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Completeness and orthogonality of quasinormal modes in leaky optical cavities
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It is shown that for the scalar analog of electrodynamics in one dimension, the quasinormal modes of a
leaky cavity form a complete set inside the cavity, provided the cavity is defined by a discontinuity in the
refractive index. This condition is sufficiently general to apply to a number of interesting examples. The
quasinormal modes are also orthogonal under a modified definition of the inner product. The complete-
ness and orthogonality hold even though the cavity is not a Hermitian system by itself. These properties
allow the discrete quasinormal modes to be used as the basis for dynamics of the scalar wave in the cavi-

ty.
PACS number(s): 42.60.Da, 42.55.—f, 42.25.—p

I. INTRODUCTION

An optical cavity is a region of space within which the
electromagnetic (em) field is well confined—but not com-
pletely confined, if only because of the need for coupling
into and out of the cavity. Because of the leakage, the
“modes™ of the cavity are quasinormal modes (QNM’s),
characterized by complex frequencies and the outgoing
wave boundary condition far from the cavity. The
QNM'’s provide an intuitively appealing description of
the allowed em vibrations in the cavity, and are often
used heuristically in this manner, e.g., in referring to a
particular “mode” of a laser. Moreover, the QNM’s are
discrete, with wave numbers separated by Ak ~w/a,
where a is the spatial dimension of the cavity. It would
be attractive if em processes in the cavity could be de-
scribed, in a mathematically precise way, in terms of
these QNM’s.

However, because the cavity by itself is not a Hermi-
tian system, the QNM’s are not normal modes, and do
not form a complete orthonormal basis, at least not in the
usual sense. This problem would seem to preclude their
use in the precise formulation of the electrodynamics of
the cavity (including second quantization), although ap-
proximations valid in the limit of small leakage are possi-
ble [1]. Instead, one has to place the cavity in a universe
of size A (A— ), and impose boundary conditions at A
to make the universe as a whole Hermitian. The electro-
dynamics is then formulated in terms of the modes of the
universe [2—4]. The price one pays is threefold. (a) The
modes of the universe are continuous, with wave num-
bers separated by Ak ~7/A (A— ). (b) It is no longer
manifest that the electrodynamics of the cavity is in-
dependent of the assumptions made about the universe.
(c) The intuitive connection to the zero-leakage limit is
lost.

The recent surge of interest in so-called cavity QED
phenomena has added urgency to this problem. Whether
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the atomic or molecular transitions occur in microwave
cavities [5], in macroscopic [6] or mesoscopic [7] Fabry-
Pérot cavities, in monolithic semiconductor heterostruc-
tures [8] or dielectric microspheres [9], in all cases the
cavities are inevitably leaky and the modes of the
universe are difficult to compute explicitly (with the ex-
ception of dielectric microspheres on account of symme-
try [10]). There is a large class of problems in these sys-
tems involving emission from the cavity, and thus with
wave functions satisfying the outgoing-wave boundary
condition. For these problems (though of course not for
problems involving radiation going into the cavity), it
would be of great conceptual and computational advan-
tage to be able to use the QNM’s rather than the modes
of the universe.

The problems do not relate only to the second quan-
tized level of treatment. Consider a small perturbation of
the cavity (for example a change of refractive index in the
cavity, induced by temperature change), and the associat-
ed change Aw in the complex frequency w of a QNM. To
first order in the perturbation, and using the more famil-
iar quantum-mechanical analog, one might expect that

_ (y|AH|y)
o=l

in an obvious notation. The perturbation AH is confined
to the finite regions of space (e.g., inside the cavity), so
the numerator is well defined. However, with the
outgoing-wave boundary condition, the denominator
would be divergent if understood in the usual sense. It
has been found that this problem can be cured by adopt-
ing a modified definition of the norm [11,12], which al-
ready suggests that the family of QNM’s exhibits a
modified mathematical structure. The corresponding
second-order perturbation formalism [13,14] is somewhat
complicated precisely because one has to resort to the
states of the universe.

This paper addresses these issues by showing that, sub-
ject to certain conditions and under a suitable redefinition
of the inner product, the QNM’s of an optical cavity are
complete and orthonormal. The sufficient mathematical
condition are that (a) the refractive index must have a
discontinuity (physically an abrupt change over distances

(1.1)
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small compared to a wavelength), which is satisfied when-
ever there are mirrors or lens surfaces; and (b) the refrac-
tive index must approach its constant asymptotic value
sufficiently rapidly. These conditions are general enough
to be of practical use, and we shall spell out, as examples,
the application to a well-known model of a laser cavity
[2] and to dielectric microspheres [9,10]. Given this re-
sult, it becomes relatively straightforward to implement
various standard calculations using the discrete basis set:
time-independent and time-dependent perturbation
theory, adiabatic perturbation, second quantization, etc.;
these will be considerably simpler and more physical than
the corresponding formulations using the modes of the
universe, and will be discussed in a series of paper to fol-
low.

The present paper will be concerned with the wave
equation, i.e., the scalar analog of electromagnetism in
one dimension. The extension to three dimensions is
trivial when there is spherical symmetry, since each an-
gular momentum sector is a one-dimensional radial prob-
lem to which the present result applies, as illustrated by
the example in Sec. IV C.

The rest of this paper is organized as follows. Section
II gives the derivation, leading to completeness and the
definition of the norm and inner product. Section III
shows, by a WKB analysis, that the condition necessary
for the derivation is satisfied if the refractive index distri-
bution has a discontinuity, and in fact the position of this
discontinuity serves to demarcate the inside of the cavity
from the outside, with completeness valid only for the in-
side. Section IV discusses three examples, and verifies the
completeness relations numerically and, in one case, also
analytically. Attention is paid to zero modes which do
not correspond to any mode of the corresponding en-
closed cavity. This leads, in Sec. V, to a discussion of the
limitations of the usual paradigm for coupling a system to
a bath via a term in a Hamiltonian. In the case of optical
cavities, the coupling to the outside is through a bound-
ary condition, which, unlike a term in the Hamiltonian,
cannot be switched off. Concluding remarks are given in
Sec. VI.

II. FORMALISM

A. Representation of the Green’s function

The scalar analog of electromagnetism in one dimen-
sion is described by

=0, 2.1

where p(x)=n(x)% and n(x) is the refractive index dis-
tribution, here assumed to be time-independent and to
approach unity rapidly for large x. Coupling to sources
can be introduced if necessary. It is often convenient to
think of @ as the transverse vibrations of a string with
linear mass density p(x) and placed under unit tension;
such string systems [especially where p(x) contains a §
function as in (2.3) below] are well studied [15], and their
analogy to optics well known [16]. We deal with a half-
line (x >0) with the boundary condition ¢(x =0,7)=0;

this describes the totally reflecting mirror at one end of a
cavity, or the origin in cases where x represents the radial
variable in three dimensions (see Sec. IV C). The QNM’s,
labeled by a discrete index j, are defined as solutions

@(x,1)=f;(x)exp( —iw;t), where
2
L= — el ) 2.2)

with the outgoing-wave condition at x — o ; the frequen-
cies w; are necessarily complex with a negative imaginary
part.

A particular example is

p(x)=1+M8(x —a) . 2.3)

In the string language, a mass M is attached to the string
at x =a, with the string being otherwise of unit linear
density. For large M, the cavity 0 <x <a is well (but not
completely) isolated from the rest of the universe, the
point x =a is nearly (but not exactly) a node, the leakage
is small (but not zero), and the QNM’s are close to (but
not the same as) the normal modes of the corresponding
enclosed cavity. In optics language, the & function in
(2.3) represents a thin slab (thickness <<wavelength) of
high dielectric constant, forming a partially transmitting
mirror [2]. This and other examples will be used to illus-
trate the general formalism.

Consider the Green’s function for the time-dependent
problem

aZ 2

pPxX)———

o2 3x? Gix,y;t)

=8(1)8(x —y) (2.4

representing the effect at (x,¢) of an impulse delivered at
(y,t'=0). The retarded Green’s function is defined by
(2.4) together with the initial condition G (x,y;¢)=0 for
t <0, so that the Fourier transform G (x,y;w) is analytic
for Imw >0, and behaves as exp(iwx) for large x. For
general x and y, G satisfies

A(w)@(x,y;w)E 1———+a)px) G(x ;)

=—38x—y). (2.5)

The strategy is to consider the inverse transform for G,
and (a) attempt to close the contour in the lower half-
plane, and (b) show that the residues correspond to
QNM'’s. To this end, first introduce two auxiliary func-
tions f and g, defined as solutions to the homogeneous
time-independent equation A(w)f(w,x)=A(w)g(w,x)
=0, with f(w,x =0)=0 and g(w,x)=expliowx) for
X —>c0. The  Wronskian Ww)=g(lw,x)f"(w,x)
—flo,x)g'(w,x) (where '=d /dx) is independent of x.
In terms of these,

flo,x)g(0,y)/W(w), 0<x<y

2.6
glw,x)f (0,y)/W(w), 0<y<x . 2.6)

G(x,y;0)=

The normalization of f has been left arbitrary, but (2.6) is
independent of that normalization.

At a QNM frequency w=w;, the wave function can
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satisfy both the regularity condition at x =0 and the
outgoing-wave  condition at x-—»o, so that
flo;,x)=g(w;,x) and W(w;)=0. The residues of G at
these poles are given by

Rj=f(a)j,x)g(wj,y)/—a—lg§)—) 0, (2.7)
We shall show, in Sec. II C, that
8W(co) _ ©
T m wj_—2a)j fO dx p(x)f (0;,x)g (@;,x) 2.8)

along a suitably chosen contour [17]. Hence, using the
proportionality between f and g at ®=w;, and adopting
the notation f;(x)=f (@;,x),

fJ(X)f}(y)

Ri=———7—"W > 2.9

i 20, K f, 50 29
where we have introduced the generalized norm

«filf 0= [ “dx plx)fy(x? 2.10)

along the same contour, which is chosen so that the in-
tegral is well defined. Note that f; is complex, and that
f} rather than | f;|? appears, so that the generalized norm
is complex. Other properties of this norm are discussed
in Sec. I C.

The auxiliary function f (@,x) is obtained by integrat-
ing the defining equation over a finite distance, from 0 to
x, and is hence analytic in w. If p(x)=1 for x > b, then
likewise g(w,x) is obtained by integrating the defining
equation over a finite distance, from b to x, and is like-
wise analytic in @. The latter condition remains valid if
p(x)—1 as x — o sufficiently rapidly [18]. When this
condition 1is satisfied, the zeros of W(w), with residue
given by (2.9), are the only singularities of G (x,y ;).

The condition on g (w,x) is sufficient, but may not be
necessary. If g(w,x) has a factorizable singularity, i.e.,
g(w,x)=h(w)g(w,x), with g being analytic in , then the
singular factor 4 (w) would cancel a similar factor in
W (o), thus not affecting G.

B. Completeness

Invert the transform for G, and close the contour for
t >0 by a large semicircle in the lower half of the  plane.
Assume that the contribution from the semicircle is negli-
gible; the conditions necessary for the validity of this as-
sumption will be discussed in Sec. III. Then we obtain

j [ix)f;(y)
G(x,y;t)=iz L2V,
2 j (Oj«fjifj »
The defining equation (2.4) for the Green’s function and
the causal initial condition imply

—iw;t
@j

(2.11)

p(x)%%(x,y;t =0")=86(x —y) . (2.12)
Upon combining (2.11) and (2.12), one obtains

1 f,(x)f](y)

= — o =0(x —y) . .

2?p(x) TR (x —y) (2.13)
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Because the wave equation is second order in time, the
QNM’s occur in pairs [w;, f;(x)],[ —o],f] (x)], so (2.13)
can also be written as

Re I p(x)———«fj|fj » 8(x —y),

Rewj>0

(2.14)

where it is assumed that there is no QNM with Rew; =0.
(This is not always the case; see Sec. IV C.) However, it
will be seen in Sec. III that the condition for neglecting
the contribution from the large semicircle in the lower
half-plane is valid only for certain x and y; roughly speak-
ing, it will be sufficient if both x and y are both inside the
cavity. Thus the completeness relations (2.13) or (2.14)
will likewise be restricted to such values of x and y.

In the limit where the leakage is zero, the eigenfunc-
tions f;(x) would be real, with a node at the boundary of
the cavity, and ((f;|f;)) would reduce to the usual
definition of the norm. Then (2.14) reduces to the famil-
iar statement of completeness for a Hermitian system, for
which the present work constitutes a generalization. In
analogy to the well-known Hermitian case, one expects
(2.13) or (2.14) to hold only in a distribution sense.

One may refer to (2.13) or (2.14) as the weak form of
completeness, allowing an eigenfunction expansion. In
contrast, the strong form of completeness (2.11) allows
the eigenfunction expansion to be used for dynamical
evolution.

C. Definition of norm and inner product

To prove (2.8), start with the defining equation for
f(wj,x) and g (w,x), where O=Q;. The usual manipula-
tions lead to

(=0} [ “dx plx)f (0,308 (0,%)
=g(0,x)f"(@;,x)~ f(0;,x)8"(&,0)|§ , (2.15)

where the integral is taken along any contour from x =0
to R. We assume that R is large enough so that
p(x =R)=1, and since both f(®;,x) and g (w,x) are out-
going waves, the right-hand side of (2.15) becomes

i(o;—0)f (0;,R)g(®,R)
—[8(@,0)f"(@;,0)— f (0;,0)g"(@,0)] .

Differentiating (2.15) with respect to  and taking 0 —o;
then gives

Za)jfORdxp(x)f(a)j,x)g(mj,x)

(2.16)

of _9f .

d r__ ry__
law(gf /g gao) awg

2.17)

But f(w,x =0)=0 for all w, so 9f(w,x =0)/3w=0;
moreover, at a QNM, g(coj,x =0)°<f(wj,x =0)=0.
Hence the last two terms in (2.17) vanish, while



3060

gf'—fg'=W. So we get
R i
J dx px)f (0, x)g (@),x) + Ef(wj,mg(wj,m

__1 W
20; dw

(2.18)

(C()J) .

Now

flw;,R)g(w;,R) <exp(2iw;R)

i(aj +B)

]l

where a;=argw; and B=argR. Assume Rew;>0 (the
modifications necessary for the opposite case are

straightforward), then 0>a > (m/2). By choosing
B=—a;+e(e>0), el(aj P has a positive imaginary part
and f(o;,R)g(w;,R) vanishes as R-—o. In other
words, by choosing the contour shown in Fig. 1 for a suit-
able 3, the surface term in (2.18) is eliminated and we get
(2.8) and consequently the definition of the norm in
(2.10).

Alternatively, take the integral along the real axis, then
the surface term at x =R cannot be eliminated, but all
the results in Sec. II A and II B remain valid provided the
norm is now taken to be

=exp[2ilcojR|e

Crlr 0= [ lax plx)fy 02+ 5—f, (R, (2.19)
J

which is readily seen to be independent of R. This latter
definition avoids analytic continuation in the x plane, and
may be more convenient for numerical integration. The
norm (2.19) was introduced by us previously [12—~14], and
its use in (1.1) gives the correct first-order shift in fre-
quency upon a perturbation.

A third definition [11], again equivalent, is to take

€Ll = tim [ “dxe = pl)f;x) . (220

The norm is readily generalized to an inner product.
Let ¢(x) and ¢(x) be two functions that can be represent-
ed as a sum of QNM’s. Then define

<<<pt¢>>=fo""dxp(xkp(x)zp(x)

along the contour in Fig. 2, where argx —7 as |x|— 0.
Note that this is a special case of the contour in Fig. 1. If
we write @ and ¢ in terms of QNM’s, a typical term
would go as

(2.21)

0 x o, X

pY~e e

/

FIG. 1. Contour in the x plane for proving orthogonality.
The integral goes along the real axis to x >>a, and then goes
along a line making angle 8 with the real axis.
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>

FIG. 2. Contour in the x plane for defining inner products.
The line has an asymptotic argument 7, and may be regarded as
a special case of Fig. 1. The choice of contour is valid for all
pairs of QNM’s.

as |x| — oo. But since T oy lies in the lower half-plane,
and argx ~, then the exponent has a negative real part
as |x| — o0, and the integrand vanishes at the upper limit.
Then by manipulations similar to (2.15), it is readily
shown that

CFFN=0 if 0,70y ,

so the basis {f;} is not only complete but also orthogo-
nal. It is likewise possible to define inner products by tak-
ing (2.21) along the real axis, but with a regulating factor
as in (2.20) [19].

The completeness relation is restricted to the inside of
the cavity, whereas the orthogonality relation involves
the outside. If one considers the inside of the cavity
alone, say 0 <x <a, then

Sl dx pf0f 078y

and {f;} is overcomplete for the inside of the cavity
above, i.e., the representation

P(x)=3b;f;(x), 0<x<a
J

(2.22)

(2.23)

(2.24)

is not unique. This makes it impossible to deal with ini-
tial value problems for the cavity using QNM’s, which is
not surprising since a knowledge of the initial condition
for 0 <x <a alone would not lead to a unique solution.
This is, however, not a problem for other applications, as
will be illustrated elsewhere. Of course the coefficients b;
would be unique if (2.27) were to hold for all x.

For many applications (e.g., time-independent pertur-
bation theory; see the following paper), the validity of the
QNM representation (2.24) for x <a is already adequate,
and the fact that each f;(x) becomes infinitely strong as
Xx — o0 presents no conceptual or computational prob-
lems. Indeed, if all the fields are emitted by sources in the
cavity, and switched on at ¢ =0, then ¢(x,t)=0 outside
the causal domain x < ¢, simply because of the finite speed
of propagation. Therefore one would not attempt to use
the QNM representation outside the causal domain. A
more thorough discussion of this issue will be given in the
context of time-dependent dynamical evolution.

III. CONDITION FOR COMPLETENESS

The condition for the completeness of the QNM’s is
that G(x,y;w) must vanish as |w|— « in the lower half-
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plane. The behavior for large |w| should be given by the
WKB approximation. Define

Iwv)= [dxn(x), (3.1)

which is positive for v > u. In this paper we consider the
case where p(x)=n(x)* has a discontinuity at some
x =a. Then one should write WKB approximations for
0<x <a and a <x < x separately, and join the two solu-
tions using the reflection coefficient R:

_n(@’)—n(a")

. (3.2)
nia )+na™)
Then, for 0<y <x <a,
: —iwl(x,a) iwl(x,a)
Glx,y;0)~ sin[wI (0,y)][e +Re ] (3.3)

oV n(x)n (y)[e-ia)I(O,a)+ReiwI(0,a)] .

For w=wg tiw;— o with ©; <0, both the numerator
and denominator are dominated by the term proportional
to R, and

\wlll(O,y)e lofI(x,0)

G(x,y;0)~ (3.4)

leoy|1(0,a)
we

Since I(0,y)+1(x,a)=<1(0,a) for y <x, this vanishes
when |w|— o in the lower half-plane. As a result,
QNM'’s are complete inside the cavity. In fact, if n(x) is
continuous but has a discontinuity in its pth derivative at
x =a, then R <@ ?. The term proportional to R still
dominates, and the same result is obtained. Thus an ex-
tremely “soft” discontinuity is sufficient for the validity
of our result. For example, if n(x)=1 for x >a and
n(x)—1«<(1—x/a) for x <a, similar to the potential
considered in Ref. [20], the proof will go through.

For x,y >a, G(x,y;®) does not vanish as |w|— o in
the lower half-plane, and consequently the QNM’s are
not complete. Since the region outside the cavity has spa-
tial extension A(A-— ), one does not expect discrete
modes with Ak ~/a to be complete.

If p(x) does not have a discontinuity (in derivatives of
any order) on the real axis, R vanishes for |ow|— o faster
than any power, but it is difficult to estimate how small it
becomes, and consequently whether the R-dependent
terms in (3.3) dominate or not. Note that R can vanish
very rapidly, e.g., as exp(—const|w|?), o <1, and still
dominate in (3.3). We leave for future investigation the
trickier problem of whether QNM’s can still be complete
for some class of analytic p(x), but in a sense the require-
ment that there has to be a discontinuity in p(x) is not
surprising. Because the QNM'’s are discrete, the best that
one can hope for is that they are complete “inside the
cavity;” however, without a discontinuity, there would be
no natural demarcation between the “inside” and the
“outside.” Fortunately many examples of practical im-
portance, such as those in Sec. IV, do have such a discon-
tinuity.

In the discussion so far, the “inside” is bounded by
x =0 on one side, and the discontinuity at x =a on the
other. More generally, if we consider the wave equation
on the full line — o <x < 0, and assume that p(x) has
discontinuities at a,,a,,...,ay (arranged in ascending

order), then it can be shown (Appendix B) that complete-
ness holds between the outermost discontinuities, i.e.,
(2.11) and (2.13) are valid for a; <x,y <ay.

IV. EXAMPLES

A. Model of a laser cavity

A well-studied model of a one-dimensional cavity [2] is
given by (2.3). The auxiliary functions are

flo,x)=sinwx, x<a (4.1a)
glox)=1{¢ » *>@ (4.1b)
asinox +Bcoswx, x<a,
where
a=i+Mo coswae’® , (4.2a)
B=1—Mosinwae'® , (4.2b)

and W(w)=wfB. The QNM frequencies are given by the
zeros of B. [The zero of W(w) at ®=0 cancels the zero
in f(w,x) in the numerator in (2.6), and does not contrib-
ute to the contour integral.] The QNM’s belong to two
families which, for small a /M, can be written as

2
wja=j77+fl‘ - —*.1—3——.1—2 -
jm | M (Gm?  (m) M
+ , j=x1,%2, (4.3a)
and
172 372
wa=+]2| —ija|zT |a
M 2 | M 24 | M
(4.3b)

The latter pair will be referred to as the j =0 mode, or
zero mode for short, and their significance will be dis-
cussed in Sec. V. These modes, though not their com-
pleteness, have been thoroughly investigated in the litera-
ture [21].

The completeness relation then reads, for x,y <a,

sinw;x sinw;y

1 2——

R AR
where the zero mode is understood to be included in the
sum, and where the norm is, by (2.19),

(a/M)
w;alw;a+2i(a/M)] |’

=8(x —y), 4.4)

To check (4.4) in a distribution sense, let S;(x,y) be the
partial sum of (4.4) up to |j| <J, and

Lixy,0)= [7" 55,0,y dy’
a

sinw ; A

» sinw;x sinw;y . (4.6)

1
«filf;

Figure 3(a) shows |I;| vs J for several cases where
x &(y —A,y +A), and Figure 3(b) shows |I,—1]| vs J for

i<y @j
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several cases where x €E(y —A,y +A), in all cases evalu-
ated for a relatively large value of a /M =0.5. (These
quantities are fluctuating functions of J, and Fig. 3 shows
the smooth envelope which forms an upper bound.) It is
clear that (4.4) holds (in a distribution sense) exactly, and
not just to leading order in a /M, which is a measure of
the amount of leakage. Incidentally the completeness
does not hold without the zero mode.

B. Model of a dielectric rod

A second and even simpler model is a one-dimensional
dielectric rod of index ny > 1, i.e.,

n(z), x<a

px)= |, 4.7

x>a .

Exactly this system has also been discussed as a much
simplified model of gravitational radiation from stellar

(a)

104

10’ 10° 10°

10’ 102 105

FIG. 3. Numerical data verifying the completeness relation
for the model of Sec. IV A with a /M =0.5 (a) Smooth envelope
forming upper bound of |I,| vs J for (i) x =0.5a, y =0.2a, and
A=0.1a (solid line); and (ii) x =0.5a, y =0.7a, and A=0.1a
(broken line). (b) Smooth envelope forming upper bound of
|1, —1| vs J for (i) x =0.3a, y =0.25a, and A=0. 1a (solid line);
and (ii) x =0.7qa, y =0.8a, and A=0.2a (broken line).
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objects [22]. The completeness of the QNM’s has been
noticed [22], and the generality beyond the specific exam-
ple has been conjectured, though the connection with a
spatial discontinuity has not hitherto been emphasized.
We sketch below the verification of completeness, using
the language of this paper. The auxiliary functions are

f(o,x)=sinonyx, x<a, (4.8a)
e'Y* x>a
x)= . .
g (@,x) asinongx +Bcoswngx, x<a , (4.8b)
where
i . i
a=e'? [sinonya + —coswnya | , (4.9a)
no
i i .
B=e'®® |coswnya — —sinwnga | , (4.9b)
no

and the Wronskian is W(w)=wnyB. Again the zero at
©=0 does not contribute. The poles are at

wjnga =jr+(w/2—if), j=0,%x1,%2,..., (4.10)
where £=(3)In[(ny+1)/(ny—1)]. Then
_ T lx .. x
fi(x)=cos > 13 - |simim
+sin %—ié‘ % cosjT> | (4.11)

and ((f;|f; ) =nga/2. Apart from the £-dependent fac-
tors in (4.11), which are independent of j, {f;} is just a
standard trigonometric series, and (2.13) can be verified
analytically. Again, equality holds only in a distribution
sense.

This example is interesting not only because the com-
pleteness relation can be verified analytically, but also be-
cause the leakage is manifestly not small, thus demon-
strating that the present formalism is accurate to all or-
ders in the leakage rate.

We have also checked the completeness relation for the
“triangular” function

a>x>0
x>a,

x/a,

which exhibits a discontinuity only in the derivative.

C. Dielectric microsphere

There have been many experimental investigations of
the interaction of the em field with dielectric micro-
spheres, starting with Mie scattering [23], fluorescence,
and cavity QED effects [9], to nonlinear processes such as
stimulated Brillouin scattering [24], stimulated Raman
scattering [25], lasing [26], and chemical-energy transfer
[27], and the structure of the QNM’s (which in this con-
text are often referred to as morphology-dependent reso-
nances) are well studied [10,28,29]. The scalar analog
(which is strictly applicable to TE modes) is described by
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(4.12)

az
p(r)-at—z—V2 ®(r,1)=0,

where p(r)=n(r)? is assumed to be spherically sym-
metric, and n (r)=1 for r >a. Spherical symmetry allows
each angular momentum sector to be treated separately,
so writing [30]

&(r,0)=[@(r,1)/F]Y;,(6,8) 4.13)
gives
9’ 9> I(I+1) _
p(r)—aF——ar—z‘-i-——ri— @(r,t)=0. 4.14)
Apart from the replacement 9?/dx?—d%/0r?

—1(I +1)/r?, the derivation for the one-dimensional case
carriers over. Henceforth we specialize in the case of a
uniform microsphere, n(r)=n, for r <a. The auxiliary
functions are

flo,r)=rj(ngor) , (4.15a)
rhiVor), r>a
glo,r)= rlaj,(ngor)+Bn,(njor)], r<a, (4.15b)

where j;, n;, and h{! are the spherical Bessel, Neumann,
and Hankel functions. The coefficients are

a=—(nywa)? ;l—n,h,(”'—h,‘”n,' , (4.16a)
0
B=(nqwa)? nij,h,‘“'—h,‘”j; (4.16b)
0

where j,, n;, j/, and n] are evaluated at nywa, and h{Y
and h/!" are evaluated at wa. The Wronskian is
W(w,r)=B/now. QNM frequencies w; are found from
the roots of W(w). The I =0 case is exactly the same as
the example of the one-dimensional dielectric rod dealt
with in Sec. IVB. Figure 4 shows the position of the
poles for a microsphere of refractive index ny=1.33, for

the angular momentum sectors / =9 and 10. The general
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FIG. 4. Schematic of the pole positions in the complex
plane for the model of Sec. IV C with n,=1.33, for I =9 (cir-
cles) and 10 (triangles).

features are well known [28]. For each /, there is one
series of poles with (Rew)a S! and relatively large |Imw)|.
For odd I, this series starts at Rew=0, while for even /
the series starts at (Rew)a ~1. These broader QNM’s are
similar to the zero modes discussed earlier. There is in
addition a second series of poles with small imaginary
parts, with (Rew)a R [; these are experimentally more
prominent, and their positions are well described by sim-
ple asymptotic formulas based on geometric optics [29],
and which can be understood physically as follows. Con-
sider a photon of frequency w, hence momentum in the
microsphere nyw, striking the microsphere surface at
r =a at an angle of incidence 0 (Fig. 5), so that the angu-
lar momentum is / =nywa sinf. The low-order QNM’s
of the narrow series have nywa =1, i.e., sin@=1; in other
words, the photon strikes the microsphere surface at
glancing incidence and suffers total internal reflection.
One therefore expects the leakage (i.e., Imw) to be small,
due only to diffractive effects (i.e., violations of geometric
optics) and it is indeed found that theoretical quality fac-
tors Q <Rew/|Imw| as high as 10% or more is possible
for 2mra /A2 500 [10]. In contrast, the high-order modes
(ngwa >>1,sinf << 1) correspond to rays propagating in a
nearly radial direction, and the situation would be very
similar to the example of a dielectric rod in Sec. IVB,
and in fact Imwa =~(—1/2ny)In[(ny+1)/(ny—1)].

For this system, norms and inner products are defined
by, e.g.,

(flgh= [ “dr f (@,rg(@.r), @.17)

in which it is understood that the contour is chosen as in
Fig. 2 to eliminate the contribution from the upper limit,
or a suitable surface term is added in the manner of
(2.19). With reference to (4.15), it is sometimes more con-
venient to write (4.17) as

(flgn= [ “drrf(w,rga,n (4.18)

where f=f/r,g=g/r are given by spherical Bessel,
Neumann, or Hankel functions directly. It can be shown
that for a QNM given by (4.15a) with ® =, the norm is
(Appendix A)

(Sl D=3 —1)a*/2)jH(nyw;a) , (4.19)

FIG. 5. Geometric optics interpretation of different types of
QNM’s; low-order QNM’s correspond to 8=/2, while high-
order QNM'’s correspond to 6~0.
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so the completeness relation reads

nir? Jitngw;r)j(now;r’)

=8(r—r’) (4.20)

(ng—1a*% jt(now;a)

for 0<r,r'<a and for every integer /. This has been
verified numerically. This completeness relation is in-
teresting in that the sum includes two series of modes,
and the second series contains both very well-confined
low-order modes (Q >>1) and very poorly confined high-
order modes [Q =0(1)].

Each partial wave of the corresponding TM modes for
the em problem can likewise be described by a scalar field
depending on the radial variable only, and completeness
is likewise proved.

These results then prove the completeness of QNM’s in
three dimensions, both for scalar waves and em waves,
for systems exhibiting spherical symmetry.

V. PARADIGM FOR DISSIPATIVE
QUANTUM SYSTEMS

Optical cavities are dissipative quantum system—
quantum in that one needs to refer to single photons or
nonclassically correlated photon states, and dissipative in
that energy and probability are not conserved for the cav-
ity alone. In recent years a paradigm has been developed
for dealing with dissipative quantum systems [31]. One
considers a system S with coordinates and momenta
(Q;,P;) and a bath with coordinates and momenta
(q;,p;), described respectively by Hamiltonians
Hy(Q;,P;) and Hg(q;,p;) and coupled by a term
AV(Q;,q;), i.e., H=Hg¢+Hg+AV. If A=0, the Hilbert
space is Q=4 X} in an obvious notation, and it is im-
plicitly assumed that () remains the same even when AV
is switched on. In other words, the coupling does not in-
troduce any qualitative change, and a perturbative ap-
proach is possible, so each QNM can be regarded as a
normal mode of the uncoupled system given a small
width.

However, the situation is fundamentally different for
open systems such as optical cavities. Here the system is
described by {@(x,1):0<x<a} and the bath by
{@(x,t):a <x < o }; the two are not coupled by a term in
the Hamiltonian, but by boundary conditions, e.g.,
@(x =a ,t)=@(x =a*,t). The coupling cannot be
switched off, so that the effect of the bath cannot be han-
dled perturbatively, at least not in an obvious way. One
way to see this is that Q7#Qy X Q. This is most evident
in the example of Sec. IVA. If M = oo, the system and
bath are decoupled, and Qg = {@(x):0<x <a,p(a " )=0},
and Qp={@(x)a<x<ow,p(a’)=0}; on the other
hand, the Hilbert space for M < is
Q={@p(x):0<x <o} without the nodal condition at
x =a. An extra dynamical degree of freedom, viz. ¢(a,t),
emerges when the coupling is nonzero. The zero mode in
(4.3b), which does not correspond to any modes of the
closed cavity (i.e., the M = oo limit), is a manifestation of
the extra degree of freedom. This mode will be missed if
the QNM’s are modeled by coupling the normal modes of
a cavity to the bath via a term in the Hamiltonian [1], as
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in the usual paradigm [31]. The complete QNM basis
precisely provides a means of dealing with this issue.

Nevertheless, in both cases, the totality of system plus
bath is conservative. The whole idea of dissipative quan-
tum systems is to attempt to discard the coordinates of
the bath, and keep the coordinates of system, which now
looks dissipative. In examples of the first type, given by
H=Hg+Hg+AV, this is best done by integrating out
{g;,p;}] in a path integral; in examples of the second type,
with coupling by a boundary condition, it appears that
the use of QNM’s (at least in cases where they are com-
plete) is a convenient way of describing the system
without having to mention the coordinates of the bath,
viz. @(x,t) for x > a.

In referring to the degrees of freedom other than the
system itself as the bath, one is primarily concerned with
situations in which the bath acts simply as a sink of ener-
gy; this is closely tied to the outgoing-wave boundary
condition which defines the QNM’s. For situations with
energy coming into the system, such a description would
be inadequate, and one does not in any case expect to be
able to eliminate the coordinates outside the system.
Nevertheless there are many situations where the ingress
of energy (e.g., a short external pulse that pumps an opti-
cal system) and the subsequent decay can be thought of
as two distinct steps occupying different time domains; in
these cases, the QNM’s would still provide a useful
description for the second stage.

VI. CONCLUSION

In summary, we have shown that for a leaky cavity (in
one dimension, and with the scalar wave analog for em
fields) whose spatial extent is defined by a discontinuity
(in derivative of any order) of the dielectric constant, the
QNM'’s form a complete basis, which is moreover orthog-
onal under a suitable definition of the inner product—
even though the cavity by itself is not a Hermitian sys-
tem. While the present paper sets up only the mathemat-
ical formalism, this discrete basis will be useful for dis-
cussing a variety of physical problems in the electro-
dynamics of such a cavity, and these applications to con-
crete phenomena will be taken up in papers to follow.

In addition to the completeness relation, the retarded
Green’s function in the time domain is expressible in
terms of QNM’s via (2.11). This provides a powerful tool
for the analysis of time-dependent problems.

It will be natural to attempt to generalize the con-
clusions of this paper to the quantum-mechanical wave
equation. For the Schrédinger equation with a potential
¥V (x) which has a discontinuity at some x =a, and which
vanishes sufficiently rapidly at infinity, completeness in
the weak sense analogous to (2.13) can be proved, but not
completeness in the strong sense analogous to (2.11).
This property is related to the fact that the dispersion re-
lation kK =V2w implies a cut in the o plane. For the
Klein-Gordon equation with the mass supplemented by a
potential

3 2 2
—5;2~+V —m“—V(x) |p(x,t)=0 (6.1)



49 COMPLETENESS AND ORTHOGONALITY OF QUASINORMAL ... 3065

the situation depends on m? [where ¥ (o )=0 by conven-
tion]. For m =0, the structure is like the wave equation,
and completeness holds in both the weak and strong
forms provided ¥ (x) has a spatial discontinuity and van-
ishes sufficiently rapidly at infinity. For m=0, the
dispersion relation k =V @*—m? between the frequency
o and the asymptotic wave number k again leads to a cut,
and, similar to the case of the Schrodinger equation, com-
pleteness holds only in the weak sense. These results
complement some existing works [20,32] which are re-
stricted to potentials of a finite range, and will be report-
ed elsewhere. The results for the Klein-Gordon case has
relevance to black holes and relativistic stars coupled to
gravitational radiation [33,34].

Finally, the gist of the present work is that under suit-
able circumstances the resonances are complete, and need
not be supplemented by any nonresonant “background.”
It is of some interest to recall the finite-energy sum rules
for high-energy scattering amplitudes [35], which like-
wise states that resonances are complete, and need not be
supplemented by the nonresonant “background” contri-
bution due to the exchange of Regge poles. The equality
between resonances and Regge exchange (rather than
their additivity) is the basis of duality and string models
of elementary particles.
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APPENDIX A:
THE NORM FOR A DIELECTRIC MICROSPHERE

For the model in Sec. IV C and with f defined by (4.15)
and the inner product by (4.17),

(flf ;0= fowdr n*(r)p;(r)* .

The integral is along a contour such as that in Fig. 2; in
practice this simply means that the contribution from
evaluation at the upper limit can be neglected. Since
@;(r)=ji(ngw;r) for r <a, and is given by the outgoing
Hankel function for r > a,

«fj If] »=n%f0adr rzj,z(nowjr)

(A1)

. 2
M *® 27 (1) 2
{h,“’(wja) [ arrnfon
a . . .
=7 "3(]12—]1—1]1+1)
j 2
- Zlf (h2—h;_ b)) | (A2)

where henceforth h;=h{! and the arguments are
Ji=ji(ngw;a),h;=h;(w;a). Rearrangement gives

=3 =252

3

@ | pdi—dier hiihi
2

Ji |no .
112 h12

(A3)

But continuity of the logarithmic derivative and the re-
cursion relation give

noji—1/ji1=h;—1/hy , (Ad)
noji+1/i1=hi+1/h; .

Hence the second group of terms in (A3) cancels, and
(4.19) is proved.

APPENDIX B:
MULTIPLE DISCONTINUITIES
ON A FULL LINE

The proof of completeness can be generalized to cases
with multiple discontinuities in the dielectric constant
p(x), and also to systems defined on the full line
— o <x <. Assume there are discontinuities at
X =a,,a,,...,ay, with a;<a,< '-: <ay, and that
p(x)—1 as x >+ . Introduce the auxiliary functions
g _(w,x) and g, (®,x), which are solutions to the time-
independent equation (2.2), and defined by the boundary
conditions

g+(w,x)—exp(tiox), x—>tow . (B1)
The Green’s function in the frequency domain is

g+ w,x)g _(w,y)/W(w), y<x

G(x,y;0)= (B2)

g+ (0,y)g_(0,x)/W(w), x<y,
where the Wronskian
W(w)=g(w,x)g" (0,x)—g'  (0,x)g _(w,x) (B3)

is again independent of x. Provided p(x)— 1 sufficiently
rapidly, g (w,x) are analytic functions of w, so G is also
analytic except at the zeros of W(w). Following the
same argument as in Sec. II, if one can show that the in-
tegral along a large semicircle in the lower half of the o
plane is negligible, the QNM’s would form a complete
set.

It then remains to estimate the w— o behavior using
the WKB approximation. The idea is to start in the re-
gion x >ay for g ., and connect to the left by a series of
transfer matrices, and likewise to start in the region
x <a, forg_. For x >ay,

g+ (w,x)=~expliol (ay,x)]g, (w,ay) , (B4)

which consists of only an outgoing wave, and I is defined
as in (3.1). On the other hand, in the intermediate region
aj=x<a;.;, g4+ consists of two counterpropagating
waves:

g+(@,x)= A exp[iol(a;,x)]+Bexp[ —iol(a;,x)] .

(BS)
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Matching across each discontinuity gives

4] [Muh) Mo [ o0 ][44
Bj - M, (j) Myu()) 0 e*fej Bj—l , (B6)
where

0,=ol(a; ,,a;), (B7)

and the transfer matrix M is given at high frequencies by
M]](j)zMzz(j)zly (B8)

in which R (j) is the reflection coefficient at a;, defined in
a manner similar to (3.2). Using (B6) and the boundary
condition Ay =g (w,ay),By=0 implied by (B4), it is
straightforward to find g , everywhere.
Considerable  simplification  is

possible  when

Imw— — o, since in this regime one of the counterpro-
pagating waves is exponentially growing; thus

g +(w,x)~—R (Nexp[ —iwl(ay,x)]g (w,ay). (B10)
Likewise,
g _(w,x)=~—R(1l)exp[ +iwl(a,;,x)]g_(w,a,) . (B11)
Both of these hold for any x €[a,ay].
Putting these into (B2), we find
G(x,y;a)):ﬁexp{iw[l(al,y)-kl(x,a,v)
—I(ay,ay)]}, (B12)

which vanishes when Imw— — o. This then allows the
contribution from the semicircle in the » plane to be
neglected, leading to a proof of completeness in the re-
gion x E[a,,ay].
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