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Technical aspects of a recently constructed strong version of Bell’s theorem are discussed. The
theorem assumes neither hidden variables nor factorization, and neither determinism nor counterfactual
definiteness. It deals directly with logical connections. Hence its relationship with modal logic needs to
be described. It is shown that the proof can be embedded in an orthodox modal logic, and hence its
compatibility with modal logic assured, but that this embedding weakens the theorem by introducing as
added assumptions the conventionalities of the particular modal logic that is adopted. This weakening is
avoided in the recent proof by using directly the set-theoretic conditions entailed by the locality assump-

tion.

PACS number(s): 03.65.Bz

I. POSTULATE

A strong version of Bell’s theorem [1] has recently been
proved. It involves propositions such as the following
statement S: “If measurement M were to be performed
and its outcome were to be O, then if, instead of M, N
were to be performed, its outcome would be O,.”

Valid statements of this kind arise naturally in physics,
as implications of particular theories. For example, sup-
pose the two alternative possible measurements M and N
are obtained by placing either a device D), or a device
Dy, into a beam of charged particles of known charge and
mass. Suppose classical electromagnetic theory entails
that each of the individual particles in the beam must
land at the same place on a detecting screen independent-
ly of which of the two alternative possible devices is used.
Then, on the basis of classical electromagnetic theory,
one could affirm the validity of statement S with O, the
same as O,. Moreover, this statement would remain val-
id in the context of a theory in which only statistical in-
formation is available about which of the possible trajec-
tories a given particle follows.

Statements like S are appropriate tools for formulating
a certain concept of “no faster-than-light influences.” If
the two alternative possible measurements M and N differ
only by a randomly determined choice of whether the de-
vice D 4, or the device D 4y is used in region R 4, so
that, in either case M or N, exactly the same setup and
device, Dpgy=Dgy=Dp, is used in the spacelike-
separated region Ry, and if, moreover, the outcomes O,
and O, refer only to what appears in region Rpg, then
statement S, with O; =0,, becomes an expression of the
idea that there is no faster-than-light influence of any
kind. It says that, for a single fixed experimental setup in
region R, the outcome appearing there must be indepen-
dent of which of the two devices D 4, or D 4y is chosen
in the far-away region R , (at the same instant of time in
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some frame of reference).

The clause “If, instead of M, N ...” is called a coun-
terfactual conditional by logicians. Formal rules have
been devised for the use of such conditions. These rules
are constructed so as to allow the meanings of the
relevant statements to be retained, insofar as these mean-
ings can be agreed upon and consistently maintained.
Probably the “most orthodox” formulation of these rules
is the one proposed by Lewis [2].

The strong Bell’s theorem mentioned above was proved
in Ref. [3]. A somewhat similar argument was given in
Ref. [4]. The latter argument was technically more com-
plicated because it was based on the Greenberger-Horne-
Zeilinger experiment, which involves experiments in
three regions, instead of the Hardy experiment, which in-
volves experiments in only two regions. Moreover, it was
formulated within the context of Lewis’s formalism. It is
possible to interpret Ref. [3] as simply a Hardy version of
the argument in Ref. [4], and hence to construe the coun-
terfactual conditional appearing there as Lewis counter-
factual conditionals. It will be useful to consider that in-
terpretation first.

All steps save one in this Lewis version of the argument
of Ref. [3] are strictly justifiable within the Lewis frame-
work: that was shown in Ref. [4]. In Ref. [4] the step
corresponding to the single exception was justified by a
postulated special rule of inference called “elimination of
eliminated conditions.” This postulate is called here
EEC.

What is this postulate EEC? Starting from the as-
sumptions of the theorem (random choices of measure-
ment, unique outcomes of measurements, validity of the
predictions of quantum theory, and absence of faster-
than-light influences) and using only logical steps justified
within the Lewis framework, one arrives at a long propo-
sition that translated into words says the following.

“If A, is performed in R 4, and B, is performed in Rp,
and if the outcome in R , is ‘yes,” then:
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[if, instead of 4, and B;, A, and B, are performed then

[if, instead of 4, and B,, A, and B, are performed then

[if, instead of 4, and B,, 4, and B, are performed then

[if, instead of A4, and B;, 4, and B, are performed then

[the outcome in Rz would be ‘no’]]]1].”

The postulated rule of inference EEC is restricted to
situations in which (1) the choices that determine which
measurements are performed in the two regions are treat-
ed as independent random variables, and (2) no reference
is made in the long proposition to the oytcomes of any of
the (randomly chosen) intermediate sets of measure-
ments. Under these conditions EEC asserts that the ex-
actly countermanded conditions can be ignored, and the
long proposition reduced to the shorter statement:

“If A, is performed in R ;, and B, is performed in Rp,
and if the outcome in R 4 is ‘yes,’ then if A, is performed
in R, and B, is performed in Ry, the outcome in Ry
would be ‘no.””

The validity of this step is justified by referring to the
physical meanings of statements involved. If no reference
at all is made to the outcome of a certain measurement N,
which, moreover, is selected by a purely random decision
that is unrelated to anything that comes before, then the
condition

“If, instead of M, N is performed”
followed immediately by the assertion that then
“If, instead of N, P is performed”
is physically equivalent to
“If, instead of M, P is performed.”

This is because the clause “instead of N’ exactly cancels,
in this case, the earlier supposition that “N is per-
formed.”

To complete this proof it should be shown that EEC is
compatible with Lewis’s rules. This is done in Sec. IV.
First, the Lewis theory must be described, and its incom-
pleteness noted.

II. LEWIS’S THEORY

Lewis’s rules are defined over a set W of possible
worlds. These rules are based on a concept of the “close-
ness” of possible worlds, where closeness is related to the
laws of nature. Lewis’s rules of closeness, as they apply
to our indeterministic case, can be formulated as follows.

Each possible world w is defined on a corresponding
spacelike surface o(w). This surface separates space-time
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into two open sets, called the future and past of w. A
world w, is later than a world w, if and only if some
point in the past of w, lies in the future of w,, but no
point in the past of w, lies in the future of w;. Each pos-
sible world w can evolve into later possible worlds. Let
w, and w, be two possible worlds. Then W(w,,w,) is
defined to be the set of possible worlds w such that (1) w
can evolve into w, without violating any strict law of na-
ture; and (2) w can evolve into w, without violating any
strict law of nature. Then w is said to be closer to w’ than
to w” if the union of the pasts of the worlds in W (w,w"’)
is a proper subset of the union of pasts of the worlds in
W(w,w').

This rule of closeness applies in an indeterministic
universe in which, however, several constraints are rigid-
ly enforced. In our case, these rigid constraints are the
(100% certain) quantum predictions and the (strictly en-
forced) demand that there be no faster-than-light
influence of any kind. The rules of closeness are used to
determine, within the formalism, the truth or falsity of
statements involving counterfactual conditions.

Consider, for example, our statement S. Symbolically,
it is written

(MA01)=(ND—>02) ’

where = represents “implies” (the strict conditional)
and NO— represents ‘“if, instead of M, N is performed
then” (the counterfactual conditional). Statement S is as-
serted to be true, in the Lewis framework, if and only if
each world w satisfying (M A O,) is closer to some world
w'’ satisfying (N A O,) than to any world w" satisfying
(N A —0,). (The symbol A represents conjunction, and
the minus sign represents negation.)

To see how the theory works, let us see how it validates
the statement S given above in the case M =4, AB,,
N=A4,AB,and O;=0,="no” in Rg, under the physi-
cal condition that there can be no faster-than-light
influence of any kind.

Let w be any world in {M A O}, which is the set of
worlds satisfying the condition (M AO,)=(A4;AB; A
“no” in Rg). Let w" be any world in {N A —O0,}, which
is the set of worlds satisfying (NA —0,)=(A4,AB, A
“yes” in Rp). Let W(w,w’’) be the set of worlds w; such
that (1) w; can evolve into w without violating any strict
law of nature, and (2) w, can evolve into w' without
violating any strict law of nature. Such worlds w,; may
exist, because the decision in R , between A, and 4, isa
chance event, which can go either way without violating
any strict law of nature, and the selection in Ry of the
outcome ‘“‘yes” or “no” is likewise able to go either way
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without violating any of our strict laws. However, no
such w, can contain in its past either the decision point p
in R , between A4, and A4,, or the decision point g in Ry
between the outcomes ‘““yes” and “no.” For if either of
these decisions is already fixed in w, then the two condi-
tions (1) and (2) on w, cannot both be met: at most (1) or
(2) can be satisfied. Thus the union of the pasts of the
worlds in W(w,w") is confined to the past of w minus
(VT (p)UV™T(q)}, where ¥*(x) is the closed forward
light cone with apex at x, and U means “union.” Con-
sider now the world w. The physical condition that there
be “no faster-than-light influence of any kind” means
that any evolution is at least allowed to be independent of
the choice of measurement made at any spacelike-
separated point. Thus there is a world w’' in
{NANO,}={A,ANB| A “no” in Ry} that is the same as
w outside the light cone ¥ *(p). Consider next the set of
worlds W(w,w’). The past of any world in W(w,w’) is
confined to the past of w minus V+(p), because the de-
cision at pis 4, in w, butis 4, in w’'. However, the de-
cision point g lies in the past of both w and w’, because
the decision there is “no” for both w and w’'. Assume
that if a world can evolve into a later one then there will
be, in the set of all possible worlds, sequences correspond-
ing to all possible ways in which the past of the earlier
world can grow into the past of the later one. Then the
union of the pasts of the worlds in W (w,w’) will be pre-
cisely the past of w minus ¥ *(p), whereas the union of
the pasts of the worlds in W(w,w"’) is confined to this set
minus ¥ " (g). Thus w is closer to w’ than to any w"’ in
{NA—0,}, and the Lewis condition for the truth of
statement S is satisfied.

This shows that Lewis’s theory works in this case: it
yields the conclusion demanded by intuition.

III. INCOMPLETENESS OF LEWIS’S
RULE OF CLOSENESS

The Lewis rule of closeness given above is formulated
not in terms of the absolute distances between worlds, but
rather in terms of the relative closeness of two worlds to a

{S;}={P0d—0,}

={w: |lw—w'| <|w—w"| for some w’ in {PAO,} and every w” in {PA—0,}} .
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third one. Moreover, this rule of closeness has only the
“if”” condition: the “only if’ part is not included. Thus
further rules are needed if the formalism is to provide a
definite answer, true or false, to every statement that con-
tains a counterfactual conditional. This opens up the is-
sue of fine tuning, i.e., the problem of resolving those
questions of closeness left unanswered by the primary
rule of closeness given above. Lewis gives several lower-
level rules that can resolve some of the issues of closeness
not resolved by the primary rule, but they do not apply in
the present context, where every strict law of nature is
rigidly enforced. Lewis gives one further rule that does
apply. This is the centering rule: any world is closer to
itself than to any other world. This centering rule sug-
gests that we are dealing with a metric space.

A simple situation in which the Lewis rules are mute is
the case M =(A4,AB;) and N=(A4,AB,). Then the
worlds w; in W(w,w") and w, in W(w,w’) are both
blocked by the same condition: neither decision point be-
tween measurements can lie in the past of either w, or
w,. Thus there is a “tie,” and the Lewis rules of close-
ness are insufficiently discriminatory to allow any con-
clusion to be drawn: more detailed rules of closeness are
needed for the Lewis truth rule to yield a result.

IV. COMPATIBILITY OF EEC WITH
THE LEWIS RULES

Because of the incompleteness of the Lewis rule of
closeness, the Lewis rules are not sufficiently complete to
permit the validity of the postulate EEC to be either
confirmed or rejected: that is why the postulate was in-
troduced. But if a new postulate is introduced then its
compatibility with the old ones should be verified.

Consider the statement

SIE(PD—POZ) .

The general Lewis truth rule asserts that the set of worlds
in which S, is true is

4.1)

Here {x: C} is the set of x such that condition C is satisfied, and lw—w'| <|lw—w"| means w is closer to w’ than to

"

w
Consider next the compound statement

SZE(ND—')SI) >

where S, is the statement defined previously. The general Lewis truth rule asserts that the set of worlds in which S, is

true is

{S,;}={NO—S,}

={w: |lw—w'| <|w—w"| for some w’ in {N} M {S,} and every w” in {N}MN{—S,}} .

(4.2)
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The symbol N means ‘“intersection.” Note that, by virtue
of the centering rule, if N were the null condition, i.e., if
{N}=W,then {S,}={S,}.

The question at issue here is whether it is compatible
with the general truth rule and the centering rule to take
{S,}1={S,}, 1ie, to take [(NO—(PO—O0,)}
={PO—0,} for all N. This question is equivalent to
that of whether it is possible to take {S,} to be indepen-
dent of N.

To show that this is possible, let closeness be defined in
a metric space (X,Y), where X and Y are orthogonal.
Suppose that each world w in W maps to a unique point
(x (w),y (w)) in (X, Y), and that each point (x,y) in (X, Y)
maps to a unique world w(x,y) in W. Then the centering
rule is satisfied. Let X(M) be a function of the measure-
ments. Suppose that measurement M is performed in
world w if and only if x (w)=2X(M). Then the set of pos-
sible worlds in which measurement M is performed and
outcome O occurs can be written as

(MAOM}={w: x(w)=%(M); y(w)E{OM}} ,

where € means “is an element of,” and {0} is a subset
of Y space. [Each M is a set of local measurements, with
one local measurement (possibly the null measurement)
for each region, and each 0,-M is a set of local outcomes,
with one local outcome (possibly the null outcome) for
each of the local measurements in M.]
The set of worlds where (P A O,)=(P A OF) is satisfied

is

{(PAOY}={w: x(w)=%(P); y(w)E{OF}} .
Similarly,

{PA—0F)={w: x(w)=%(P); y(w)E{—0F}},

where { —0Z} represents the complement of {0%} in ¥
space. Thus, by virtue of (4.1) and the orthogonality of X
space to Y space,

($,}={PO—07}={w: y(w)E({O0F}]
and
(=S }—{w: y(weE({-07}} .
Thus, by intersection,
(N}IN{S}={w: x(w)=%(N); y(w)E{0F}}
and
(N}IN{=S}={w: x(w)=%(N); y(wE[{—0F}} .

Thus, by virtue of (4.2) and the orthogonality of X space
to Y space,

(S} ={w:y(w)E{05}} .
Hence
{S}=1{8,} .
In this model the statement

(M AOY)=(NO—O0Y)
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is equivalent to
[o¥}ciody,

where C means “is a subset of.” The statement
(NAOY)=(PO—0%)

is equivalent to
(oyyciof} .

Thus the two statements together say that
{otycioyiciofy.

This implies that
fotjciofy,

which is equivalent to
(MAOY)=(PO—07) .

The same line of argument validates EEC, and hence
confirms the compatibility of EEC with the general Lewis
framework. Arranging for the compatibility with also
the Lewis rules of closeness and our locality condition
poses no problem, but if one tries to impose, moreover,
compatibility with the quantum predictions then a con-
tradiction of course ensues.

V. IMPLEMENTATION OF THE “MUST” CONDITIONS

The Lewis framework normally validates statements
that are not consequences of merely the laws of nature
alone. One consequence of this fact is that we were able
to validate statement S, which appears to express the
strong locality condition that outcomes must be indepen-
dent of spacelike-separated choices, from the weak locali-
ty condition that evolutions are allowed to be indepen-
dent of spacelike-separated choices. Thus statement S,
interpreted according to the Lewis rules, fails to carry the
full logical content of the strong locality condition as-
sumed in the statement of the theorem.

To exhibit this essential deficiency of the (unelaborat-
ed) Lewis counterfactuals in the present context, let us re-
view how they worked in the construction described in
Sec. II. The key step was the implementation of the weak
locality condition. It allowed us to assert that for each
world w in {A;AB; A “no” in Ry} there was some
world w' in { A, AB; A “no” in Ry} that is the same as
w outside the light cone ¥ *(p). According to this argu-
ment, there might be only one such w’, but billions of
possibilities in which the switching of 4, to 4, leadstoa
change of “no” to “yes” in Rp. But the existence of this
single world w’ with outcome “no” in R , among billions
of contrary possibilities is a very weak condition: the
strong conclusion derived within the Lewis framework
from the tiny result rests heavily on conventional rules, as
contrasted to the strict laws of nature.

It is desirable from a certain point of view to derive our
result within the Lewis framework. This framework is
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probably the standard theory of counterfactuals; hence
deriving the result within the strictures imposed by that
theory lends credibility to the conclusion. But three im-
portant and related points must be borne in mind: (1) the
Lewis framework is a collection of many theories that
differ by the fine tuning of the rules of closeness, and we
are free to choose any one that fits the physical require-
ments; (2) the conclusions drawn from a use of the for-
malism reflect in large measure certain conventional
rules, as contrasted to strict laws of nature; and (3) the
above proof within the Lewis framework uses only weak
locality, not the strong locality condition assumed in the
statement of the theorem.

To tailor the Lewis theory of counterfactuals to the
problem at hand, it is necessary to impose the following
condition: each world in {M AOM} is closer to some
world in {N A0/} than to any world in {N A —O}} if
and only if the following condition holds.

“If under the condition that M were to be performed
the outcome O were to occur then under the condition
that, instead of M, N were to be performed, the outcome
(0] JN must, by virtue of the (assumed) strict laws of nature,
occur.”

Such a definition of “closeness” would make the Lewis
formalism relevant to the theorem being proved. The
specification is compatible with Lewis’s rules of closeness,
but is much more restrictive. I shall call the consequent
“under the condition ...OJ-N must ... occur” a must
conditional.

The proof in Ref. [3] does not explicitly use Lewis
counterfactuals: they are never mentioned. It thereby
avoids the dependence on conventional definitions of
“closeness.” It also avoids the need for arguments like
the one exhibited in Sec. II. It circumvents those prob-
lems by exploiting directly the assumed strong locality
condition, as expressed in terms of must conditionals. On
the other hand, the proof can be embedded within the
general Lewis framework by imposing the strong condi-
tion of closeness specified above.

The proof in Ref. [3] proceeds (working now from left
to right) by combining one consequence of strong locality
with one consequence of quantum theory to obtain the
conclusion that each world w in {A;AB; A “yes” in
R ,} must, by virtue of our two strict laws of nature, be-
come some world in {A;AB, A “yes” in Ry} if the
choice leading to B, is replaced by a choice leading to
B,. There is a similar strict condition that each world w’
in {4, AB, A “yes” in Rp} must become some world in
{A, AB, A “no” in R ,} if the choice leading to 4, is
replaced by a choice leading to 4,.

The must conditionals used here are defined over a set
of worlds in which there is a set of disjoint alternative
possible universes, each labeled by an alternative possible
choice of the combined set of measurements. Initially, no
connection whatever is imposed between these alternative
possible universes: every possibility is independently al-
lowed in each universe; apart, of course, from the
specification that some particular combination of mea-
surements is performed in each universe. No condition
within a universe, or between two universes, is allowed
unless it is demanded by the strict laws of nature. These
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strict laws are expressed by must conditionals of the form
specified above.

These must conditionals are similar linguistically to
Lewis’s counterfactual would conditionals. But they are
much stronger. They do not, initially or basically, refer
to the idea of closeness of worlds, but express, instead, a
condition of set-theoretic inclusion under an “instead of”
mapping that follows from the (assumed) strict laws of
nature alone.

This must conditional can be represented symbolically
by

(MAOM}yCINAOY} .

It says that each world in {M AO%} is mapped by the
“instead of”” mapping into some world in {N AOY}.

Suppose an experimenter has three measuring devices
M, N, and P, and that he has measured with device M
and outcome O¥ has occurred. Suppose he knows, on
the basis of a theory, that if measuring with M were to
give O then measuring instead with N must give 07,
and also that if measuring with N were to give 0%, then
measuring instead with P must give O%. Then he knows,
on the basis of this theory, that if he had measured with P
instead of M then result Of necessarily would have oc-
curred. The fact that this strong conclusion does not fol-
low from the logically much weaker Lewis counterfactual
conditionals, without any stipulations, is irrelevant. On
the other hand, if one wishes to imbed these strong must
conditionals into the Lewis framework one can do so by
using the model described in Sec. IV.

If, in the above example, P =M and Of=—0% then
one can conclude that the (assumed) theory is self-
contradictory, provided the theory also entails that cases
in which measurement with M gives an outcome O
must be allowed. This is the kind of logical contradiction
that occurs if a theory imposes jointly the conditions that
the predictions of quantum theory be valid and that there
be no faster-than-light influence of any kind.

V1. CONCLUSION

Two different versions of the argument of Ref. [3] have
been discussed here. The first is essentially the proof
given in Ref. [4], simplified to the Hardy case. This ver-
sion is based on the standard Lewis theory of counterfac-
tuals and involves postulating EEC.

The possible challenge to the postulation of EEC has
been met by demonstrating that EEC is compatible with
the Lewis rules. Thus it is permissible to postulate it,
within the framework, without committing any logical
error. However, a detailed discussion of the Lewis coun-
terfactual version of the argument has allowed us to pin-
point a serious deficiency of that type of approach to the
problem under consideration here. The conclusions
drawn from a Lewis-type analysis rest heavily upon cer-
tain conventional rules pertaining to the notion of the
“closeness of worlds.” Consequently, the conclusions ob-
tained from a Lewis-based formulation of the argument
would not necessarily follow exclusively from the two as-
sumed strict laws of nature themselves, and the other two



assumptions set forth in the statement of the theorem:
strong special conditions on the rules of closeness are
needed if the consequences of applying the Lewis theory
are to be strict consequences of the assumptions of the
theorem alone.

The proof given in Ref. [3] does not use Lewis counter-
factual conditionals: they are never mentioned in that pa-
per. It uses, instead, the assumed strict laws of nature
themselves, and in particular the statements of strong lo-
cality and quantum laws expressed in terms of must con-
ditionals. Thus the dependence upon the notion of close-
ness of worlds, and upon the attendant conventional rules
of closeness, is completely avoided. On the other hand,
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the argument can be placed within the general Lewis
framework, if appropriate rules of closeness are intro-
duced. These rules are restricted by the strong condition
that the consequences of applying these rules should be
consequences of the assumptions of the theorem alone.
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