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Inner-shell capture using atomic potentials: A distorted strong-potential Born treatment
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The inhuence of a distorted nuclear motion on electron capture from the inner shells of atoms, when
atomic model potentials, rather than scaled Coulomb potentials, are used in the motion of the active tar-
get electron, is investigated in the distorted strong-potential Born approximation to the exact capture
amplitude. A comparison is made with the earlier undistorted strong-potential Born approximation and
other theories, and with experiment. The modification of the impulse-approximation cross section is
shown to be generally much less in the distorted theory and is shown to give quite good agreement with
the experimental data. At energies below the peak in the capture cross sections, the present results show
significantly better agreement with experiment and also good agreement with the recent coupled-
Sturmian-pseudostate results of Winter [Phys. Rev. A 47, 264 (1993)],who used the same atomic model
potential.

PACS number(s): 34.70.+e

I. INTRODUCTION

At intermediate collision energies, a consistent, accu-
rate treatment of electron capture from the inner shells of
atoms has proven more difficult to obtain than has a com-
parable theory for ionization. This owes largely to the
rearrangement nature of the process and, within a pertur-
bative framework, to the long-range nature of the
Coulomb interactions between each pair of particles.
However, for capture by light projectiles such as protons,
two aspects of the problem allow simplification of the
treatment. First, the charge of the projectile can be taken
to be small relative to the charge of the heavy target nu-
cleus, implying that a consistent approach can rely on a
simple first-order treatment of the electron-projectile in-
teraction if also the dynamics of the electron is described
using the strong electron —target-nucleus interaction.
Second, the orbital velocity of the electron in the final
bound state can be assumed small relative to the incident
projectile velocity. This permits the sum over intermedi-
ate states of the target, representing the time develop-
ment of the electronic wave function, to be collapsed to a
single term corresponding to ionization of the target elec-
tron.

Such a theory, the strong-potential Born approxima-
tion, was developed a decade ago [1,2]. While the agree-
ment of calculated total cross sections with experiment
was encouraging [3,4], it was pointed out that the exact
version of this amplitude contained a nonintegrable
singularity [5], derived from the elastic-channel scatter-
ing contribution, which clearly made justification of any
approximate, but more intuitive and tractable, version of
the theory problematic. It was noted, however, that the
problem was of a rather spurious nature which could be
corrected by a proper treatment of elastic-channel
scattering [6]. Yet, the intimate connection of this prob-
lem with the long-range behavior of the two-body
Coulomb interactions meant that a formally consistent
revision of the theory was necessary. Over the last few

years, within a distorted-wave theory of scattering ampli-
tudes, this distorted strong-potential Born approximation
(DSPB) has been developed by Taulbjerg, Barrachina,
and Macek [7,8].

A key aspect of the DSPB amplitude is its use of
initial- and final-channel distortion potentials built up
from the active-electron-projectile and active-
electron —target-core interactions. In a multielectron tar-
get, the latter takes on a very different form asymptotical-
ly than the bare-nucleus form which exists in the inner
region. The DSPB theory developed in this paper incorp-
orates a realistic representation of the interaction. To
good approximation, the interaction can be approximated
by a local potential. An analytic, one-electron model po-
tential due to Green, Sellin, and Zachor is used in the
present work [9]. The potential smoothly matches the
electron —bare-nucleus interaction at small distances with
the electron —singly-charged-ion interaction at large dis-
tances. It depends on two parameters which are opti-
mized for each atom and are available for a wide range of
atoms (and ions) [10].

As already noted, the model potential is used to define
the final-channel distortion potential in the DSPB ampli-
tude. The use of this potential in the amplitude primarily
distinguishes the DSPB amplitude from the original SPB
amplitude. The present work also extends the initial
study [8] by going beyond the limited, so-called full-

peaking approximation used in the previous evaluation of
the amplitude.

An exact numerical calculation of the DSPB amplitude
is extremely difficult and is not attempted here. Rather,
the focus is on obtaining the first calculations with the
theory using a realistic atomic potential for the target.
An approximate evaluation of the amplitude is presented
which relies on the smallness of the binding energy of the
captured electron relative to its outgoing kinetic energy,
and on the fact that the minimum momentum transfer is
of the order of the large impact velocity [3]. A near-the-
energy-shell approximation [11]to the propagation of the
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electron in the strong field near the target nucleus (where
capture from inner shells predominantly occurs) intro-
duces errors only of the order of the square of the ratio of
the nuclear charges to the impact velocity. In addition,
an eikonal approximation to the heavy-particle motion is
made which introduces only very small errors of the or-
der of the ratio of the electron mass to either of the
heavy-particle masses.

Considerable experimental data exist for capture from
the inner shells of atoms. A comparison will be made
with experimental results for protons incident on carbon,
neon, and argon atoms [12—15]. Much effort has also
gone into obtaining other theoretical descriptions of
inner-shell capture, including the continuum distorted-
wave approximation (CDW) [16,17] and a renormalized
version of the strong-potential Born approximation
(RSPB) [18]. At the intermediate velocities treated,
coupled-state calculations are also possible, and a corn-
parison is made with such work for carbon, neon, and ar-
gon [19—21].

The plan of the paper is the following. The DSPB for-
malism is introduced in Sec. II. In Sec. III, details of the
evaluation of the amplitude are discussed with reference
to a specific atomic model potential and its incorporation
in the final distorting potential. Section IV presents the
calculated results and compares them with experimental
results and other theoretical results. Concluding remarks
are made in Sec. V. An appendix on off-energy-shell
scattering is also given. Atomic units are used unless oth-
erwise noted. A plane-wave state Pz of momentum k
represented in coordinate space r is normalized as
Pz(r) =e'"'.

II. DISTORTED STRONG-POTENTIAL
BORN APPROXIMATION

%'e consider a collision between particles in which a
single electron can be taken as participating in the dy-
namics. Generally, the target ion and possibly the projec-
tile ion may contain nonactive electrons, although the re-
sults presented here will focus on a bare projectile ion. In
this one-active-electron, three-body model scattering
problem, a projectile ion P impacts on a target consisting
of the active electron e and a target ion T. The two-body
interactions between each pair of particles are of modified
Coulomb form (which includes the pure Coulomb form as
a special case). The collision is assumed asymmetric so
that the projectile charge Zz is much smaller than the
target nuclear charge Zz. . The collision process is

P+(T+e )~(P+e)+ T,
where the parentheses denote bound electron-ion
partners.

Since the two-body interactions are Coulombic asymp-
totically and since the projectile and target ions are much
heavier than the electron, a distorted-wave theory of
scattering amplitudes [22] is employed together with an
eikonal approximation for the heavy-particle motion.
The development in this section closely follows the treat-
ment of Taulbjerg, Barrachina, and Macek [8] (including
their Appendix A). The reader is referred there for
greater detail.

Vp, (rp ) ——Zp" /rp,

Vr. (rr )-—ZP lrr
(2)

For neutral target atoms Zz =1, and for incident pro-
tons Z~ =Zz" =1. The representation of the screening in

Vz, for smaller radii is discussed in Sec. III C.
The transition amplitude for electron transfer is

(3)

which is still exact except for terms of the order of the
electron mass divided by the heavy-particle masses [21].
The incoming-wave final scattering state 4& is defined by
the Lippmann-Schwinger equation

( 4I ) —= [1+G ( Vr, —UI ) ] ~ 4I ),
where 6 is the exact Green operator for the collision
and 4& is the final asymptotic scattering state defined in
coordinate representation by

& rp Rp I~ I ) =P» (Rp)D» (Rp) PI(rp) ~

The function D» (Rp) represents the distortion of thef
heavy-particle plane-wave motion arising both from the
asymptotic Coulomb behavior of the interaction and
from the short-range screening of the nonactive electrons.

To specify the distortion function sufficiently for later
purposes, an eikonal approximation is introduced:

iZ& lu
D» (R)=(UR+v R)f

oo

Xexp ——f d Y' UI(R )+ (6)

The lower limit of the integral is Y= —R.v, with v the
incident projectile velocity [21]. (A caret denotes a unit
vector. ) The initial asymptotic scattering state in the
coordinate representation is similarly defined as

As a result of the eikonal approximation, the initial
and final perturbations reduce to single interactions,

V~= Vp (rp) Vy=V {r )

where rz and rz- denote the electron's position relative to
the projectile-ion and target-ion centers of mass, respec-
tively. Corresponding to these potentials are the distort-
ing potentials U,- and UI for the initial and final scatter-
ing channels. The major extension of the present work is
the explicit incorporation of effects arising from the
nonactive electrons. For inner-shell processes, the orbital
velocities of the outer electrons are small compared with
that of the E-shell electron. The orbital velocity of the 2s
electron is approximately one-fourth of that for the 1s
electron, even for the least asymmetric case of proton-
carbon collisions considered here [23]. Therefore the
effects of the outer electrons on the collision can be incor-
porated in an averaged and static manner by means of a
screened electron —target-ion (or electron —projectile-ion)
potential. The inclusion of explicit multielectron process-
es is beyond the scope of the present treatment. The
asymptotic behaviors of the potentials in Eq. (1) are
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In these functions, the position of the projectile relative
to the target center of mass is denoted by Rz, the posi-
tion of the target ion relative to the projectile-
ion —electron center of mass is denoted by Rz-, and the in-

itial and final heavy-particle wave vectors are K; and KI.
The initial and final bound-state wave functions are (t,
and PI, respectively.

The distortion functions are determined by specifying
the distorting potentials U;, U&. The forms used in the
present study represent a minimal choice based on the
bound-state static charge distributions, and are consistent
with the known asymptotic behaviors of the electron-ion
potentials. The initial- and final-channel distorting po-
tentials are defined as

U;(Rz)= f«rig;(rr)l'Vp, («r R—r),
U/(Rp ) = f drp I PI(rp ) I Vre (Prp +Rp )

(8a)

1 2 1E+ VR + V', —Vz, (rz) ig—
2vI. ~ 2IM

where the internal reduced mass is p = IMz- /
(m +Mr ) =m, the full three-body reduced mass is

v; =Mp(m +Mr )/(m +Mp+M7. )=MpMz /(Mp+Mr ),
and g is an infinitesimal quantity. The total energy
of the system is given by E =(1/2v; )K, + E, =(1/2v f )Kf
+ c&. The initial and final bound-state energies are c; and

s&, respectively, and v/=Mr(m+Mp)/( +mMp+Mz ).
The resulting distorted strong-potential Born scattering
state is given by

I+/ & = I+osps & = I:1+Gr ( Vre U/)]@f (10)

Since the function DK (Rz ) depends on the distorting
I

potential U, , the amplitude Eq. (3) still contains higher-
order contributions in the weak potential V~, . In a con-
sistent strong-potential approximation, these are neglect-
ed:

The relations between the electronic coordinate vectors
have been inserted here with the mass ratios
a =M&/(—m+Mr)=1 and P= Mp/(m—+Mp)=1, whereI is the electron mass and M~ and Mz are the projectile-
and target-ion masses, respectively. The inAuence of the
nonactive electrons on the dynamics of the collision ap-
pears in the functional form of the electron —target-ion
potential Vz, and in UI through its dependence on Vz, .

In the interaction region, rz ~1/Zz, predominantly
leading to capture, the electron —target-ion interaction is
much stronger than the electron —projectile-ion interac-
tion. Account is thus taken in the exact Green operator
only of the propagation in the strong target field [1]. In
the expansion of the exact Green operator in the weak
potential, the leading term is the target Green operator
Gz. .

G =Gz (E)

In the evaluation of the DSPB amplitude [Eq. (3) with
Eq. (11)],the short ra-nge nature of the initial-channel per-
turbation V~,

—U; ensures that the nonintegrable singu-
larity which is present in the undistorted version of the
theory [5] does not arise here. Alternatively, it can be
shown that the elastic-channel pole contribution of Vz, is
canceled exactly by the U,- contribution.

An explicit form for the distorted strong-potential
Born scattering state can be obtained by using the
identity Gr ( Vp, + UI —Vr, )l@I &

= I4& &, derived by
Faddeev [24,8]. Introduce Fourier analyses of the
functions DK (Rp) and P/(rp) in Eq. (5), writef
Rp=(1 —aP)rr+PRr [25], and relate the transform of
the product of the potential and bound-state wave func-
tion to the transform of the wave function itself

[Vp, PI](k)=DER/(k), where bc, =EI —
—,'k %0. One

derives

(rr, Rz lq'DspB& =(2ir) fdkdSp/(k)DK (S)

XkpK& —a+s(Rr) . (12)

(rr)=g (ZP, q, ~)gq (rr) (14)

for c. —=
—,'~ = —,'q . This approximate form is not restricted

to a pure Coulomb potential but holds for any modified
Coulomb potential. The wave function P, in the matrix
element with its exponential decay at large rz ensures the
validity of the approximation. The factor g has the
form

g (ZP, q, a)=e "I (1—iv )
q+K

(15)

the dependence on the asymptotic form of the target po-
tential is apparent since v =Zz"-/~. The gamma func-
tion is denoted by I (x ). By way of motivation, a brief
discussion of off-shell scattering of a wave packet is given
in the Appendix.

Since the Fourier transform of the distortion function
is highly peaked about S=K&, only the S dependence of
DK (S) and b, E —v.S in the S integrand of Eq. (12) need

(A tilde over a function denotes a Fourier-transformed
quantity. ) The off-energy-shell electronic scattering wave
function is defined as

(Es —
—,'lk+vl )

Pcs, + T
( + ( ~2 V

.
)

~k+v T(r )= ~ (r ), (13)
~s 2 r~ re l

with the electronic scattering energy given by
es=E —(1/2v;)(PK/ —k+S) =

—,'v +(k —S) v+E/.
Note that Es

—
—,'lk+vl =b, E —v S.

Again, for the interaction region r~~ 1/Zz centered
around the target nucleus, the off-shell wave function
i)'j, z(rz ) of energy s and momentum q can be approxi-
mated [11]to order (Zp/v ) (for the present process) by a
target continuum eigenstate it& (rr ) multiplied by an off-

shell factor:
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be retained. Further, when Eq. (13) is approximated as in

Eq. (14), the orthogonality of gk+„(rr) and P;(rT) im-

plies that the U; term does not contribute to the ampli-
tude Eq. (3). Consequently, the distorted strong-potential
Born amplitude in the near-shell approximation takes the
form

A»»(K) =f dk y, (k)*[y-(ZT",q, K)]' Vp, (k —K)

tion of a K-shell electron into the L-shell hole leads to the
same final state. This alternative process is not separately
distinguished in the experimental results to which we
compare. The contribution is thought to be small, how-
ever, owing either to the small L-shell capture cross sec-
tion at higher energies or to the small excitation cross
section at lower energies [3].

X ( y
— ~ei(k K—).

r~y } (16)
III. AMPLITUDE EVALUATION
USING ATOMIC POTENTIALS

where

[y (Zr", q, z)]*=(2m) (2q ) "e " I (1+iv„)be

X dSDK S * hc.—v.S

with q=~k+v~, and a.=(v +2k v+2ef+iri)'~ in the
definition of v„.

The momentum transfers experienced by the target
and projectile ions, respectively, are denoted here by

J=aK, —Kf, K=pKf —K, .

Each can be written as the vector sum of a component
along v and a component perpendicular to it. The com-
ponents parallel to v are K~~

= —
—,
' v+(s; —sf )/v (for the

projectile ion) and J~(= —
—,'v+(sf —s;)/v (for the target

ion), and the components perpendicular to it are K~ for
K and K~ for J.—(J will be used later. ) Momentum
conservation for the process takes the form K+J+v=O

The interpretation of Eq. (16) is apparent on making
connection with the plane-wave Born approximation for
direct ionization of an atom. Recall the form of the final
scattering wave function for the latter:

«r T Rr I
@f & =e ' 'gQ (r T },

with f(, a continuum eigenstate of the target. The
plane-wave Born approximation (PWBA) amplitude is
then [26]

ApwBA(Q) Vpe(Q) & 4~ le'

w&& Q=Kf —K;. Clearly, except for the off-shell factor
y, the picture of capture presented by Eq. (16) involves
a folding of the final bound-state momentum distribution
with the amplitude for ionization of the electron into the
projectile*s direction with a comparable velocity. The
effect of y is somehow to modulate this folding. In the
next section an evaluation will be made which allows a
closer look at this connection. In contrast, the full ion-
ization amplitude involves integration over all ejection
angles and energies [26].

Integrating over transverse momentum transfers, the
total cross section is

o =(2mv ) f dK&Kql A(Kj )I (19)

For capture from the K shell of atoms, o. must be multi-
plied by a factor of 2 to account for two independent
electrons. Capture from the I. shell followed by excita-

To obtain a computationally useful form for the ampli-
tude, the off-shell factor y and ionization matrix ele-
ment need to be evaluated (Secs. III C and IIIB), and
their folding with Pf performed. An approximate
method of performing the folding is introduced (Sec.
III A) which allows a separation of the two above factors.
Afterward, each of these is evaluated. Along the way,
one must specify the electron- target-ion potential
VT, (rr) and determine the corresponding distorting po-
tential Uf.

A. Transverse-peaking approximation

In considering the near-shell amplitude Eq. (16), ob-
serve that for inner-shell capture in an asymmetric col-
lision at intermediate velocities, k-Z~ &&u and K-u.
Further, the amplitude is highly peaked in the forward
direction with the major contributions to the total cross
section deriving from Ej ~E~~. It is therefore useful to
define cylindrical polar coordinates for k with k~~ parallel
to v and k~ perpendicular to it. This allows the introduc-
tion of a transverse-peaking approximation [3]: the kI
dependence of the k integrand in Eq. (16}is neglected ex-
cept in Pf (k) and b, s in y, these factors providing the
only rapid variation. Recall that the 1s Coulomb wave
function in momentum space is $(,(k)=(2 Z~)' /
n(k +Zz) and that be= —

—,'(k +Zp), since
2= —2Z ~P'

With this approximation and anticipating the form of
y given in Eq. (26) below, the k~ integration can be per-
formed (as can the corresponding polar-angle integration)
to give a factor E, [ix (k

~~

+Zf, }/2v ], where the exponen-
tial integral function E, is defined after Eq. (39). Were

y not present in the integrand, a simple (k((+Zr)
dependence would result, leading, in the complex kf~

plane, to poles at k~~=+iZP. As it is, the E, function
contains essential singularities at the same points. For
the upper one, a branch cut can be defined, say along the
positive imaginary axis from ZP to oo. Additional singu-
larities exist also in the other factors of the k~~ integrand.
These can be shown to be located in the lower half of the
complex plane [3]. Consequently, the integration path
along the real k~~ axis can be deformed to go around the
branch cut. The major contribution to the integral then
comes from the vicinity of k~~ =iZP, and since the
remaining k

~~

dependence of the integrand is relative to U

or K(~ (except for that in E& ), we set k~~ =iZ& in these oth-
er factors. The integration of E, can then be performed,
as is done below in Eq. (38) of Sec. III C. The complete
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ADsps(K) MnspB Alp (K)

where

(20)

transverse-peaking approximation consists of setting
k=iZi, v in all factors of Eq. (16) except the rapidly vary-
ing parts Pf(k) and be. The approximate amplitude is

the DSPB amplitude into an IA amplitude (primarily an
ionization amplitude) and a momentum-integrated off'-

shell factor MDspB. As already noted, this permits one to
study the two components separately. Additionally, a
test of the quality of the present approximation is shown
later in Fig. 5.

dk f k*y ZTk
MDSPB fdkpf(k)'

with

(21)

[y (ZT", k, a)]*=(2m) (2» ) "e " 1(1+iv„)Ae

X f dS D» (S)'[bc.—v S]

(22)
and

A,~(K)= f dk pf(k)"

X [V„(k—K)& q,,„le'" ""I&,&]„=„,-„

(23)

In Eq. (22), v„=Zr /» and ir=u+iZp An . important
feature of the development consists in the separation of

I

B. Ionization matrix element

The matrix element in Eq. (23) is evaluated using a
scaled hydrogenic model in which the target potential is

VT, (rT)= —Z, /rT+ Vp where Z, is a scaled charge de
rived using Slater's screening rules, and V0 is a constant
determined by forcing the 1s energy for the potential to
agree with the experimental value [3]. The use of this
model is justified in evaluating the matrix element be-
cause the presence of P, (rr ) effectively restricts the radial
integration to the region rr & 1/Zr where the scaled po-
tential agrees to within a few percent with the correct
one. While introducing a separate approximation, the
use of a scaled potential is not inconsistent with the use
of a better potential in the evaluation of MDspB for the R
integral in the latter relies on large radial values also. It
is thus necessary to take into account the correct form of
VT„as is discussed more below. In the scaled model, the
matrix element Eq. (23) is [3]

(y
—

~e
(k —K).r

P ) 4~1/2Z3/2e /21 (1+iv)&+„ e ; —m , e azS

( IC v+ Z,—+2k J 2iZ,
~

k—+v
~

)

(Z2+g2)1 —iv (24)

C. OfF-shell factor

To evaluate the integral in Eq. (21) for the integrated
o6'-shell factor MDspB, the integral representation

I (1+iv„)(iA) "=f dxx "e
0

is used to transform (y )* to the form

[y (ZT", k, a)]*=i(2a ) "be

X dxx "e '" ' D& —xv
0 f

(25)

It is convenient to introduce a new integration variable
u =—xv to give

[y (Zr", k, ~)]*=i(2~k+v~ v/)™(h /E)U

Xf duu "e
0

X[D» (
—uv)]' . (26)

The many-body aspects of the target-ion —electron in-

where v=Z, /», with» defined as in Sec. IIIA. Cross
sections obtained using Eq. (24) are compared in Sec.
IV 8 with those obtained from an exact evaluation of Eq.
(23).

ZT
as r~0

as r~~ .
(27)

Details of the optimization procedure can be found in
Ref. [10]. Table I lists the values of the parameters used
in the present work. Also given are the total energy
differences from the converged Hartree-Fock values.

The potential Eq. (27) appears in the definition of the
distorting potential Uf, Eq. (8b). To obtain an explicit
form for Uf, the convolution theorem for the Fourier
transform of the product of two functions is used to write

Uf(R) = f dk e'" p(k) Vz;(k), (28)

teraction are incorporated by using an atomic model po-
tential which is determined by a fit to the Hartree-Fock
potential. The total energy of the atom obtained from
the energies of the model potential orbitals and their mu-
tual interactions is optimized to best reproduce the total
Hartree-Fock energy. The functional form of the atomic
model potential is due to Green, Sellin, and Zachor
[9,10],

1 ZT ZT
VT, (r ) = —— +ZTHe' "—H+1
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TABLE I. Parameters for the model potential fit [Eq. (27)] to
the actual atomic potential [10],and error in the corresponding
total atomic energy hE in parts per million.

tegrated off-shell factor MDspg and introducing also a
new integration variable W=R/u into the eikonal in-
tegral in Dx, the factor can be writtenf

Atom

C
Ne
Ar

0.939
0.558
1.045

2.000
1.510
3.660

hE (ppm)

133
42
33

MDspa =—f du Q(u )e

where the functions Q(u ) and I(u ) are defined as

I(u ) =f [F(u W)+Zr" ]8'

(35)

(36)

where the functions p and VT, are given by

p(k) =(2n. )
~ fdr e '"'~Pf(r)

~

Vz, (k.)=(2 n} '~ fdre '"'VT, (r} .

(29)

(30)

and

Q(u)= fdkpf(k) ,'*(—k'+Zpz)

Xexp[ iu(k—2+Zpz)/2v] . (37)

Z"
T

k

p(k)=2' Zprr [(2Zp) +k ]

(31)

(32)

In Eq. (31), c=——1+1/H. Inserting these expressions
into Eq. (28} and reducing the power of the denominator
in p by use of a parametric differentiation with respect to
ZP, formulas 3.725. 1 and 3.728.2, respectively, of Ref.
[27] allow one to evaluate the first and second terms aris-

ing from the two terms in VT, to give

Since P=1, the P dependence in Eq. (8b) has been

neglected, consistent with earlier approximations.
Equation (30) can be evaluated by means of formula

3.411.6 of Ref. [27] while Eq. (29) is easily found with the
replacement Z~2Z in P„(k) and suitable normalization

of the result. One obtains
2 —1

V (k)=(—)'" ——g ( —c) k'+-
m=1

Xexp[ iu(k —+Zp2)/2v] . (38)

This integral gives the complex error function 4 as for-
mula 3.466.2 of Ref. [27] shows. The result is

Note that there is a complete separation of the integra-
tion over the bound-state momentum k and the part of
the distortion D function which is dependent on the
short-range part of the distorting potential represented
by the exponential in Eq. (6). Already in arriving at this
equation, however, factors from the Coulomb part of the
heavy-particle motion have canceled factors arising from
the electron off-shell factor y . This separation is at the
expense of a convolution of Q(u) and exp[ iI(u)/v—)
which represents the interaction of the electronic and
heavy-particle motions.

If the specific form for the bound-state wave function is
inserted into Eq. (21) and the angular integrations are
performed, one obtains the result

Q(u)=(2Zp) ~ f dk k (k +Z )
0

with

)
F(R) (33)

Q(u ) =2 mzp [4[—,'Zp(1+i )&u/v ]—1

—iz2u /2
+Zp '(1 i )&v/—nu e

t) 0 P —mR /d
F(R)=—4Zp g (

—c)
Bzp 2c, (m /d) —(2Zp )

ZT —2ZpR
[1—e

SZP
(34)

In terms of the exponential integral

E (z) —f e
—zw

1

(39}

Substituting Eqs. (34) and (26) into Eq. (21) for the in-
I

and the function Eo(z )—:e '/z, I(u ) can be expressed as

I(u)=4Zp g ( —c)
2c

2uEo(2zpu ) E& (2Zpu ) —E, (mu /d )—8ZP
(m /d ) —(2Zp ) [(m /d ) —(2Zp ) ]

E, (2Zpu )+Z Z uE (2Z u)+
P

(40)

The integrand in Eq. (35) is highly oscillatory and of a
form for both u ~0 and u ~ 00 that barely leads to con-
vergence of the integral. Equation (35) is evaluated nu-
merically [28] by employing the technique of explicitly

subtracting the small and large u leading forms of the in-
tegrand and then adding their contributions separately.
A much more well-behaved integrand is then obtained,
leading to relatively better numerical convergence. Re-
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suits reported here are converged to within 0.01 k.
For reference purposes, note that if Vz; is approximat-

ed by a scaled potential as discussed above in Sec. III B,
then y =g is obtained. Using this result in the undis-
torted version of the theory, the off-she11 factor can be
shown to have the form [3]

/Ms
2

( 1 + —
27Tv)( 1 + 2)

(41)

IV. RESULTS AND DISCUSSION

In this section calculated E-shell electron capture cross
sections for protons incident on carbon, neon, and argon
atoms are presented. Experimental K-shell binding ener-
gies are used in the definition of the minimum mornen-
tum transfers Il:

~~

and J
~I,

and in the scaling of the impact
velocity noted in the figure captions. The experimental
energies used [23] for carbon, neon, and argon are, re-
spectively, 288, 870.2, and 3206 eV. Section IV A
presents a comparative discussion of the magnitudes of
the off-shell effects for the atoms relative to each other
and to the undistorted SPB values. In Sec. IVB, DSPB
cross sections are compared with experimental and other
theoretical results.

A. Off-shell effects

In Fig. 1 the ratio of the DSPB total E-shell capture
cross section to the IA cross section for protons on car-
bon, neon, and argon is shown versus the scaled impact

in the so-called full-peaking evaluation of the amplitude,
obtained by setting k=O in the integrand except for the
k +Z2, dependence. Also, v=Zz/u is used instead of
v„. Since v=1 at the matching velocity v =ZT, implying
that e "'«1, we have ~Msps~ =1. That is, at the
matching velocity relative to ZT, the off-shell effects van-
ish.
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FIG. 2. Ratios of DSPB and SPB [3] total E-shell capture
cross sections to IA cross section for protons on carbon versus
scaled impact velocity u, defined as for Fig. 1.

velocity v. The velocity is scaled by the target E-shell or-
bital velocity, defined as uT=(ez/13. 606)'/ where the

experimental K-shell binding energy cz is given in eV.
The range of velocities plotted for each atom generally
brackets the available experimental data. The behavior
of the curves is comparatively smooth and similar in each
case. At large velocities, the curves approach unity
showing that off-shell effects become negligible. Beyond
the peak in the cross section which occurs near u /u T = 1,
it is seen that the impulse approximation is valid to good
approximation, particularly for higher asymmetry. As
the velocity decreases, however, the off-she11 effects in-

crease in magnitude. Mostly, as the asymmetry de-
creases, the effects become more pronounced. Smaller ve-
locities imply smaller minimum momentum transfers and
less deep probing of the electron —target-ion interaction.
To whit, the screening effects increase. Over the whole
velocity range shown, the off-shell effects are seen to be
barely more than 15' in argon and 25&o in neon. For
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FIG. 1. Ratio of DSPB total E-shell capture cross section to
IA cross section for protons on carbon, neon, and argon versus
scaled impact velocity v. The velocity is scaled by the target K-
shell orbital velocity, defined as vT=—(cK/13. 606}' with the ex-
perimental II -shell binding energy cz given in eV.
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FICx. 3. Ratios of DSPB and SPB [3] total ll. -shell capture
cross sections to IA cross section for protons on neon versus
scaled impact velocity v, defined as for Fig. 1.
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FIG. 4. Ratios of DSPB and SPB [3] total E-shell capture
cross sections to IA cross sections for protons on argon versus
the scaled impact velocity U, de6ne as for Fig. 1.

10 22

carbon, the effects are generally larger, up to 40%. In
this case, however, the lower impact velocities are rather
small: for v lvT =0.6, v =2.76 a.u.

Interestingly, the magnitude of the off-shell effect for
one atom is not uniformly greater than that for another
atom with smaller nuclear charge. In particular, the
effect in argon are slightly larger than the neon ones at
scaled velocities greater than about 0.8. This is most like-
ly attributable to a considerably larger screening effect in
argon (with eight electrons). The increased effects of the
screening for lower velocities eventually take over, how-
ever, and the off-shell effects in neon then become larger
than for argon.

We compare in Figs. 2—4 the off-shell effects arising in
the DSPB theory with those arising in the undistorted
theory (SPB) for each atom, respectively. The results are
once again plotted versus the scaled velocity. In all cases,
it is seen that the effects in the undistorted theory are, on
the whole, much larger and increase both for small and
large velocities. For carbon and neon, the effects reach a
minimum in the vicinity of the matching velocity while
for argon they continually decrease. It would seem, how-
ever, in view of Figs. 2 and 3 that at still lower velocities
than are shown in Fig. 4, the argon effects would reach a
minimum and then increase also. The fact that the effects
in the SPB theory do not disappear (that is, the ratio
equals unity) when the scaled velocity equals one, as Eq.
(41) implies, derives partly from our use of transverse-
peaking results in the figures versus a full-peaking ap-
proximation in Eq. (41), and partly from the different
scaling of the velocity, by vT&Zr, in the figures.

B. Total K-shell cross sections

In the present work we have emphasized how the off-
shell effects are altered in the DSPB theory versus the
SPB theory. Still, the final determination of the total
cross section rests on an evaluation of the IA cross sec-
tion, since we have shown the DSPB cross section to be
the product of an off-shell factor and an IA cross section.
Figure 5 presents IA total K-shell capture cross sections

&0o

Energy (MeV)

10'

FIG. 5. IA total K-shell capture cross sections for proton im-

pact on neon and argon atoms. In a scaled hydrogenic model,
the amplitude is evaluated exactly [28] and in a transverse-
peaking approximation [3].

for proton impact on neon and argon targets. Within the
framework of a scaled hydrogenic model, a comparison is
shown of results obtained when the amplitude Eq. (23) is
evaluated exactly [29] and in the transverse-peaking ap-
proximation [3] used in the present work. It is seen both
for neon and argon that the transverse-peaking cross sec-
tions agree excellently in shape with the exact cross sec-
tions, and that their magnitudes are generally too large
by at most 20%. If the exact cross sections were used in
the comparison with experiment below, even better
agreement would be found than is shown. However, we
maintain a consistent treatment and employ our
transverse-peaking results. Similar screened-hydrogenic
cross sections for carbon are not available for compar-
ison. We conclude that the transverse-peaking approxi-
mation is therefore justified for the present discussion.

We compare in Figs. 6—8 our calculated DSPB total
E-shell capture cross sections for protons on carbon,
neon, and argon with experimental and other theoretical
results. In Fig. 6 for carbon, the experimental results are
those of Cocke and co-workers [12] and the theoretical
results are from the continuum distorted-wave theory of
Belkic, Gayet, and Salin [16], the renormalized SPB ap-
proximation of Marxer and Briggs [18],and the coupled-
Sturmian-pseudostate calculation of Winter [19]. The
theoretical results are for 1s —+1s capture only while the
experimental results include capture to all final states.
For the coupled-state work, the values given in Table V
of Ref. [19]have been averaged. It is seen that agreement
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with experiment is rather good at the higher velocities,
particularly so, taking into account the excited-state cap-
ture component which is thought to be about 20%. At
the lower velocities, the DSPB results are somewhat high,
but the excited-state part is harder to estimate, and the
approximations used in the DSPB amplitude are less well
justified because of the low absolute magnitude of the ve-
1ocity.

The renormalized SPB theory is seen also to give good
agreement with the data, being slightly high at the higher
velocities and low at the lower velocities. The shape of
the RSPB curve seems to be too broad while the DSPB
curve agrees better, although it is shifted somewhat to
the low-velocity side. The RSPB theory [18] improves on
the SPB theory by correcting for a loss of normalization
sufFered by the off-shell scattering state [Eq. (13) with S
omitted]. While the justification of the need for renor-
malization is certainly valid, the manner of introduction
of the correction is not grounded in the formal theory of
scattering, and the rather approximate evaluation of it
contrasts with an otherwise exact treatment of the SPB
amplitude. Still, the agreement with the experimental re-
sults in the carbon case (and neon and argon below) is
good. The di6'erences between the DSPB and RSPB re-
sults are generally the same for carbon, and neon and ar-
gon (below), the RSPB results being lower at the low ve-

locities and higher at the high velocities.
The agreement of the DSPB cross sections with the

coupled-Sturmian results of Winter [19] is quite good.
This is especially notable since the same model target po-
tential and experimental binding energy are employed in
both calculations. The convergence of the results of
coupled-channels and perturbative treatments with each
other and with experiment is particularly encouraging.
Also shown in Fig. 6 are the CDW result which rapidly
become too high as the energy decreases, as is expected
according to the validity criterion of the theory [17].
Somewhat surprisingly, though, the RSPB and CD% re-
sults are virtually identical at high energies.

In Fig. 7 for neon, the experimental results are from
Cocke et al. [13]and Rgfdbro et al. [12],and the theoret-
ical results are from the renormalized SPB approximation
[18] and the coupled-Sturmian-pseudostate calculation of
Winter [20]. The experimental results include capture to
all final states. The comments on the agreement between
the DSPB results and experiment for the carbon target
are generally valid for the neon case also. The overall
agreement in the neon case is, however, somewhat better.
This fact most probably results from the smaller errors in
our approximations due to the greater asymmetry of the
collision (Zp/Zr= 1/10) and the greater magnitude of
the velocities involved. The RSPB results likewise show
comparable agreement with experiment as for carbon,
though the cross section is somewhat high for the larger
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FIG. 6. Total K-shell capture cross section for protons on
carbon versus impact energy E. Experimental results: Rddbro
et al. [12]. Theoretical results: DSPB, present work; continu-
um distorted wave (CDW), Belkic, Gayet, and Salin [16];renor-
malized SPB (RSPB), Marxer and Briggs [18];coupled Sturmian
pseudostate, Winter [19]. The experimental results include cap-
ture to all final states.

10o

Energy (MeV)

FIG. 7. Total K-shell capture cross section for protons on
neon versus impact energy E. Experimental results: Cocke
et al. [13]; Rtt(dbro et al. [12]. Theoretical results: DSPB,
present work; renormalized SPB, Marxer and Briggs [18];cou-
pled Sturmian pseudostate, Winter [20]. The experimental re-
sults include capture to all final states.
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velocities.
The agreement of the DSPB cross sections with the

coupled-Sturmian results of Winter [20] is good, although
relative to carbon, the DSPB neon results are slightly
higher than the Sturmian results. Here also, the same
model target potential and experimental binding energy
have been employed in the two calculations. The Sturmi-
an results for neon, as for carbon, represent an average of
the results obtained using three bases of progressively
larger size. The range of the three values for a given en-
ergy is somewhat larger for neon than for carbon [20].
Still, the good agreement of the coupled-channels and
perturbative treatments with each other and with experi-
ment is encouraging.

Figure 8 for argon shows, in addition to the DSPB re-
sults, experimental results from Macdonald, Cocke, and
Eidson [14] and Horsdal-Pedersen et al. [15] and other
theoretical results including those from the continuum
distorted-wave theory of Belkic and McCarroll [17], the
RSPB approximation [18], and the coupled-channels
(CC) calculations of Ford et al. [21]. The experimental
results include capture to all final states. The comments
on the agreement between the DSPB results and experi-
ment for neon are equally valid for the argon case.
Overall agreement for argon is excellent at the high ve-
locities, but the present results are slightly high for the
lower velocities. The good agreement again results from

the smaller errors in our approximations due to the
greater asymmetry of the collision (Zt /Zr= 1/18) and
the large velocities involved. The RSPB results similarly
show the same agreement with experiment as for neon;
the cross section is somewhat high for the larger veloci-
ties. The coupled-channel results presented in Fig. 8 tend
to agree with the present theoretical results, except the
highest-velocity data point which is too high and the
lowest-velocity point which is very low. Finally, the
CDW results shown in Fig. 8 are, except at the low- and
high-velocity limits of the data, too low, and exhibit
structure at intermediate velocities not reproduced in the
data. At high energies, the DSPB and CDW results ap-
pear to converge although the curves could simply be
crossing each other.

V. CONCLUSION

In summary, it has been shown that, in contrast
with the undistorted strong-potential Born approxima-
tion, inclusion of an accurate representation of the
electron-target-ion interaction in the distortion poten-
tial, and thus in the description of the distorted heavy-
particle motion itself, leads to radically different off-shell
effects in the total E-shell capture cross section. The
cross sections obtained with the distorted theory are in
quite good agreement with the experimental data and,
overall, the agreement is considerably better than that of
the original undistorted SPB theory. Significant improve-
ment is obtained over results of other perturbative
theories, except for the renormalized SPB approxima-
tions which, however, is not based entirely consistently
on formal scattering theory. The simple picture of
inner-shell capture involving ionization of the electron
from the target followed by attachment to the projectile
is maintained while a more accurate and well-founded
treatment is employed, taking full account of the
anomalies of Coulomb scattering.

It has been argued here that the transverse-peaking ap-
proximation introduces generally small errors in the am-
plitude, but to obtain a complete picture of the distorted
strong-potential Born approximation, better evaluations
of the ionization matrix element and off-shell factor need
to be performed without the factorization effected here,
together with a more accurate treatment of the longitudi-
nal components and, perhaps, the transverse components.
Only then can one fully judge how valid a representation
of inner-shell capture the DSPB approximation provides.
This calculation is currently under investigation.
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APPENDIX:
OFF-ENERGY-SHELL SCATTERING

While the concept of off-the-energy-shell scattering
arises naturally in the theory of scattering amplitudes for
rearrangement processes, it is perhaps worthwhile to out-
line an intuitive picture of off-energy-shell scattering in a
time-dependent development. Consider the final bound
state of the captured electron in the frame of the projec-
tile. To express this state in the target frame in a nonre-
lativistic treatment, it is necessary to perform a Galilean
boost of it. If, in addition, the coordinate space represen-
tation of this state is Fourier analyzed as

Pf(rp)e
"

=(2ir) ~ f dkP&(k)e'

one finds in the target frame the new function (denoted
with an overbar)

—
iaaf

t i (v rr —((1/2)v +sf )t),
I IT e 8 Ipf rT vt

=( )-'"f
where s(k)= —,'v +v k+s&. In eff'ect, this wave function
represents the electron as a packet (centered around the
projectile) of traveling plane-wave states of index k and
momentum k+v. The corresponding energy (that is, the
factor multiplying t in the exponential) of each com-
ponent is s(k). However, this energy is not the same as
that of the plane-wave component. The difference is

be= —,'(v+k) —E= —,'k —EI,

and it never equals zero.
Off-shell scattering arises generally in any type of rear-

rangement collision, where an active particle is
transferred from one frame to another relatively moving
frame. The nonuniform effects encountered in the
present work as the energy shell is approached, i.e., as
5c~0, result from the long-range r ' behavior of the
Coulomb potential.

We can judge the order of magnitude of the energy
difference by noting that as a result of the presence of
Pf(k) in the integrand, the bound-state momentum k has
the order of magnitude k-Z~, implying that Ac. -Z~.
The energy c. has the order of magnitude c-v . Conse-
quently, the energy defect is small:

Ac((g .

This then is the justification of our near-shell approxima-
tion.

If the time evolution of this state under the inhuence of
a potential V is considered, the resulting wave function
can be shown to be a solution of an inhomogeneous
Schrodinger equation:

This wave function is identical to the one defined by Eq.
(13). Indeed, Eq. (13) is obtained by operator manipula-
tion of this inhomogeneous Schrodinger equation.
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