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An expression that allows one to evaluate the electron-electron coalescence density in terms of the
one-electron density function at the Hartree-Fock level is derived. Then it is shown, by calculation with
highly accurate wave functions of He-like ions, that this expression represents a simple and accurate
upper bound to the electron-electron coalescence density for nearly exact wave functions.

PACS number(s): 31.10.+z, 31.20.Tz, 71.10.+x

Electron-pair properties are important in modern elec-
tronic structure theory because of the electron correla-
tion energy. Also, relationships between electron-pair
properties and one-electron properties are of considerable
interest in density-functional theory for they may give the
clue for better exchange-correlation functionals [1-4]. In
particular the electron-electron coalescence or intracule
(relative motion) density at the origin (8(u)), with
u=r,;—r,, has recently received considerable attention
[5,6]. Thus, Dehesa et al. [S], starting from the unimo-
dal character of the spherically averaged electron-pair
density function A (u), and the inequality h(u)=h'(u),
have derived analytically, with the aid of Stieltje’s
theorem, upper and lower bounds of increasing accuracy
to the electron-electron coalescence density which in-
volve moments of the interelectronic vector u. Further,
the lower bounds have been improved by Koga et al. [6],
who found after extensive calculations that
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which correlate various expectation values of the in-
terelectronic vector u, like the total electron-electron
repulsion E,, =(u ~!), with the electron-electron coales-
cence density. The accuracy of these bounds, for He-like
ions, is found to decrease with increasing nuclear charge
Z. Thus Eq. (1) has an accuracy of 99.67% for H™ and
only 54.46% for Net®. Nevertheless, it is worth noting
that both bounds involve electron-pair properties.

In this paper a simpler and accurate upper bound to
the electron-electron coalescence density, which for the
Hartree-Fock-like wave functions turns out to be exact, is
presented. Let us start out from a Hartree-Fock wave
function ¥ for N a-spin and N B B-spin electrons, and let
N=N%+NP. Then, the intracular density

Iyp(w)=3 (¥|8(u—r,+r;)|¥) (3)

i<j

can be written as (7]
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where drf" stands for the orbital part of the spin orbital
Xi =¢?’ o; with spin ai,SUi’aj is the Kronecker delta, and

IHF(U)=
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6=8(u—r,+r,) is the Dirac delta function. Hence the
electron-electron coalescence density is
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Having in mind that p®=3M [¢%? and

PP=3 o, [¥F1% we obtain
IHF(O)':fdrP?lF(r)PIﬁ«]F(r) . (7)

Equations (5)-(7) are due to the particular form of the
second-order density matrix within the Hartree-Fock ap-
proximation, as pointed out earlier by Lowdin [8]. Recall
that for the diamagnetic case p&ir=phr= 1pyur; then

Iyp(0)=1 [drphg(r) . @®)

Equations (7) and (8) are important since they tell us how
to calculate the intracular density at the origin through a
functional of the one-electron density function, namely, a
quantity referred earlier to as the ‘““average electron den-
sity” and denoted as {p). However, these equations have
been derived for Hartree-Fock-like wave functions, and
therefore, they will not, in principle, apply for exact wave
functions. In fact, this has been found to be the case for
the He-like isoelectronic sequence. We have calculated
both 7., (0) and 1{p,,) for the explicitly correlated near-
ly exact wave functions of Hart and Herzberg [9] for the
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He-like ions with Z =1, 2, 3, 4, 8, 10, and 12. Results
are shown in Table I. For completeness we have also in-
cluded values of electron-electron coalescence density
evaluated from a Hartree-Fock near-limit wave function.
It is immediately observed that the Hartree-Fock and the
exact values for 1{p) compare very well, which rein-
forces the well-known fact [10] that Hartree-Fock one-
electron densities are reasonably accurate. On the other
hand, the table shows that the equality of Egs. (7)-(8)
does not hold for the “exact” wave functions. However,
it does show the following inequality,

10)<p) , 9)

namely, the average electron density divided by 4 is an
upper bound to the electron-electron coalescence density.
In order to ascertain the quality of this bound, Table I
lists previously reported [5] upper bounds (U;). Inspec-
tion of these data clearly reveals that for Z <5 our
bounds are poorer, but for Z > 5 our bounds are appreci-
ably tighter. Indeed, the quality of our bounds increases
with Z from 17% for H™ to 91% for Mg!®*, unlike Us,
which decreases with increasing Z from 78% for H™ to
63% for O"S. It is worth noting that Eq. (9) represents
an accurate upper bound to the electron-electron coales-
cence density and is easier to calculate than the
U,(k=0,1,...) upper bounds, previously reported by
Dehesa et al. (5], for the latter involve the electron-pair
density while our equation (7) only involves the more fa-
miliar one-electron density through the average electron
density. It should be mentioned that upper [11] and
lower [12] bounds to the latter quantity {p), which has
been shown to be experimentally accessible via x-ray
scattering intensities [11], have been reported.
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TABLE 1. Electron-electron coalescence density and its
bounds in atomic units for He-like ions.

Exact Hartree-Fock®
z 1(0) (p)/4 Uy I(0)=(p) /4
1 0.002 854 0.016 589 0.003 643 0.016286
2 0.107 495 0.191900 0.121 600 0.190 460
3 0.536 025 0.783991 0.625200 0.769 882
5 3.322380 4.133372 4.236 000 4.089110
8 15.897 330 18.095 541 18.044 612
10 32.664 735 36.322 103 52.860 000 36.122 153
12 58.364 877 64.073 826 63.347454

2Obtained with the 6-311G* basis set [13].
®Taken from Ref. [5].

In summary, we have shown an expression that allows
us to evaluate at the Hartree-Fock level, the electron-
electron coalescence density as a functional of the one-
electron density function. For exact wave functions of
He-like ions with Z 25, it appears to be an upper bound
to the electron-electron coalescence density of appreci-
ably greater accuracy than those previously reported.
This accuracy is found to increase with increasing nu-
clear charge. Finally, we would like to point out that for
the general case we have not proven Eq. (9); however, in
view of the evidence given for the He-like ions, it looks
like a plausible conjecture. More research to further clar-
ify this point is in progress.
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