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Time-independent perturbation theory for quasinormal modes in leaky optical cavities
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If a cavity is leaky, its "modes" are quasinormal modes (QNM's) with complex frequencies, and they
do not constitute a Hermitian system. Nevertheless, the time-independent perturbation arising from a
small change of the dielectric-constant distribution can be formulated in terms of these discrete QNM's,
resulting in a generalization of the usual perturbation scheme to a non-Hermitian situation. In particu-
lar, shifts for the imaginary parts of the eigenvalues are obtained as well. This paper presents this theory
for scalar waves in one dimension.

PACS number(s): 42.60.Da, 42.55.—f, 42.25.—p

I. INTRODUCTION

The scalar analog of electromagnetic waves in a one-
dimensional model optical cavity is described by

8 8
p(x) — y(x, t) =0,

dt Bx

where p(x) is the dielectric constant, here assumed to be
nondispersive and nonabsorptive, but spatially inhomo-
geneous. (The notation p emphasizes the analogy to the
transverse vibrations of a string with linear density p,
which has been extensively studied [1] as models of dissi-

pative systems. ) We shall first specialize, without much
loss of generality, to situations where there is a totally
rejecting mirror placed at x=0, represented by the
boundary condition y(x=0, t)=0 We f.urther assume
that p(x) is such as to create an optical cavity. A simple
example is p(x)=1+M5(x —a ), where the 5 function is
a large mass attached to the string, making the point
x =a nearly a node; in optics language, a thin slab of high
refractive index forms a partially transmitting dielectric
mirror. The case of a cavity defined by partial transmis-
sion on both sides, with outgoing waves as x ~+ ao, can
be handled as well. The "modes" of the cavity are quasi-
normal modes (QNM's) because energy is lost from the
cavity due to leakage. The QNM's are solutions to (1.1)

p(x, t ) =f~ (x)e (1.2)
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with outgoing-wave boundary condition at infinity. The
frequencies co. are complex, with negative imaginary
parts. For a cavity that has a small leakage, Imco =0, f
is nearly real, and the QNM's are in some sense close to
the normal modes of the corresponding enclosed cavity.
The latter is a Hermitian system, whose normal modes
form a complete orthogonal basis, to which all the usual
mathematical formalisms can be applied. It is therefore
natural to ask whether the QNM's [f, ] of a leaky cavity

can play the same role; the answer is by no means obvi-
ous since a leaky cavity by itself is not a Hermitian sys-
tem.

In a previous paper [2], hereafter called I, we have
shown that provided p(x) has a discontinuity at some
x =a (either in the function itself, or in any of its deriva-

tives), and provided that p(x) approaches its asymptotic
constant value sufficiently rapidly, then [f ] forms a
complete set in the domain 0 & x & a for functions satisfy-
ing the outgoing wave conditions at infinity. In many cir-
cumstances, a set of "zero modes, " which have no coun-
terparts in the corresponding enclosed cavity, are neces-
sary to ensure completeness. Moreover, the retarded
Green's function G (x,y; t} for t & 0 can be expressed as a

lN
sum over f&(x}f~(y)e '. In the case of a system
defined on the full line, with p(x} having discontinuities
at x =a, , . . . , aN, the completeness holds for all x,y ly-

ing between the leftmost discontinuity a, and the right-
most discontinuity aN [2].

Hitherto, all rigorous treatments of optical phenomena
in leaky cavities have relied on the modes of the universe,
which involve q&(x, t) not just inside the cavity but also
outside. These are continuous in frequency and
mathematically more complicated. Moreover, they tend
to obscure the often simple physics, which at a heuristic
level is readily described in terms of discrete "modes, "
e.g., the "modes" of a laser. The results in I open the
way to a systematic program of recasting all these works
in terms of the discrete QNM's, in a way that is both
mathematically precise and physically intuitive. The
works that could be so reformulated include discussions
on the density of states [3],stimulated emission [4], cavity
QED effects [5], quantization [6], lasing [7], etc. In this

paper, we take the first step in this program by dealing
with time-independent perturbation of the dielectric con-
stant

p(x)~p(x)+is V(x),

where ~)u~ &&1, and the "potential" V(x) is confined to
the cavity. The object, in parallel with the standard per-
turbation series, is to express the corrections to the fre-
quencies co. and QNM eigenfunctions f (x) as a series in
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p, in terms of the matrix elements of V.

One might at first attempt to approach this problem by
making use of the completeness and orthogonality of
[f ]p.roved in I, in much the usual way. This turns out
to be impossible, because the functions f are. complete
within the cavity, but are orthogonal only under a suit-
ably defined inner product that also involves the outside
[2]. Consequently, the concepts of completeness and
orthogonality are incongruent and cannot be used togeth-
er, and we have to resort to a derivation that relies only
on the completeness and the corresponding representa-
tion of the Green's function.

The time-independent perturbation of QNM's has im-
mediate application to any situation in which the dielec-
tric constant inside a cavity is changed slightly, e.g., by a
temperature fluctuation. Our work on this general for-
malism has in particular been motivated by experiments
involving laser interaction with microdroplets [8], the
physics of which is dominated by the sharp resonances,
i.e., QNM's, which in this context are generally referred
to as morphology-dependent resonances. Specifically one
is often interested in the shifts in the frequencies and
widths of the resonances when the droplet departs slight-
ly from sphericity, or undergoes other small changes.
These shifts, the splitting of the originally degenerate an-
gular momentum multiplet, and their mutual interference
have all been observed [9], and these have also been used
to infer the degree of departure from sphericity. Largely
in this context, the perturbative formalism for the fre-
quencies has been developed, without using the complete-
ness relation of the quasimodes [10], which makes the
formalism (especially the second- and higher-order for-
malism) rather complicated. The present paper will in-
stead generate a perturbative series using the discrete
QNM basis, which is therefore no more complicated than
the usual Rayleigh-Schrodinger series. More important-
ly, it manifestly goes over to the corresponding series in
the case of a totally enclosed cavity defining a Hermitian
system.

II. FORMALISM

statement reads

f(o)(x)f(0)(y }j J
(0) (0)

coj (co coj }
(2.3}

where the unperturbed eigenvalues and eigenfunctions,
denoted by a superscript (0},satisfy

82 2
+co' ' p(x) f' '(x)=0,

gx2 j j (2.4)

with fj
' (x =0)=0 and the outgoing-wave boundary

condition as x~ cc. In writing (2.3), we have assumed
that fj

' is normalized to

(2.5)

in which the generalized norm has been defined in I.
Put

6=D+6',
so that (2.1}becomes

(2.6)

+co p(x) 6 '=)Mco2V(x)G .
X

(2.7)

where

W(x, co)=co V(x) . (2.9)

In an obvious notation, and henceforth dispensing with
since there is no danger of confusion with the t

domain, (2.8) is

6'=pDW6,

from which one obtains the formal iterative solution

(2.10)

By virtue of (2.2), D is the inverse of the operator on the
left of (2.7), so that one has exactly

6 '(x,y;co) =(M f dx)D(x, x) ', co) W(x), co}6(x),y;co),

(2.8)

A. Series for the exact Green's function 6=D+pDWD+p2DWDWD+ (2.11)

The exact system in the frequency domain is governed
by the Green's function G(x,y;co) satisfying

+co [p(x)+)MV(x)] G(x,y;co) =5(x —y) .
X

(2.1)

The causal boundary condition on 6(x,y;t) implies that
6 is analytic in the upper half of the co plane. The zero-
order Green's function G, henceforth denoted as D,
satisfies

G(x,y;co)=g f' )(x)Gjk(co)fk( '(y),
jk

D(x,y;co}=gf'. )(x}Djk(co)fk )(y),
jk

W,„(co)=co Vjk(co).

= I dx fj '(x)W(x, co)fk '(x) .

(2.12)

(2.13)

(2.14)

Now assume that V(x) =0 for x )a; then all the coor-
dinates involved in (2.11) are inside the cavity, for which
(2.3) applies. Then define the matrices Gjk, Djk, and W,k

by

a2
+co p(x) D(x,y;co) =5(x —y) .

BX
(2.2) The matrix D is diagonal and given explicitly by

In I, we have shown that for 0 (x,y (a, D(x,y; t) can be
represented in terms of the QNM's of the system, labeled
by an index j. Recast into the frequency domain, this

1 1
Djk ~ } (0) (0) fijk

coj (co coj )
(2.15)

The matrix Wjk is symmetric, but not Hermitian since
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RJ"
6 = — A

2N N N
'k

p p

(2.16)

The normalization constant A will be chosen for con-
venience later; this then defines the residue matrix R ".
We shall later see that this residue factorizes as

the eigenfunctions are not real. Then (2.11) is recovered
in exactly the same form as an equation for the corre-
sponding matrices. In other words we have obtained a
perturbative series for the exact Green's function in the
basis set If,' 'I, without having to invoke the orthogonal-
ity of the set.

The exact eigenvalues N are the poles of the exact
Green's function G as calculated from (2.11). Let G
behave for N~N as

1 1
oc =0

pp (0)
p

(2.21)

PP P' " iJ JJ JP PP
IJ

(2.22)

is large. Thus, even though ~P~ &&1, the series for G in
the form given by (2.11) is not rapidly convergent, and
must be resummed by picking out all the terms with the
large factor D . Such resummation of Feynman dia-
grams involves standard techniques, and will be sketched
only briefly.

First consider the pp element, and notice that D is di-
agonal; then, from (2.11),

Gpp pp P pp pp pp Pg 'pp pi ii Wip pp

J"=aJa'
p p

thus we have, for N ~N,
(2.17) If we display explicitly the large factor D, a typical

term looks like

G(x,y;co)= — pa' f' '(x)
2N

p j PP PP PP ) PP
(2.23)

A
P y kf (0)( )

N Np k

(2.18)

But the exact Green's function must have an expansion
similar to (2.3), in terms of the normalized exact eigen-
functions fp(x), i.e.

f, (x)f, (y)
G(x,y;co) =-

2NP N Np

By comparing (2.18) and (2.19), we recognize

f (x)=A gaJf' '(x)
J

(2.19)

(2.20)

B. Eigenvalues

In order to obtain the eigenvalues N, one has to seek
the poles of the matrix G defined by (2.11). It must be
noted in particular that D is strongly dependent on N,
and since we are interested in co=co' '+0(P), the ele-
ment

The strategy is therefore to use the perturbation series
(2.11) for G, and from it find the poles co . The residues
RJ" should then factorize in the manner of (2.17), from
which one then obtains the coeScients aJ for the exact
eigenfunctions. In the rest of this paper we shall assume
that the eigenvalues are nondegenerate.

G =D +pD W D +pD W DpW Dpp+

=[D ' —PW j (2.25)

Note that the infinite series in (2.25) involves numbers,
not matrices. The eigenvalue condition is then

D ' —

GAWP

=0,
pp PP Q) —Q)

P

or, explicitly,

(2.26)

Each bracket in (2.23) has the following properties. (a) It
has the structure WDW. . . WDW, where the number of
factors of W ranges from 1 to 00. (b) However, in the fac-
tor D, only terms D;; with imp are present, since by
definition all the D factors have been separately
displayed in (2.23). One is then led to define a matrix Wp

by
Wpk= Wk+P g WJ D W k

mWP

+P2 g g W D W;D;;Wk+
m/pi/p

(2.24)
The superscript p indicates the exclusion of p for the
dummy indices; in diagrammatic language, all terms with
an internal leg p have been removed. There are no large
factors going like 0(1/P) in (2.24), so for ~P~ &&1 it is
legitimate to truncate the series. In terms of this matrix,

~p (~ ~p ) PC0 Vpp P ~ X ~pm mm(C0)vmp P ~ X X pm mm(~) mk kk(~) kp+
mXP mXP kXp

Denoting the expansion of the exact eigenvalue by

N =CO' '+ CO'"+ CO' '+ - . .

(2.27)

(2.28)

we find from (2.27) that
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~(p)
~(1)— p y
Cup Vpp, (2.29}

~(p) (0)
(2)— 2 p

PP ~ P~ (0) (0) (0) ~P4 ~+P ~m (~p (0m )
(2.30)

N N

pp & pp ~ p~ (p) (p) (p) 2 mp ~ pm (p) (p) (p) mi (p) (p) (p) ip

l Ap

(2.31)

These are similar to the usual Rayleigh-Schrodinger
series, and, as in that case, there are no small denomina-
tors. The factor of 2 and the (V ) term in (2.30) arise
because the natural eigenvalue is co rather than co. These
formulas give corrections to both the real parts and imag-
inary parts of the QNM frequencies, i.e., both the shifts
in the resonance positions and the changes in the widths.
We have previously derived the first-order result (2.29)
[10], which does not involve other modes and therefore
could be dealt with without the knowledge of complete-
ness. We have also given a limited version of the second-
order result [10] involving the contributions to Imago' '

due to transitions to other channels. The third-order
correction is new, and higher orders can be written down
as well. Somewhat simpler expressions can be obtained if
we leave the exact co implicitly on the right-hand side,
and in evaluation substitute a lower-order numerical
value.

From (2.16), only the combination A RJ is defined.
We adopt the convention ap = 1, so that

or

A
G =[D ' pW ]-

2Np N Np
(2.32)

(2.33)

C. Eigenfunctions

Next consider the series (2.11) for GPJ (jAp) near
(0=0J . Again using (2.24) and, isolating the large ele-
ment D, we have

In the above derivation, we have assumed that as
a~cop, only one element Dpp is large. If there are degen-
eracies, then an entire submatrix D in the degenerate
subspace is large, and the large elements must all be sin-
gled out and resummed, leading to slightly more compli-
cated results than (2.29)—(2.31). The modifications are
relatively straightforward, and will not be detailed in this
paper.

Gpj PDpp Wpj DJJ +P Dpp Wpp Dpp Wpj DJJ +P Dpp Wpp Dpp Wpp Dpp Wpj Djj +

PP + ) PP PP ) PJ JJ
n=0

1 pS'P D"
Wp PJ JJ

pp

Ap
p$VP. D2' co —cop p

(2.34)

aPaJ =RPJ=p O'P-D"PP P PJ

p =I
pj jj

(2.35)

The structure of (2.34) is readily understood as follows.
Of all the dummy indices that must be summed over, all
indices equal to p have been explicitly displayed in Dpp,
whereas all indices not equal to p have been incorporated
into the matrix 8'P. Then, by comparison with (2.16) and
(2.17),

Finally, by considering the series (2.11) for GJk (j,kAp)
near co=co, in a similar manner one finds

apap =(IJ Wp~) DJJ. )(IJ Wpk Dkk }, (2.36)

which is consistent with (2.35). In other words, the ex-
pected factorization of the residue is verified.

The results (2.33) and (2.35) give a formally exact rep-
resentation of fp(x) in terms off '. '(x):
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f~(x)=A f' (x)+p g W~~~(co~)DJJ(co )f,' '(x)
J&P

(2.37}

-2
10

10

We have indicated explicitly that the frequency argument
in W . and D is to be set to co=co, this is obvious since
all these results come from comparing the residue at
co=co . The quantity 8'~ can be evaluated to any order
by truncating the series (2.24), which does not contain
any large term. If an explicit representation in terms of
unperturbed quantities is desired, then co must be fur-
ther expressed via (2.28). We show explicitly only the
first nontrivial correction:

-6
10

P
L
(D

10' I-
0
O
lU

-10
10

-12
10

3R

R
2R

f (x)= A f' '(x) +co' '—2 V
P P P 2 P (0)( (0) (0))

J&P J P J

III. NUMERICAL EXAMPLES

(2.38)

-14
10

10
2

10
3

10 10

FIG. 1. The fractional error in the real and imaginary parts
of the second- and third-order coeScients (denoted as 2R, 2I,
3R, and 31) vs the maximum value ~m~ =M at which the sums

(2.27) and (2.28) are truncated. All curves for the imaginary
part have been shifted down by a factor of 100 for clarity. For
large M, the 2R and 2I lines overlap, as do 3R and 3I.

As an example, let the unperturbed system be a dielec-
tric rod:

no, 0(x (a
(3.1)

The QNM's of this system have been discussed in detail
in I. Subject this to a perturbation p(x)~p(x}+pV(x},
with

1, 0(x (a
V(x)= '0 (3.2)

In other words, the dielectric constant in the cavity is
changed uniformly from no to no+p. In the numerical
results below, no =4,p=0.9.

The perturbed system can be solved directly. The re-
sult for co"' can be obtained by expanding the explicit
solution in )M; this agrees with (2.29). We have then com-
pared the second- and third-order coeIcients obtained
directly from the explicit solution with the perturbative
result in (2.30) and (2.31), in which the sums are truncat-
ed at

~
m

~

M. The fractional error in the real and imagi-
nary parts of these quantities are shown against M in Fig.
1, for the mode @=4. It is dear that the error converges
to zero as M~oo and the perturbative series is indeed
correct. The verification has been pursued to much
higher accuracy than the leakage, which is of order
no —1=0 (1) in this case. Although the QNM basis is

motivated by the resemblance to the normal mode basis
in the nonleaking limit, the results are emphatically not
limited in validity to small leakage. Indeed, the zero
modes [2], which have no counterparts in the nonleaking
limit, are essential.

To compare the eigenfunctions, let f (x) be the nor-
malized exact QNM function, and fz '(x) be the corre-
sponding perturbative solution up to order k, as given by
(2.37}. In evaluating the perturbative solution, all co are

expanded about co~ ', and only terms up to the indicated
order are kept. The normalization of the perturbative
solution is fixed by evaluating A~ in (2.33) to the same
order. Figure 2 shows the difference hf '"'(x) =
f~(x) —f~"'(x) for p =4 and other parameters as de-

scribed above. Since the function themselves are 0(1), the
remaining difFerence is minuscule, and constitutes a
verification of the present algorithm for eigenfunctions.

We have considered several other examples numerical-

ly, including the unperturbed systems
T

n +0M5( —xa), 0&x &a

x&a (3.3)

where the dielectric mirror represented by M renders this

0,10

0.05

0.00
(D

-0.10
0.0 0.4 0.8 1.0

FIG. 2. The difFerence 5f~"'(x ) =f~ (x )
—f~"'(x ), where

f~"'(x) is the perturbative solution up to kth order, and f~(x) is

the exact solution, for the mode p =4, and (a) k =0, (b) k =1,
and (c) k =2.



TIME-INDEPENDENT PERTURBATION THEORY FOR. . . 3073

(3.4)

which agrees with expanding the known solution in p.
The second-order perturbative correction is given by
(2.30), where, on the right-hand side,

sin'a)"'a
p

N
(3.5)

sinN a sinco~ a
p

pm mp
p m

where

X = [-'(a+M sin'~")a)]'"
p 2 P

(3.6)

(3.7)

We have checked that the sum in (2.30) agrees numerical-

ly with the result of expanding the known solution to
O(ju ). In fact the convergence of the sum is very rapid.
This example is of particular interest because the com-
pleteness and hence the perturbative solution applies to
the inside of the cavity; this example shows that it applies
all the way to the edge of the cavity.

a more realistic model of a laser cavity. This is subject to
the same perturbation as (3.2). Again the first-order per-
turbative correction to the eigenvalue has been checked
analytically, while the second- and third-order
coefficients have been verified to high accuracy nurneri-

cally.
Another example of interest is that of a string

p(x) = 1+M5(x —a ), subject to a perturbation
pV(x)=p5(x —b), 0(b ~a, i.e., an additional small

mass is attached. The same analytic and numerical
checks have been performed. Of special interest is the
case b =a, i.e., a perturbation applied right at the edge of
the cavity, in effect changing M ~M+ p. The first-order
perturbative correction is

a)"'sin'co"'a
~(1)—

a+I sin'co,"'a

IV. CONCLUSION

We have formulated the time-independent perturbation
theory for scalar waves in a one-dimensional leaky cavity
in terms of the discrete QNM's of the system. This work
represents the generalization of the familiar tools of per-
turbation theory to such a non-Hermitian system, in prin-
ciple to all orders. In particular, results are obtained for
the shifts of both the real (resonance positions) and imagi-
nary parts (resonance widths) of the frequencies of the
QNM's. The formalism has been checked explicitly
through examples. The validity is not limited to small
leakage, and the "zero modes, " which have no counter-
parts in the corresponding Hermitian systems, are not
negligible. In these regards, the generalization to the
non-Hermitian case is nontrivial.

The generalization to scalar waves in three dimensions
is straightforward if the system is spherically symmetric.
In the presence of such symmetry, the generalization to
the Maxwell equation is also straightforward, since the
electric field can be decomposed into transverse electric
and transverse magnetic parts, each of which can be re-
lated to a scalar potential which satisfies an equation
similar to (1.1) in the radial variable. This then already
allows various applications to realistic optical systems,
which will be reported elsewhere.
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