
PHYSICAL REVIEW A VOLUME 49, NUMBER 4 APRIL 1994

Revivals and superstructures in the Jaynes-Cummings model with a small number of
photons
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If the quantized field has initially a small mean number of photons (n 2), quantum inversion
displays distinct revivals, provided the detuning between the field and the atom is large as compared
to the coupling constant [(g/4) « 1]. However, the amplitudes of these revivals are very small. For
long times, individual revivals partially overlap to form fractional revivals, and for even longer times
superrevivals (revivals of the revivals) appear. These phenomena result from the beating of modes
of the quantized field that are not nearest neighbors. The envelope of the electric field associated
with the oscillating atomic dipole exhibits similar superstructures, but with a period twice that for
the atomic inversion.

PACS number(s): 42.50.Md, 32.90.+a

I. INTRODUCTION

The Jaynes-Cummings (JC) model [1] of a two-level
atom interacting with a single mode of electromagnetic
radiation has been attracting interest as one of the few
models which can be solved exactly and give nontriv-
ial results, and this interest was further enhanced when
progress in experimental techniques involving Rydberg
atoms and high-Q cavities made it possible to observe
"practically two-level" atoms in the laboratory [2]. Us-

ing these techniques it is in principle possible to build
a single-atom maser [3], and the interaction between
a single atom and its own radiation Beld has been ob-
served for the first time by Rempe, Walther, and Klein
[4]. Periodical collapses and revivals of the initial atomic
population [5] form the most spectacular feature of the
Jaynes-Cummings model. These quantum revivals have
been Grst described for a case of an initially coherent
state of the Beld. They result from beating of all modes
of the quantized field. However, as an overall phase dif-
ference between these modes accumulates, revivals start
to overlap and then they vanish altogether.

Many authors have also been investigating the JC
model with a diferent initial state of the field and/or the
atom. In particular, some unexpected long-time behav-
ior of the atomic inversion has been reported for an ini-
tially sub-Poissonian statistics of the field [6]. The long-
time behavior of the model is governed by the fractional-
revival scenario: at certain times revivals follow each
other two, three, four, etc. , times faster than the orig-
inal ones. These fractional revivals are associated with
the Geld splitting into combinations of macroscopically
distinguishable states. As we have shown in our pre-
vious work [7], these phenomena result from beating of
modes of the quantized cavity field that are not near-
est neighbors. These beats can show up in the dynam-
ics because in the strongly sub-Poissonian Geld there are
only a few modes populated enough to effectively take
part in the dynamics. Consequently, it is very unlikely
that constructive interference between any pair of these

populated modes is overcome by destructive interference
between a multitude of modes with irregular phase differ-
ences. %e have also shown that apart from the &actional
revivals and "standard" revivals with ever-decreasing am-
plitudes, at certain times revivals with amplitudes very
close to the original one appear; we call these revivals
superrevivals, or revivals of the revivals, and the mecha-
nism responsible for them is essentially the same as that
responsible for &actional revivals. Overall, the very-
long-time behavior of the sub-Poissonian JC model is
dominated by spectacular and persistent superstructures.
These superstructures resemble also superstructures re-
ported for a nonlinear generalization of the JC model [8].

It has always been stated that the revivals can ap-
pear only if the initial number of photons is sufficiently
large (n 10). We show in the present paper that this
statement is not always correct. In particular, a detun-
ing between the Geld and the atom "linearizes" the Rabi
frequencies' spectrum and thus leads to distinct revivals.
For long times, the revivals evolve into &actional revivals
and superrevivals much as in the sub-Poissonian case,
and we show in the present paper that the mechanism
responsible for these superstructures is in both cases the
same. It is very interesting that phenomena so far as-
sociated only with highly nonclassical states of the Geld
can be in principle observed also in a coherent (classical)
field. This is so because it is not the nonclassical nature
of the sub-Poissonian Geld but rather the limited number
of modes which effectively take part in the evolution and
the rules of quantum interference that lead to fractional
revivals and superrevivals.

It is to be stressed that long-time revivals were also
studied in the context of the long-time behavior of atomic
and molecular wave packets [9—12] (see also the review

papers by Alber and Zoller [13]and Averbukh and Perel-
man [14]). In particular, these last authors presented
a detailed discussion of fractional revivals in the time
regime t, ~ ( t (( tR, where t, i is the period of the classi-
cal motion of the wave packet and tR is the revival time.
Another system in which the revivals were found is the
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II. REVIVALS WITH A SMALL NUMBER
OF PHOTONS

A. Superstructures in the long-time behavior

Consider the JC model in the rotating-wave approxi-
mation (RWA). The Hamiltonian for the model reads

H = —',(zoo, + urata+ g (ato. + ao+), (2.1)

where at and a are standard creation and annihilation
operators for the harmonic oscillator, a'+ and 0' are
spin raising and lowering operators, and g is the cou-

pling constant. If we assume for simplicity that the atom
is initially in its lower (unexcited) state, we obtain for
the expectation value of 03, or the quantum inversion,

(tr3(t)) = C —W(t) = C —) P„B„cos(2A„t), (2.2)
n=1

where P„stands for the initial photon distribution,

Ag
fL

n

and the Rabi frequencies A„aredeGned as

(2 3)

squeezed-quantum-kicked-rotator model [15].
This paper is organized as follows. In Sec. II we show

the physical origin of the revivals that appear in the co-
herent JC model with a small number of photons and the
atom and the Geld slightly detuned, and physical origin
of various superstructures that appear in the long-time
behavior of the model. In Sec. III we present approxi-
mate expressions for the quantum inversion, and in Sec.
IV we discuss the envelope of the electric Geld associated
with the oscillating dipole. We also show that these re-
sults cannot be obtained in the adiabatic approximation.
We summarize our considerations in Sec. V.

tribution. Authors who discussed the revivals usually set
6 = 0. This simplifies calculations and resulting formu-

las, but as we will see, some interesting features of the
model show up only if 6 g 0. If the distribution is Pois-
sonian with a mean number of photons n, and if 4 = 0,
from Eq. (2.2) we get

OO

W(t) = ) —e "cos (2gtv n) .
n=1

(2 5)

(gj&)' «1. (2 6)

Figure 1(a) shows a plot of the inversion for an initial co-
herent state with n = 2 and no detuning, and Fig. 1(b)
shows a plot of the inversion with the same initial state
of the Geld, but with a detuning satisfying the condi-
tion (2.6). One can see that for the resonant case the
inversion behaves in a fairly irregular manner, while for

This formula is very well known. If n is large enough
(n 10 or larger), well-formed revivals appear. They
result from beating of all nearest-neighbor Rabi oscilla-
tors, which after an initial dephasing become in phase
again. In particular, a revival occurs when the nth and
the (n+1)th oscillators acquire a common phase. Some
analytical approximations to the sum (2.5) have been
proposed [5,17,18]; all of them apply to the saddle point
method. However, this requires n to be large enough, and
thus quantum revivals started to be associated with the
saddle point method and large n expansions. It should,
perhaps, be noted that the approximation proposed by
Filipowicz in Ref. [17] is valid for n as small as 4, but it
still relies on the saddle point method, applied in a more
subtle manner, though. On the other hand, if n is small
and the atom and the field are in resonance, no revivals
appear. Instead, the quantum inversion exhibits a fairly
irregular behavior.

Now we admit a detuning 6 such that 6 &( ~0 and

A„= 462 + ng2, (2 4)

with the detuning parameter 4 = uo —u. The constant
C is such that (0's(0)) = —1.

It is very important that the detuning 6 and the cou-
pling constant g should be small —otherwise the RWA
cannot be properly applied. However, in all practical re-
alizations of the Jaynes-Cummings model, the coupling
constant is so small [2,4] that even detunings much larger
than g are small enough for the RWA to be correct. To
set a proper reference scale, in the following we will al-

ways set ~0 ——1 and g = 10 corresponding to the
experiment of Rempe et al. [4]. We list these quanti-
ties separately although only the values —,~&, and gt
are relevant. To our knowledge the revivals have never
been studied before in the context of detuning. However,
the eEect of interference between states of the quantized
field that are not nearest was considered for a model [16]
which is closely related to a nonresonant JC system.

If the initial field is coherent, P„is a Poissonian dis-
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FIG. 1. Quantum inversion for the case of an initially co-
herent Beld with a small number of photous n = 2 for (a) res-
onant (b, = 0) and (b) off-resonant (E = 10g) cases. Other
parameters are coo ——1, g = 10 . The atom is initially in its
lovrer state.
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the ofF-resonant case distinct revivals appear, each hav-
ing a Gaussian envelope, much as they do in the large
n case. Note though that the amplitudes of the revivals
are very small.

If we compute the quantum inversion for longer times,
the amplitudes of the consecutive revivals first decrease,
but then they grow back to their original values we

may thus say that apart &om the standard revivals there
are "superrevivals, " or revivals with amplitudes close to
the original one. Note at this point that in the large n
case the revivals' amplitudes always decrease until the in-
dividual revivals overlap and vanish altogether [5]. In the
present case, the shape of the revivals also changes: they
partially overlap to form complicated non-Gaussian ob-
jects but at times when the superrevival occurs almost
regain their original Gaussian shape. This pattern re-
peats until the revivals eventually overlap at extremely
long times. Overall, the long-time behavior of the model
is dominated by very spectacular superstructures (cf. Fig.
2; &om now on we plot only the time-dependent part of
the inversion). These superstructures are very persistent:
we observe distinct individual revivals and distorted, but
still distinguishable superstructures for times as long as
gt l06.

B. Physical origin of the revivals

In order to understand the difFerences between the res-
onant and nonresonant cases, one should answer the fol-
lowing questions: why do the revivals appear in the latter
and not appear in the former case, why are their ampli-
tudes so small, what is the physical origin of the super-
structures, and why do such superstructures not appear
in the standard (coherent with n large) JC model?

The problem of amplitudes is straightforward: if 6 P
0, the Rabi oscillations enter the sum in (2.2) with total
factors which are products of the Poissonian factors P„
and the weights B„(2.3). The latter for small values
of n are of order 4n(g/b, )2. The physical reason for the

O. OB

small amplitudes of the revivals is that if the atom and
the field are detuned, the atom is reluctant to absorb
a photon and tends to stay in the vicinity of its initial
state.

The very existence of the revivals is much more fun-
damental. In the resonant case (4 = 0), the Rabi fre-
quencies' spectrum is strongly nonlinear, while a detun-
ing that satisfies the condition (2.6) linearizes it (cf. Fig.
3). If n is small, there are only a few modes populated
enough to efFectively take part in the evolution of the sys-
tem. If the Rabi frequencies' spectrum is strongly non-
linear, difFerences between the neighboring modes vary
greatly, and when one pair of these populated modes,
say, (n+1)~n, acquire a common phase and interfere
constructively, other pairs, say, n++(n —1), interfere de-
structively and no revivals appear. Even at times when
these two pairs do have a common phase, other pairs
of modes with similar populations are out of phase and
destructive interference prevails once more, and a very
irregular behavior of the inversion results. On the other
hand, it is obvious that if the Rabi &equencies' spectrum
were linear, A„=n + Pn, there would be an infinite se-
ries of ideal revivals, and it is small deviations &om the
linearity that produce both revivals for a limited range
of times and changes in the revivals' amplitudes.

If n is large, the second derivative of A„with respect
to n taken at n = n is responsible for the decrease of the
amplitudes and broadening of the consecutive revivals
and their eventual overlapping. For n small this inter-
pretation fails, which is most readily seen &om the fact
that in the present case the amplitudes first decrease,
but then start to increase. We should therefore look for
a more subtle explanation of the details of the long-time
evolution of the system.

C. A measure of the overa11 phase difference

It is generally agreed that overlapping of the revivals
results from accumulating of an overall phase difFerence
between the beating modes. Before we can go any fur-

ther, we should try to construct a measure of the accu-
mulating phase "disorder. " To this end we generalize a
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FIG. 2. A superstructure in the long-time behavior of
the JC model. All parameters as in Fig. 1(b). Only the
time-dependent part of the inversion is plotted. The arrow
marks the position of the estimated "superrevival period. " ts
given by (2.11).
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FIG. 3. Rabi frequencies for the resonant (E = 0, bullets)
and nonresonant (b, = 10g, crosses) JC models.
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phase function y(t) that has been introduced in Ref. [7].
First, we want this phase function to be a continu-

ous function of time. Therefore for each pair of beating
modes we take their relative phase difference modulo 2w,
and if the resulting number is less than vr we take that
number or 2' minus that number otherwise (note that
phase differences equal to 0 or 2' both lead to a fully
constructive interference). It seems also natural that
a mode that does not bring an important contribution
to the quantum inversion should not bring one to the
"overall phase difference, " either. We therefore multiply
the contribution kom each pair of beating modes by the
product of total weights with which the corresponding
terms enter the sum in (2.2). We thus arrive at

x „=(2A t —2A„t)mod 2x, (2.7)

(2.8)

where p(t) is the measure for the "overall phase differ-
ence, " y „

is the contribution from the mth and nth
pairs of modes, and c is a normalization constant. We
choose c such that if all &p „=vr (fully destructive in-
terference between each pair of modes), also p(t) = vr.

Therefore

m

) ) P P„BB„ (2.9)

D. Physical origin of the superstructures

In practice, rp(t) never reaches vr —except for the t = 0
there are always some modes which are in phase and
some which are out of phase. For instance, when after
the initial collapse the nth and (n+1)th modes have a
phase difFerence of x, the (n+1)th and (n —1)th modes
have, to a good approximation, a phase difference of 2',
etc.

It has been shown in Ref. [7] that the function (2.8)
works Gne for both the resonant coherent JC model with
n large and for the resonant sub-Poissonian JC model. In
either case, each individual revival is associated with a
sharp minimum of y(t), and between revivals &p(t) takes
values around vr/2. It should be noted that other rnea-
sures of the accumulating "disorder" have been proposed
(see, e.g. , [19]),but the function (2.8) is very easy to cal-
culate and behaves less irregularly around the revivals.

4m, when the second revival appears. This time, however,
phase differences between the other modes are less close
to 2r'x (r' integer) and the second revival is smaller and
broader than the first one. This situation is presented in
Fig. 4, where the atomic inversion, the total phase func-
tion (2.8), and 12 most important contributions to the
total phase function are plotted. As one can see, the first
revival occurs when the nearest-neighbor contributions
take their minima. For consecutive revivals, these min-
ima no longer coincide, which results in broadening of the
revivals, and the same holds for the higher-order neigh-
bors contributions. Each revival is associated with a pro-
nounced minimum of the total phase function. The small
minima of rp(t) between the revivals can be associated
with the minima of the third-neighbor contributions (or
constructive interference between the third-order neigh-
bors); the effect of constructive interference between the
second-order neighbors in the middle of inter-revival pe-
riods is screened off by the fully destructive interference
between the nearest neighbors.

As the system evolves, phase differences between
neighboring pairs of modes become more and more im-
portant and destructive interference appears. In the
large-n case this destructive interference eventually leads
to the complete overlapping of the revivals. The situation
is different in the small-n case, though. For some long
times the phase difFerence between the (n+1)th and nth
modes approaches a value of 2k+ for some integer k, while
the phase difFerence between the nth and (n —1)th modes
approaches a value of 2(k+1)m. Since there are very few

populated modes and the Rabi &equencies' spectrum for
these modes is almost linear, in this time domain phase
differences between all these populated modes are almost
equal to integer multiplications of 2m. As a result, con-
structive interference prevails once more, revivals regain
their original amplitudes, and the superrevival appears.
This situation is plotted in Fig. 5. Note that all im-

portant contributions to the phase function take their
minima almost simultaneously.

We wish to stress that in the coherent large-n case it
also happens that a couple of modes around the nth one
have relative phase differences which are simultaneously
almost equal integer multiplications of 2'. However, as
there are many more populated modes which for this spe-
cific time have phase differences far kom 2', constructive
interference does not prevail and no superrevival, nor or-
dinary revival for that matter, can be seen. On the other
hand, if n is large and the field distribution is very narrow
(sub-Poissonian), superrevivals do occur and the mecha-
nism that leads to them is precisely the same as in the
present case [7].

We can estimate the "superrevival period" ts as time
for which

At t = 0, all modes are in phase and get out of phase
for t ) 0. The atomic inversion collapses, but at the time
when the (n, +1)th and nth modes acquire a phase difFer-
ence of 2m, all other modes that are populated enough
to matter have phase differences approximately equal to
2rvr (r integer) and the first revival appears. The beating
modes get out of phase again, and become in phase when
the (n+1)th and nth modes acquire a phase difference of

2A„-+1ts—2A„-ts——2k',

2A ts —2A„- its = 2(k-+ 1)~,

for some integer k. Solving (2.10) for tg we obtain

ts =
2A„-—A„-+1—A„-

(2.10)

(2.11)
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(2.8), and (b) 12 most important contri-
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first revivals. (c) Nearest-neighbor contribu-
tions: 3~2 (solid line, large amplitude), 4~3
(long-dashed line), 2~1 (short-dashed line),
5~4 (solid line, small amplitude); (d) sec-
ond-neighbor contributions: 4~2 (solid line),
3~1 (long-dashed line), 5e+3 (short-dashed
line); (e) third-neighbor contributions: 4~1
(solid line), 5e+2 (long-dashed line), 6++3
(short-dashed line); (f) fourth-neighbor con-

tributions: 5~1 (solid line), 6~2 (dashed
line). The y-axis scale is kept the same in

panels (c)—(f). All parameters as in Fig. 1(b).
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2A„-+2t2—2A„-t2——2lx ) (2.12)

2A„-+gt2 —2A„- gt2 ——2(l + 1)x I (2.1S)

&om which we get

This tg is marked by an arrow in Fig. 2. One can see
that this is a qualitatively good result. Strictly speaking,
(2.10) cannot be solved for an integer k —Rabi &equen-
cies are in general irrational and incommensurate, and
there is no exact periodicity in the system. This is also
the reason for the expression (2.11) being only qualita-
tively good.

As the Rabi frequencies' spectrum is almost linear,
phase differences between the second-order neighbors are
approximately twice larger than between the nearest
neighbors. Consider the most populated pairs of second-
order neighbors. There are times when the phase dif-
ference between the (n+2)th and nth modes equals 2ln
for some integer l, and the phase difference between the
(n+1)th and (n —1)th modes equals 2(l+1)x, while the
nearest neighbors are neither simultaneously in phase nor
out of phase. This is the region of the so-called &ac-
tional revivals [6,7] —distinct revivals form and follow
each other two times faster than for the short times (see
Fig. 6); if the original revival period is tR, in this time
domain the revival period is approximately tR/2. This
happens around t2 ts/2, and t2 can be further approx-
imated as

A„-+g—A„-+2—A„- g+ A„-
(2.i4)

Again, (2.12) cannot be solved for integer l and this t2 is

only qualitatively good.
A very similar situation occurs when the third neigh-

bors are simultaneously in phase, while phase differences
between the nearest and second neighbors take interme-
diate values (Fig. 7). Distinct revivals form, although
their separation is worse than in any of the cases dis-
cussed above. In these time domains revivals follow each
other three times faster than for initial times. Note that
each revival is also reinforced by constructive interfer-
ence between one of the three most populated pairs of
nearest neighbors. A qualitatively good approximation
to the time when the period tR/3 &actional revivals ap-
pear can be derived in a manner similar to (2.12). Note
that this type of &actional revivals appears twice within
the same "superrevival period, " namely, around t ts/3
and t 2ts/3.

As a matter of principle, one could also expect higher-
order &actional revivals to appear. For instance, in the
sub-Poissonian case, distinct period tR/4 fractional re-
vivals appear around t ts/4 [7]. This type of &ac-
tional revivals occurs when the fourth neighbors become
in phase, while the phase differences between the near-
est, second, and third neighbors take intermediate val-

ues. However, in the present case contributions &om the
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fourth neighbors enter the sum in (2.2) with such small
weights that their constructive interference is overcome
by destructive interference between the nearest neigh-
bors. As a result, around t ts/4 and t 3ts/4 one
can see broad bands of Rabi nutations with poorly sepa-
rated peaks.

For t & tg the whole pattern repeats, although the de-
tails are blurred. Nevertheless, the superstructures that
we have just described are very persistent: we see individ-
ual well separated revivals and distorted superstructures
for times as long as gt ~ 10 .

If the detuning is larger than 10g, the superstructures
are even more persistent and the "superstructure period"
becomes very large. These observations are easy to ex-
plain: the larger 6, the smaller the deviations from the
linearity in the Rabi frequencies spectrum and the beat-
ing modes must take more time to get out of phase and
then back in phase again. Also our approximations (2.11)
and (2.14) give better results. However, as E increases,
the amplitudes of the revivals decrease.

III. APPROXIMATE EXPRESSIONS
FOR THE INVERSION

If n is small and the detuning satisfies the condition
(2.6), Rabi frequencies (2.4) can be expanded as

A„=-',6 + nb, (g/6)' —n b, (g/6) + (3.1)

B„=4n(g/4) —16n (g/4) (3.2)

If we keep terms to the order (g/4) in (3.1) and (3.2),
from (2.2) we obtain for the time-dependent part of the
inversion

We stress that this expansion makes sense only if n is
small: for large n the "corrections" might dominate the
leading term. However, if n is small, the Poissonian dis-
tribution is very narrow and terms with badly approx-
imated frequencies do not bring important contribution
to the sum in (2.2). Similarly, the weights (2.3) can be
expanded as

W(t) 4n(g/4) exp( n[1—cos2b—, (g/4) tI)cos [Et+26(g/A) t+nsi nb2, (g 4/) t] .

One can see that (3.3) describes an infinite series of
perfect revivals. No superstructure or any overlapping of
the revivals can be seen. Similar results can be obtained
without expanding the weights B in a power series in
(g/b, )2, but then the resulting sum cannot be evaluated

analytically. It shows that the simple assumption of the
Rabi frequencies spectrum being linear leads to (perfect)
revivals even for a small-n case, contrary to a common
view that in such a situation no distinct revivals can ap-
pear.
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FIG. 8. Time-dependent part of the exact atomic inversion
(a) and the second-order approximation (3.3) (b) in the region
of first revivals. All parameters as in Fig. 1(b).

FIG. 9. Time-dependent part of the exact atomic inver-
sion (a) and the fourth-order approximation (b). The region
corresponding to the Srst "superrevival period" of the exact
inversion is shown. All parameters as in Fig. 1(b).

For the detuning 6 = 10g the approximation (3.3)
gives qualitatively good results for a couple of first re-
vivals (Fig. 8). The agreement is even better for larger
detunings, but, as we have mentioned, with larger detun-
ings the amplitudes of the revivals become very small.

Note that the approximation (3.3) contains terms of
order higher than (g/b, )2 hidden in the sine and cosine
functions (cf. [20]). However, we have not attempted
to construct a second-order expression for the inversion.
Instead, we have independently expanded A„and B„in
powers of (g/b), and as one can see, such a procedure
leads to qualitatively good results for small times. The
strictly second-order expression for the inversion is

If we expand the denominator of the "superrevival
period" ts given by (2.11) in powers of (g/6), we no-
tice that the first nonvanishing term is proportional to
(gi&)':

M, (g/b, )4
' (3.5)

It is now clear why the "superrevival period" increases
rapidly with decreasing ratio of (g/b, )2. The equation
(3.5) is consistent with the observation that a superstruc-
ture appears only in the fourth-order expansion of the
Rabi &equencies.

W(t) = 4n(g/6) cos At . (3.4)

IV. ENVELOPE OF THE ELECTRIC FIELD
Equation (3.4) might be obtained directly from (2.2) by
expanding the latter in powers of (g/b, ) or by using gen-
eral formulas of Ref. [20] for the adiabatic approximation
to the JC model. The adiabatic inversion (3.4) is purely
oscillatory and. does not exhibit any revivals.

If we keep terms of order (g/b, ) in the expansions of
A„and B„,the agreement between the approximation
and the actual inversion is almost perfect for a couple
of first revivals, and for longer times we obtain a clear
superstructure (Fig. 9). However, this approximated su-
perstructure has a shorter "superrevival period, " which
shows that, at least for so small a detuning (b, = 10g),
terms of order higher than (g/4) also play an important
role.

Already Narozhny and his collaborators [5] observed
that real and imaginary parts of the complex envelope
of the electric field associated with the oscillating atomic
cilpole

(4 1)

exhibit revival-like behavior. What is perhaps also in-
teresting is that this complex envelope can be divided
into slow and fast components, and the slow parts oscil-
late with a period equal to twice the revival period. The
same holds true for the present case. After some trivial
algebra we get

(D+ (t) = igy n ) —,e sin A~+i t
~

n=O
no (~„+,

a/2cosA„t+i sinA t ~,
nAn+1 )

(4.2)

and the slow and fast components are
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. n" „bj2Re D+(t)„=—2g~n ) —,e A„A„+g
cos(A +1 —A )t,

ReD+(t)f
„

n" „6j2
n! A„A„+gn=o

cos(A„+1+A„)t,
(4.S)

Im D+(t)„, ,g~n—) —,e "
n=o

- n! A„+isin(A„+1—A„)t,

ImD+(&)r
„

—,g~n) —,e "
n=0 A„+i

sin(A„+1+ A„)t.

The components (4.3) are plotted in Fig. 10. The «st
components indeed display a revival-like behavior, while
the slow parts oscillate with a period equal to twice the
revival period. For longer times, the complex electric
field envelope displays a distinct superstructure (Fig. 11).
Note that while the superstructures of the fast compo-
nents mimic that of the inversion, the "superstructure
period" of the slow components is twice as large as the
"superrevival period. "

To calculate the complex electric Beld envelope in the
adiabatic approximation, we use formulas of Ref. [20] for
cr+(t) in this approximation. We obtain for the slow and
fast components

Re D+(t)„
g~n

cos At,
0,
g~n

sin At .

ReD+(t)r
„

Im D+ (t),I

Im D+ (t), ,

(4.4)

One can see that in the adiabatic approximation the fast
components display unmodulated oscillations, while the
slow components remain constant. This is in full agree-
ment with our previous observation that the quantum
inversion does not display any revivals in this approx-
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FIG. 10. Time-dependent part of the
quantum inversion (a) and components of the
envelope of the electric field associated with
the atomic dipole (b)—(e) in the region of first
revivals. (b) Slow component of the real part
of the envelope, (c) fast component of the
real part of the envelope, (d) slow component
of the imaginary part, (e) fast component of
the imaginary part. All parameters as in Fig.
1(b).
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FIG. 11. Same as in Fig. 10 but for long
times.
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imation [cf. Eq. (3.4)]. However, if all frequencies and coefficients in (4.3) are replaced by their lowest-order expansions,
we obtain

Re D+ (t)„=—
cos[A (g/6) 2t],

ReD+(t),
„

Im D+(t)„

exp ( n1 —cos —2b (g/b) 2t ) cos (b t + b (g/6) t + n sin[2b (g/6) t]),
(4.5)

ImD+(t)r
„

exp( n1 —cos—24(g/b, )2t j sin jest+ b, (g/5, ) t+ nsin[26(g/6) t]) .

The approximation (4.5) contains terms of order higher
than second in (g/4) . Nevertheless, in this approxi-
mation the fast components display revival-like behavior
with a revival period equal to the quantum inversion re-
vival period in the approximation (3.3), and the slow
components oscillate with half that frequency. The ap-
proximation (4.5) does not give any superstructures in
the long-time behavior, but it gives qualitatively good
results in the short-time (single revival) scale, much as
the approximation (3.3) for the quantum inversion does.
Our approximation scheme, independent expanding of
&equencies and coefficients, gives accurate results at least
in the short-time scale, while a "correct" second-order
approximation does not describe revivals either in the
inversion, or in the complex electric field envelope.

V. SUMMARY AND CONCLUSIONS

We have shown in the present paper that in the JC
model with the field prepared initially in a coherent state
with a small average number of photons n, the quantum
inversion displays distinct collapses and revivals provided
the atom and the field are slightly detuned. This is a
consequence of the fact that the detuning linearizes the
Rabi &equencies' spectrum and makes the phase difFer-
ences between the few modes that efFectively take part
in the dynamics of the system less irregular than in the
resonant case. In addition, long-time behavior of the
model is dominated by very spectacular superstructures:
fractional revivals and superrevivals (which, incidentally,
might be thought of as period tR fractional revivals), de-
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scribed in the context of the JC model with a strongly
sub-Poissonian field distribution. The fractional revivals
result from constructive interference between some pairs
of beating modes of the quantized field, but not the pairs
of the nearest neighbors, which was the case for the stan-
dard revivals, but rather pairs of second or third neigh-
bors. In our opinion, this phenomenon demonstrates the
"granularity, " or the quantum nature, of the field even
more strongly than the standard revivals do. It is very
interesting that such fractional revivals can appear also if
the initial field is coherent (classical), because as they do
not require a strongly squeezed radiation on input, they
should be in principle easier to observe in the laboratory.

We have also shown that the envelope of the electric
Geld associated with the oscillating atomic dipole can
be divided into slowly and quickly varying components.
Both types of components also display clear long-time
superstructures, but the "superstructure period" of the
slow components is twice as large as the "superrevival
period" of the quantum inversion. This observation sup-
ports the statement that when the atom completes one
cycle of its evolution, the Geld completes only a half of its
cycle —not only in the short-time (single revival), but
also in the long-time (superrevival) scale.

Finally, we have demonstrated that these results can-
not be obtained in the strictly second-order (adiabatic)
approximation: this approximation leads to a purely os-

cillatory behavior of the quantities of interest, with no
superstructures or even revivals. However, if the Rabi fre-
quencies and the coeKcients are independently expanded
in powers of (g/6), more accurate approximations are
obtained: the lowest order [terms up to (g/6)2j gives
an infinite series of perfect revivals, and higher orders
describe the long-time superstructures.

As for the possibility of observing superrevivals, they
are beyond current experiments on cavity QED, due to
short interaction time. In order to observe long-time frac-
tional revivals the interaction time should be increased by
a factor 3—10. An additional order of magnitude is needed
for the nonresonant eKects of the present paper. How-

ever, the study can be considered as a proposal for fu-
ture experiments on cavity QED. The analysis presented
in this work has also the potential to be applied in other
atomic and molecular experiments outside the restrictive
experimental environment of a micromaser.
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