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Upper bounds to the electron-electron coalescence density in terms of the
one-electron density function
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An expression that allows one to evaluate the electron-electron coalescence density in terms of the
one-electron density function at the Hartree-Fock level is derived. Then it is shown, by calculation with

highly accurate wave functions of He-like ions, that this expression represents a simple and accurate
upper bound to the electron-electron coalescence density for nearly exact wave functions.

PACS number(s): 31.10.+z, 31.20.Tz, 71.10.+x

Electron-pair properties are important in modern elec-
tronic structure theory because of the electron correla-
tion energy. Also, relationships between electron-pair
properties and one-electron properties are of considerable
interest in density-functional theory for they may give the
clue for better exchange-correlation functionals [I—4]. In
particular the electron-electron coalescence or intracule
(relative motion) density at the origin (5(u)), with
u =r, —r2, has recently received considerable attention
[5,6]. Thus, Dehesa et al. [5], starting from the unimo-
dal character of the spherically averaged electron-pair
density function h(u), and the inequality h(u) h'(u),
have derived analytically, with the aid of Stieltje's
theorem, upper and lower bounds of increasing accuracy
to the electron-electron coalescence density which in-
volve moments of the interelectronic vector u. Further,
the lower bounds have been improved by Koga et al. [6],
who found after extensive calculations that

(5(u)) & e
—1 —3(lnu)

N N

I (0)2 y y fdry
i=1j Na+1

+ X X f«4 4'0
i=N +1 j=1

(5)

or
N~

I (0) y y f
1j =N +1

(6)

IHF(u)=
2 g g [(g;'f, 'i5ig, 'QJ. ')

i=1 j=1

()
where P;

' stands for the orbital part of the spin orbital

y; =P; 'o; with spin o;,5 is the Kronecker delta, andi' j
5=5(u —r, +r2) is the Dirac delta function. Hence the
electron-electron coalescence density is
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Having mind that
p~=g, , i+i, we obtain
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can be written as [7]
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which correlate various expectation values of the in-
terelectronic vector u, like the total electron-electron
repulsion E„=(u '), with the electron-electron coales-
cence density. The accuracy of these bounds, for He-like
ions, is found to decrease with increasing nuclear charge
Z. Thus Eq. (1) has an accuracy of 99.67% for H and
only 54.46% for Ne+ . Nevertheless, it is worth noting
that both bounds involve electron-pair properties.

In this paper a simpler and accurate upper bound to
the electron-electron coalescence density, which for the
Hartree-Fock-like wave functions turns out to be exact, is
presented. Let us start out from a Hartree-Fock wave
function qi for N n-spin and N~P-spin electrons, and let
N=N +X~. Then, the intracular density

Equations (5)—(7) are due to the particular form of the
second-order density matrix within the Hartree-Fock ap-
proximation, as pointed out earlier by Lowdin [8]. Recall
that for the diamagnetic case pHF=pH„=—,'pHF,' then

IHF (0)= ,' fd r pHF(r ) .— (8)
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Equations (7) and (8) are important since they tell us how
to calculate the intracular density at the origin through a
functional of the one-electron density function, namely, a
quantity referred earlier to as the "average electron den-
sity" and denoted as (p). However, these equations have
been derived for Hartree-Fock-like wave functions, and
therefore, they will not, in principle, apply for exact wave
functions. In fact, this has been found to be the case for
the He-like isoelectronic sequence. We have calculated
both I,„(0)and —,

' (p,„)for the explicitly correlated near-

ly exact wave functions of Hart and Herzberg [9] for the
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He-like ions with Z =1, 2, 3, 4, 8, 10, and 12. Results
are shown in Table I. For completeness we have also in-
cluded values of electron-electron coalescence density
evaluated from a Hartree-Fock near-limit wave function.
It is immediately observed that the Hartree-Fock and the
exact values for —,'(p) compare very well, which rein-

forces the well-known fact [10] that Hartree-Fock one-
electron densities are reasonably accurate. On the other
hand, the table shows that the equality of Eqs. (7)—(8)
does not hold for the "exact" wave functions. However,
it does show the following inequality,

(9)

namely, the average electron density divided by 4 is an
upper bound to the electron-electron coalescence density.
In order to ascertain the quality of this bound, Table I
lists previously reported [5] upper bounds ( U3). Inspec-
tion of these data clearly reveals that for Z(5 our
bounds are poorer, but for Z & 5 our bounds are appreci-
ably tighter. Indeed, the quality of our bounds increases
with Z from 17% for H to 91% for Mg' +, unlike U3,
which decreases with increasing Z from 78% for H to
63% for 0+ . It is worth noting that Eq. (9) represents
an accurate upper bound to the electron-electron coales-
cence density and is easier to calculate than the
U„(k=0,1, . . . ) upper bounds, previously reported by
Dehesa et al. [5], for the latter involve the electron-pair
density while our equation (7) only involves the more fa-
miliar one-electron density through the average electron
density. It should be mentioned that upper [11] and
lower [12] bounds to the latter quantity (p), which has
been shown to be experimentally accessible via x-ray
scattering intensities [11],have been reported.

TABLE I. Electron-electron coalescence density and its
bounds in atomic units for He-like ions.

Exact Hartree-Fock'

1

2
3
5

8
10
12

0.002 854
0.107 495
0.536 025
3.322 380

15.897 330
32.664 735
58.364 877

(p) r4

0.016 589
0.191900
0.783 991
4.133 372

18.095 541
36.322 103
64.073 826

U b

0.003 643
0.121 600
0.625 200
4.236000

52.860 000

I(0)=(p) r4

0.016286
0.190460
0.769 882
4.089 110

18.044 612
36.122 153
63.347 454

'Obtained with the 6-311G + basis set [13].
Taken from Ref. [5].
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In summary, we have shown an expression that allows
us to evaluate at the Hartree-Pock level, the electron-
electron coalescence density as a functional of the one-
electron density function. For exact wave functions of
He-like ions with Z ~ 5, it appears to be an upper bound
to the electron-electron coalescence density of appreci-
ably greater accuracy than those previously reported.
This accuracy is found to increase with increasing nu-
clear charge. Finally, we would like to point out that for
the general case we have not proven Eq. (9); however, in
view of the evidence given for the He-like ions, it looks
like a plausible conjecture. More research to further clar-
ify this point is in progress.
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