the par-
tial probability associated with a particular pair (e,p),
ie.,

— 2 _ p(PT)
Pep‘"‘XepI exp( P ),

yields a lower value of the probability as compared to our
expression (42) for P*T) < 7% This feature is consistent
with the earlier interpretation of the single-pair probabili-
ties derived in the present work as upper bounds of the
exact probabilities.

The range of validity of the results obtained in the
present investigation cannot be given rigorously. Howev-
er, the presence of the factor sin®V'P'*" in the different
expressions for single-pair probabilities (36), (37), and (42)
indicates that for too large values of P'*” our approach
gives unphysical results. To be more specific, we note
that in the present investigation the single-%)air probabili-
ties are just zero in the case that sin?V' P'*T'=0, which is,
of course, not realistic for P‘*’#0. Consequently, for
P'PT'> 72 the present approach definitely breaks down.
In addition, due to the decrease of the total probability
(36) in the region 7*/4<PFD <72 it is to be expected
that for P'*7'> 72 /4 contributions associated with the
simultaneous excitation of several pairs become of impor-
tance. In this case one should go beyond the 1p-1h exci-
tations of the type included in the present investigation
by incorporating excitation modes consisting of many
particle-hole pairs in the formalism. In conclusion, we
regard the value PPD ~ 72 /4 as quantifying some limita-
tions of the present investigation.

IV. SUMMARY

We conclude the discussion by pointing out the main
results we obtained and the approximations we made in
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this investigation. Starting with the Magnus exponential
representation of the time-evolution operator in the Fur-
ry picture, we can sum up a restricted class of diagrams,
namely, those associated with electron-positron loops, to
infinite order in the external charge —eZ, by making
three basic assumptions: (a) We neglect correlations be-
tween the interaction strength at different times by taking
into account only the total interaction associated with the
first term of the Magnus expansion, (b) we neglect rescat-
tering effects, and (c) our treatment incorporates solely
virtual excitation modes of one particle and one hole of
the type encountered in the Tamm-Dancoff approxima-
tion to many-particle systems. With these approxima-
tions, the time-evolved ground state of the electron-
positron field around the nuclei is represented as a super-
position of excitation modes consisting of one electron

and one positron and the unperturbed vacuum state. We
also find that in our approach the vacuum state is unsta-
ble against external perturbations, in contrast to pertur-
bative calculations. Further, we derive expressions for
electron-positron transition amplitudes and production
probabilities, which are shown to be both manifestly uni-
tary and gauge invariant.

ACKNOWLEDGMENTS

It would like to thank Professor Jorg Eichler, who ini-
tiated this investigation, for his continuous interest and
many fruitful discussions. I am also indebted to Uwe
Wille for valuable discussions and for a critical reading of
the manuscript, and to Richard Heck for useful com-
ments.

[1] C. Bottcher and M. R. Strayer, Phys. Rev. D 39, 1330
(1989).

[2] U. Becker, N. Griin, and W. Scheid, J. Phys. B 19, 1347
(1986).

[3] G. Baur and C. A. Bertulani, Phys. Rep. 163, 299 (1986).

[4] D. C. Ionescu and J. Eichler, Phys. Rev. A 48, 1176
(1993).

[5] G. Soff, in Selected Topics in Nuclear Structure, Proceed-
ings of 18th Winter School, Bielsko-Biala, Poland, edited
by A. Balanda and Z. Stachura (Cracow, 1980), p. 201.

[6] P. B. Eby, Phys. Rev. A 43, 2258 (1991).

[7] G. Baur and C. A. Bertulani, Phys. Rev. C 35, 836 (1987).

[8] J. Eichler, Phys. Rep. 193, 167 (1990).

[9] G. Baur, Phys. Rev. A 42, 5736 (1990).

] M. J. Rhoades-Brown and J. Weneser, Phys. Rev. A 44,

330 (1991).

[11] C. Best, W. Greiner, and G. Soff, Phys. Rev. A 46, 261
(1992).

[12] M. R. Strayer, C. Bottcher, V. E. Oberacker, and A. S.
Umar, Phys. Rev. A 41, 1399 (1990).

[13]J. C. Wells, V. E. Oberacker, A. S. Umar, C. Bottcher, M.
R. Strayer, J.-S. Wu, and G. Plunien, Phys. Rev. A 45,
6296 (1992).

[14]J. Thiel, A. Bunker, K. Momberger, N. Griin, and W.
Scheid, Phys. Rev. A 46, 2607 (1992).

[15] K. Rumrich, G. Soff, and W. Greiner, Phys. Rev. A 47,
215 (1993).

[16] K. Momberger, N. Griin, and W. Scheid, J. Phys. B 26,
1851 (1993).

[17] K. Rumrich, K. Momberger, G. Soff, W. Greiner, N.

8
9
[10

Griin, and W. Scheid, Phys. Rev. Lett. 66, 2613 (1991).

[18] A. J. Baltz, M. J. Rhoades-Brown, and J. Weneser, Phys.
Rev. A 47, 3444 (1993).

[19] W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954).

[20] P. Pechukas and J. C. Light, J. Chem. Phys. 44, 3897
(1966).

[21] 1. Bialynicki-Birula, B. Mielnik, and J. Plebanski, Ann.
Phys. (N.Y.) 51, 187 (1969).

[22] H. D. Dahmen, W. Krzyzanowski, and M. L. Larsen,

Phys. Rev. D 33, 1726 (1986).

1 R. D. Levine, Mol. Phys. 22, 497 (1971).

] D. W. Robinson, Helv. Phys. Acta 36, 140 (1963).

] U. Wille, Z. Phys. A 308, 3 (1982).

] J. Eichler, Phys. Rev. A 15, 1856 (1977).

7] J. Callaway and E. Bauer, Phys. Rev. 140, A1072 (1965).

28] P. T. Greenland, Phys. Rep. 81, 131 (1982).

29] S. Klarsfeld and J. A. Oteo, Phys. Rev. A 47, 1620 (1993).

30] U. Wille, J. Phys. B 16, L275 (1983).

31] R. M. Wilcox, J. Math. Phys. 8, 962 (1967).

32] S. S. Schweber, An Introduction to Relativistic Quantum
Field Theory (Harper & Row, New York, 1961).

[33] M. E. Rose, Relativistic Electron Theory (Wiley, New
York, 1961).

[34] W. Greiner, B. Miiller, and J. Rafelski, Quantum Electro-
dynamics of Strong Fields (Springer, Heidelberg, 1985).

[35] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of
One and Two Electron Atoms (Springer, Berlin, 1957).

[36] H. Ryufuku and T. Watanabe, Phys. Rev. A 18, 2005
(1978).

23
24
25
26
2

[
[
[
[
[
[
[
(
(
(



