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Phase squeezing in two-photon correlated-spontaneous-emission lasers
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We show that in a two-photon correlated-spontaneous-emission laser with a fast-decaying inter-
mediate relay level, it is possible to obtain the same degree of phase squeezing as when all levels
have comparable lifetimes, but with a much higher gain coefBcient.

PACS number(s): 42.50.Dv, 42.50.Lc, 42.55.—f

I. INTRODUCTION

Lasers and masers based on two-photon transitions
have been the object of a multitude of theoretical work
since the Grst suggestions, made by Sorokin, Braslau, and
Prokhorov, that this system would allow for easier tun-
ability and faster growth of the Geld density than in the
case of usual lasers [1]. These studies, complemented by
the proposal that two-photon oscillators could be used to
generate squeezed light [2], lead to a strong motivation to
build these devices, in spite of the enormous difBculties
associated with the second-order character of the under-
lying gain process.

The recent experimental realization of two-photon mi-
cromasers [3] and lasers [4] has revived the interest in
this problem. However, the spontaneous-emission noise
associated with an inverted system inhibits any possi-
bility of obtaining squeezing at steady state [5]. Only
transient squeezing becomes then possible [6]. An alter-
native approach would be to pump the active atoms into
a coherent superposition of the states involved in the las-
ing process, thus providing some control on the relative
phase and therefore on the spontaneous emission transi-
tions between those states [7—9]. In this way, it has been
shown that generation of squeezed light by two-photon
lasers is compatible with gain [8] and even with atomic
inversion [9], thus providing bright sources of squeezed
light. This is in contrast with the usual situation in-
volving parametric amplifiers, where the active atoms
are far from saturation, due to the fact that the Gelds
are of low intensity and off-resonance with respect to the
atomic transitions. Under these conditions, spontaneous-
emission noise is negligible [10]. The counterpart is how-
ever that usually only feeble light is obtained from these
devices [11].

For homogeneously-broadened one-photon lasers, in-
jection of the atoms in a coherent superposition of
states does not lead to phase squeezing, but only to
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sub-Poissonian photon statistics [12]. Therefore, phase
squeezing is a specific property of two-photon correlated-
spontaneous-emission devices, so that this phenomenon
constitutes yet another motivation for the experimental
investigation of these systems.

Work on two-photon correlated-spontaneous-emission
lasers usually assumes that all the states involved in the
process have identical lifetimes. This assumption has a
technical origin: it makes it easier to derive the corre-
sponding master equation. We show here however that,
by allowing difFerent lifetimes, one can substantially in-
crease the gain, while keeping the squeezing the same as
before.

In Sec. II, we describe our model and write down the
corresponding master equation (which is derived in the
Appendix), and Fokker-Planck equation, obtaining from
it the equation of motion for the average phase, as well
as the phase diffusion coeKcient. In Sec. III, we discuss
the conditions under which phase squeezing is compatible
with maximum gain, and derive an expression for the
phase uncertainty, for the Geld inside the laser cavity.
We show that it is possible to get up to 50'% of phase
squeezing (implying up to 100% squeezing for the field
outside the cavity), with a gain which can be much higher
than the one obtained before. This conclusion holds both
for the three-level model discussed in Ref. [8] and the
four-level model of Ref. [9]. In Sec. IV, we summarize
our conclusions.

II. THE MODEL

We consider a system of three-level atoms interacting
with a single-mode Beld in a cavity. The corresponding
level scheme is displayed in Fig. 1. Two-photon reso-
nance is assumed, but the intermediate level is taken to
be detuned with respect to the one-photon transition.
The cavity is assumed to have suKciently high finesse so
as to prevent one-photon emission. At the same time, the
intermediate level b acts as a relay level, enhancing the
transition probability kom a to e. Precisely this configu-
ration was involved in the two-photon micromaser exper-
iment [3,6]. Since we are here interested in the laser case,

1050-2947/94/49(4)/2986(7)/$06. 00 49 2986 1994 The American Physical Society



49 PHASE SQUEEZING IN TWO-PHOTON CORRELATED-. . . 2987

m m m w m w m m m h m m w m m I w m m m w m

[a&

[bg

rotating wave approximations, is AV, where

V = fe' ' aia)(bi+ e' ' aib)(ci+ H.c.) g+ (0 —v)ata,

(2.1)

Qy = (aP —Cdg —V A2 = 4)g —41

FIG. 1. Level scheme for the two-photon corre-
lated-spontaneous-emission laser. The atoms are pumped into
a coherent superposition of states ia) and ic), with no popu-
lation in the relay level b.

we add to this model the assumption that each level has
its own decaying reservoir, that is, one or more lower-

lying levels to which it eventually decays. We assume
furthermore that all atoms are pumped into a superpo-
sition of the states ia) and ic), with no initial population
in state ib). That is, the atoms have initial populations
p and p„, and initial coherence p, = p', . The Hamil-
tonian in the interaction picture, within the dipole and

In these equations, fuu; is the energy of level ii), 0 is the
resonance frequency of the empty cavity, v is the laser op-
erating frequency, and g is the coupling constant between
the field resonant mode and the atoms of the amplifying
medium (assumed for simplicity to be the same for all
the relevant levels). As usual in two-photon lasers, the
states ia) and ic) are assumed to have the same parity,
opposite to that of state ib), to which they are connected
through dipole transitions. The inclusion in (2.1) of the
term proportional to the photon number operator allows
one to write the unperturbed Hamiltonian in terms of
the operating frequency of the laser.

In the Appendix, we derive the following master equa-
tion for the 6eld reduced density matrix:

p(t) = —t(B —a)a ap(t) —
t [a, tct p [aatp(t) —atp(t)a]

+ b 2 p [p( ) a + np(t) a ] + ~,ob ~1 ~4 p [aap(t) +p(t)(i)

+ a, tCt Ct p, [p(t) aa —ap(t) a]) ——[a ap(t) —ap(t) a ]+H.c. ,
(2.2)

where a and at are, respectively, the annihilation and cre-
ation operators for the 6eld mode, p is the decay constant
for the field in the cavity, I'b is the decay rate of level ik),
r is the average pumping rate (Poissonian pumping is as-
sumed), and

2g T
L4 ——~a —~, —2v, a~gp„——r,&rp„

1 ab cb'
2 (oa, ttb ~i paa o(c,cb ~2 pcc) t(fl b )

=-(, 8, —,, 8') 8'p,

D' =
4 (&i'+ &i' ) ~o,-b P- .

(2.6)

(2.7)

(2.S)

2g T p„ I'p„ I' + I'p'p"=rr ' ' =r
pg pg & I]"

A Fokker-Planck equation for the Glauber-Sudarshan
P representation of the density operator is derived from
this master equation in the usual way [13,14] (aim) = sir)):

Polar coordinates (e = re''b) yield the following phase-
diffusion coefficient [14] (assuming two-photon resonance,
b, i ——b, = —b,2, and far-above-the-threshold operation)

=1 2
Dyy =:{&a,ab paa cos gab4n

a+ttccbipctti cos p b cos(2/ + (5]cc —pcb)), (2.9)

BP = ——(d,P) — (d, .P) +2, (D,~ P)

, (D,.P) + (D,~..P), (2.3)

where n is the mean photon number and

(2.1O)

where

d. = (d..)' = Rs + G's (2.4)
tang g ——

I'
g

(2.11)

D„= (D...~ )' = —2o'ac, cb ~2 ~4 (2.5)
For the average phase, one gets the following equation of
motion:
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p = —Ip, Ia, ~(sinsl, bsin(2$+ (I), —sl, b) —sinsl bsin(2$+ (I), + sl b))
g r+IP f1 21cIaab, Paa cos Slab s111Slab cIc,cbPcc cos Sich s111Slcb) (2.12)

where eKcient becomes

bcot p, b ——n b cot p b . (2.13) ls..&l
Dyy = —A~ ~b cos p p~~-

4n
From (2.12), we get both a frequency-pulling equation,

Ip ~ + Z (Cla, abpaa COS (aab SII1 Slab
1

—n, ,bp„cos p,,b sIn Sl,b}, (2.14)

and a phase-locking-like equation,

I pca IcIac, n(sin (Mcb sin(24 + Oca —Slcb)

—sinSI bsin(2/+8, + Sl b)) . (2.15)

In the following section, we discuss conditions under
which phase squeezing can be obtained, with a gain ap-
preciably larger than the one corresponding to the model
with equal lifetimes.

s-
Ip, I

I' I'. (3.3)

The phase uncertainty at steady state is given by

((~4)') = S=I'+ ~" ~ ) (3 4)

This expression closely resembles its counterpart Rom
Ref. [8]. The differences between them arise from the
presence of I', /I' multiplying p and &om n b being
substituted for n.

Unless D@~ becomes negative there is no squeezing.
From Eq. (3.2) we see that squeezing requires

III. PHASE SC}UEEZING AND GAIN

In order to have true two-photon transitions, the de-
tuning 6 must be much larger than the linewidth I'b of
state Ib). Under this condition, the time it takes for the
two-photon transition to occur can be estimated as I/b, ,
and therefore one should have 6 )) r, r„otherwise
the atomic coherence p, would decay before the transi-
tion takes place. This would destroy any squeezing, be-
cause spontaneous-emission noise reduction depends on
the atomic coherence between levels Ia) and Ic). Now, let
us consider the gain. One way of increasing it is to slow
down the rate in which Ia) gets deexcited. This is the
case when F (and consequently I'„which we assume to
have the same order of magnitude as I' ), is much smaller
than I'b.

These arguments suggest that one should look at the
following limit: 4 )) I'b )) I', I', . Under these condi-
tions, Eq. (2.15) becomes

and is indeed seen to be smaller than the coherent-state
value 1/4n when condition (3.3) is satisfied.

On the other hand, the linear gain coeKcient, obtained
from the Fokker-Planck equation (2.3), is given by

G = n, b p — p„+ 2 cos p, . (3.5)r. - r.
The oscillation threshold is given by G ) p. We identify
two contributions to (3.5), corresponding to two distinct
physical efFects. The one dependent on the populations
is associated with stimulated processes (emission for the
term proportional to p, absorption for the p„contri-
bution), while the other term, proportional to the coher-
ence, corresponds to a Klystron-like gain, generated by
the injected atomic polarization.

For I', = I' = I',:—A, these expressions become

(3.6)

p = —Ip, In , n sin sl cos(2(t) + 8, ),
2 2

where rb = 2r„ tan p = &, and o.
Phase locking is obtained for

(3 1)

G = (1+8) a(p —p. +2 Ip-&I
r cos pq (3 )

Po = 2())a —(4 + 2) srsgnA,

which coincides with the expression found in Ref. [8], in
spite of the fact that here all lifetimes are difFerent. The
existence of two stable solutions for the locked phase is
a peculiar feature of two-photon devices, as discussed in
Ref. [9]: the two-photon polarization p, is a source for
the square of the electric field, so that the usual locking
equation is now satisfied by 2P, which can have only one
stable value. This value is de6ned, however, modulo 2',
so P is given modulo Ir, thus yielding two stable values.

When the average phase locks, the phase difFusion co-

where 1 + 8 = F/A and a = 2g r/F
For 4 &) I', we see that for perfect coherence [Ip, I

=
(p p )ISS] it is possible to get up to 50% squeezing for
the field inside the cavity —and therefore up to 100%
squeezing for the output field spectrum [15]—while still
having inversion and stimulated gain, that is p ) p, .
On the other hand, the linear gain given by (3.7) divers
from the corresponding expression of Ref. [8] by the fac-
tor 1+b. Thus the condition I'/A )& 1 greatly increases
the gain, for the same squeezing as in the equal-lifetime
situation.

Analogous considerations can be applied to the four
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level model suggested in Ref. [9], where the single level
c is replaced by a duplet of almost degenerate levels c
and d, and the possibility of initial coherences p „p ~,
and p ~ is taken into account. The corresponding results
are obtained in the same way as before &om the master
equation obtained in the Appendix. For I'p ——2I' and
I' = I' = I'g ——A with 6 &) I' )& A, one gets the
same phase-locking condition as in Ref. [9], and the same
amount of squeezing, but the gain increases by the same
factor as in the three-level model.

IV. CONCLUSIONS

The compatibility of squeezing with inversion and
stimulated emission gain has been demonstrated before
in the framework of two-photon correlated spontaneous-
emission lasers. However, previous treatments suffered
from the restriction that all relevant lifetimes were as-
sumed to be identical.

We have shown here that, by assuming that the re-
lay level in the two-photon transition decays much faster
than the other lasing levels, it is possible to greatly in-
crease the gain, while at the same time keeping phase
squeezing close to the ideal 50%%uo. Since coherent atomic
injection does not lead to phase squeezing in one-photon
lasers, our result provides yet another motivation for
building two-photon oscillators, since it reinforces the
idea of using these systems as bright sources of squeezed
light.
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APPENDIX

We derive now the master equation for a four-level sys-
tem with difFerent decay times. The corresponding equa-
tion for a three level system is then obtained as a special
case. We follow the general procedure of Appendix I of
Ref. [13).

For each atomic state
]j), let us introduce a fictitious

state ~j') to account for spontaneous decay. The re-
duced density matrix for the Beld is obtained &om the
total density matrix by tracing over all atomic states-
a) ~ I ~) ~ I c) ~ I ) ~ I

a')
~ I

')
~ I

c')
~ I

d') . However, after a time r,
large compared to the atomic lifetimes, the atom must
have decayed to the primed states. In the direct product
atom-field basis, one writes

(t+ ) = g (t+ )+ g (t+ )

+g ' ' (t+r) + gd' d' (t+r) (A1)

where p designates the reduced density matrix for the
field and g the total density matrix. The superscript one
reminds us that we are dealing with a single atom.

Considering the eight-level atom plus the Beld as a
closed system, we write its state ket as

I&-t (t')) = ).([C.".iol(t') Ia& + C~lol(t') I&) + C,lol(t') Ic) + Cd. lol(t') ld&]

+).[C..ii„l(')I")+ Cs.li l(') lt'& + C..li„l(') lc'& + Cd.li„l(') I"'&]I{'}&)l~) (A2)

where {0}and {I„}refer to all modes except the lasing
one. {0}stands for all of them in the vacuum state and
{I„}for one photon in mode r and none in the rest.
In terms of these coeKcients, the total density-matrix
elements in Eq. (Al) are

g,„. , (t+ r)

= ) Py ) C~„I, l(t + r)c~ i, l(t + r), (A3a)

g~,„.~, (t + r)

=) P+) C,, &»(t+r)C&, &»(t+r), (A3b)

g,„,, (t+ r)

;v (t+ r)

= ) P@) Cd@
&i l(t+ r)c&~

&i l(t+ r), (A3d)
r

where P~ is the probability of finding state ~g t& in the
statistical mixture.

Now for each decay ~n& ~ ]ca') we neglect the other
atomic levels and treat the problem as a two level atom
interacting with the Beld. This is a good approximation
as long as the coupling between the atom and the back-
ground modes —i.e., all modes except the lasing one—is
weak. Assuming a typical dipole interaction Hamiltonian
in the rotating wave approximation, one can write equa-
tions of motion for the probability amplitudes C in the in-

teraction picture. Integrating the equation for C,
we get

C~, I, )(t+r)

= ) Py) C,,„I, l(t+r)C, , l, l(t+r), (A3c)
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where g is the coupling between
~
n) ~

~

a') and the
rth Geld mode, 0„ is the mode frequency, and ~

, with ~a) being any of the four levels.
From Eqs. (A3) and (A4), we get an equation for

g,„. , Performing the Weisskopf-Wigner approxima-
tion, we end up with

p. (t+&)
T

d '{r.g.'„.. (t+ ')+r,g'. (t+ ')

+r.g. .. (t + & ) + r«~;~ (t + & )).
T

g.',„., (t+~) = I'. d~'g'„(t+~'),
0

(A5) (A6)

where

r = 2xg, (w )p(~, ),

g wg (0),

In order to carry out the integration required in (A6),
one must know how these matrix elements evolve in time.
If there were no spontaneous decay to primed states, their
time evolution would be given by the laser Hamiltonian

V = (e' ' a)a) (b( + e' ' a[b) (c[ + e' ' a[b) (d( + H.c.)
xg+ (0 —v)ata.

) m f p(B)dB,
0

with p(Q) being the mode density.

Plugging (A5) into (Al), we get

In the Weisskopf-Wigner approximation, spontaneous
emission leads to exponential decay of upper level popu-
lations. So we introduce the corresponding decay terms
in the equations of motion obtained &om the interaction
V:

g'. (t

g&;b(t

~ 1 (t

g~;~(t

+7') =

+7') =

+~') =
+r') =

—I' g . (t+ w') —(i(D —v)a ag . (t+ w') + ige' ' ag&. (t+ r') + H.c.),
—rsg&.&(t+ r') —(i(O —v)a ag& &(t+7') + .ig[e ' ' a g .&(t+ w') + e' ' ag, &(t+.w')

+e' ' ag~ s(t + ~')] + .H.c.),
—r g, ,(t + & ) —(i(A —v)a ag, ,(t + v') + ige ' ' atg&.,(t + z') + H.c.),

rgg~ ~(t+ T—') —(i(B —v)a agz &(t+ w') +ig. e ' ' a g& &(t+ ~') + H..c.),

(A7a)

(A7b)

(A7c)

(A7d)

where Aq ——~~ —ut„42 ——~g —u, —v, and A3 —(AJf) 4)Q v.
Now, the right-hand side of (A6) is a sum of terms of the form

f d7.'r g' (t+ r'), .
0

which can be written as

T

d~'( —I' e )(g'. (t+~')e" ),
0

so that, integrating by parts, we get

T

g'. (t) + dr'e -" (g . (t + r')e"
0

7-'

because g . (t+ w) = 0 due to the decay to ~n').
We can now write (A6) in the following form:

T

p'(t+ T) —p'(t) = d~'(g.'..(t+ T') + r.g.'.(t+ ~') + g,'.,(t+ ~')
0

+r,g,
' ,(t+ ~') + g,'.,(t+- ~. ') + r,g,

' ,(t+ ~') + g,'.,(t+ . ') + r, g,'„(t+ T )), (A8)

where we have used that g . (t) + gz~ z(t) + gi. (t) + gz z(t) = p (t), because the primed states are not populated until
the unprimed states population starts decaying.
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Plugging (A7) into (A8), we obtain

T

p'(t + r) —p'(t) = «'( —~(A —v)a a[g', (t + r') + gb, b(t + r') + g.',.(t + r') + gd, d(t + r')]
0

ig([e a gb o(.t+r )]+ [e a g .b(t+r )l+ [e a gd;b(t+r )l))+He (A9)

The coarse-grained [13] time derivative of p is obtained by multiplying the change in p due to a single atom by the
average pumping rate r. This procedure, justifiable if each atom makes only a small contribution to the field, or under
the assumption of Poissonian pumping statistics [16],yields a master equation for the field reduced density operator.

Since g . is nonvanishing only for a short time, A~ && v, we can approximate the integral

T

d '[g . (t+ ) + gbb(t+ ) + g; (t+ ) + gdd(t+ )]
0

by rb, rp'(t).
Note that rAv is the number of atoms pumped into the lasing levels before the first atom has time to decay

appreciably. Since p~(t) is the contribution of a single atom to the density matrix, we can approximate rb, rp~(t) by
p(t) which includes the contribution of all the atoms pumped during the time interval Ar. When we do so, we are
just adding the contributions of each individual atom to p(t). Again this is a good approximation if each atom makes
only a small contribution to the field, which is consistent with our perturbative approach. So the coarse-grained time
derivative of p is given by

T

p(t) = —i(A —v)a ap(t) —igr dr'([e' ' a, gb. (t+ r')]+ [e' ' a, g, b(t+ 7')].+ [e' ' a, gd b(t+ v.')]) + H.c.
0

(Alo)

In order to calculate the integral in the above expression, one has to know the time evolution of gb (t + r'). ,)

gd~. b(t + r'), g~.b(t + 7'). Proceeding as before, we get the following equations of motion for these matrix elements:

(t+7') = I' bgb (—t+r') .—i(A —v)[a a, gb (t+r')] —.igje ' ' a g . (t+7') +e' ' ag, . (t+r')
+e' ' agd (t+r') .—e ' '

gb b(t+r'). a ), (Alla)

g, . (tb+ r') = I',bg, b(t+ —r') —i(.A —v)[a a, g, b(t+ r')] —
ig. (e ' ' a gb. b(t+ r') —g, . (t+ 7')ae'

(Allb)

gd.b(t+ r') = I'dbgd b(—t+ 7-') .—i(A —v)[a a, gd b(t+ r')] .—ig(e ' ' a gb.b(t+ r') —g„' (t+ r')ae. ' '
—

gd (t+7 )a e .' ' —
gd d(t+r')a e.

where

r. +rPI ap
2

We solve equations (All) perturbatively up to first order in the coupling constant g and plug the result into
Eq. (A10). After having performed all the integrations required, we get

p(t) = —i(A —v)atap(t) —~2(n bZ, p [aatp(t) —atp(t)a] + (n.„bl:;bp„
+ncd bd2 l'sgP d + n d dbms Cs Pd + nd dbms Pdd) [P(t)a a —aP(t)a ]

+~y (nac, ab~4 pea + nod, abd& pda) [aap(t) —ap(t)a]

+(n~...biz &4'p,~+ n~d, dbms Zs"pd )[p(t)aa —ap(t)a]) ——[a ap(t) —ap(t)a ]+H.c.,
where p P are the atomic density matrix elements before the atom enters the cavity,

A4 ——4g+ &2,

a5 ——4g+ &3,

2g
y~&Pn

Pn

2g f'
Appg =

Pn
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Of course, the term proportional to p does not come out of these calculations. It was added to account for cavity
decay.

The master equation for the three-level model is obtained from the above one by dropping the terms involving the
state d. One gets then

p(t) = —i(O —v) atap(t) —
—,'(n gi, sp [aat p(t) —at p(t) a]

+ s ~2p-[p( )
' —ap(t) "1 + -,-b i'«-p [ p( ) —ap( ) ]

+n ...bl.'2 l:4'p, [p(t)aa —ap(t)a]} ——[atap(t) —ap(t)at] + H.c. (A13)
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