
PHYSICAL REVIEW A VOLUME 49, NUMBER 4 APRIL 1994

Optical pulse propagation at negative group velocities due to a nearby gain line
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For a pulse with carrier frequency detuned less than an atomic plasma frequency but outside a narrow
Lorentzian gain line, the group velocity will be negative. Unlike propagation at the center of an absorp-
tion line, the energy velocity is approximately equal to the group velocity, and is also negative. We show

that a classical Gaussian pulse with such a carrier frequency will propagate at the negative group veloci-

ty for many atomic plasma wavelengths, before dispersion deforms the pulse shape. The peak of the
transmitted pulse leaves the gain medium before the peak of the incident pulse enters, i.e., the pulse is

transmitted superluminally. For a sufficiently long medium the exit pulse is well resolved from a com-

parison pulse traveling through an equal distance of vacuum. There is no convict with causality, as nu-

merical simulations with a switched-on Gaussian demonstrate. We propose an experiment to observe

this kind of propagation by sending a pulsed probe beam through a Xe gas cell pumped to achieve inver-

sion.

PACS number(s): 42.50.Fx

I. INTRODUCTION

The propagation of a pulse of light through dispersive
media has been thoroughly studied, but there still remain
some unresolved aspects. It is well known that for trans-
parent media with normal dispersion, the group velocity
is less than the vacuum speed of light and correctly de-
scribes the motion of a pulse. Anomalous dispersion
occurs within an absorption band and results in a group
velocity which we term abnormal (superlurninal or even
negative), in apparent violation of relativistic causality.
Actually abnormal velocities must always exist in some
frequency range in linear media, and will typically occur
within absorption lines and outside gain lines [1]. The is-
sue of propagation at abnormal velocities was first raised
because of an apparent conQict with the theory of rela-

tivity, which forbids any signal to travel faster than light
in vacuum. The classic work of Sommerfeld and Bri1-
louin [2] considered the propagation of a step-modulated
sine wave with a frequency near an absorption line. They
defined five different velocities relevant to this problem,
and found that no real signal (defined by the edge of the
step) could actually propagate faster than the speed of
light in the vacuum. Hence it is frequently claimed in
textbooks that the group velocity "is just not a useful
concept" when it is abnormal [3]. On the contrary, it has
been found that for suSciently smooth pulses, the group
velocity can be meaningful even when abnormal. Recent-
ly there has been renewed interest in the question of the
time of propagation of Gaussian pulses, since these are
more appropriate for experimental work. Garrett and
Mccumber [4] and Tanaka [5] predicted that the pulse
peak would travel with an abnormal group velocity
whenever the bandwidth of the pulse lies within the ab-
sorption band. Similarly, the tunneling of photons

through a 1D photonic band gap is superluminal. These
results were confirmed experimentally [6]. The motion of
the pulse can be understood as a reshaping effect: most
of the pulse is absorbed, leaving only a small pulse in the
forward tail which moves superluminally. This type of
pulse does not constitute a signal, however, so it still con-
forms to the idea of relativistic causality.

In this paper we consider an interesting model for
which abnormal velocities occur in the nearly transparent
regions; in particular, the group velocity becomes nega-
tive when the detuning from a gain line is on the order of
the plasma frequency. This model is realized in terms of
a Lorentz medium with negative oscillator strength, or
equivalently by a two-level system in which the level pop-
ulations are inverted with respect to their thermodynam-
ic values. For this example we calculate the group veloci-
ty and its dispersion outside the gain band. Then we ex-
amine the propagation of a Gaussian pulse through this
material and show that it moves at the group velocity, if
the material is not too thick and the spectral width of the
pulse not too great. Thus, the pulse will exit the material
before it would haue if it had traveled through an equal
distance of vacuum. This is not at variance with relativis-
tic causality, however, because the Gaussian lacks a
definite edge. Numerical simulation of the propagation
of a modified Gaussian pulse, which has zero intensity
until a given time, shows that its edge travels with the
front velocity c. The energy velocity is found to be ap-
proximately equal to the group velocity, but this does not
imply a violation of energy conservation, since the pulse
can borrow energy from the excited atoms. We propose
an experiment to observe pulses propagating at abnormal
group velocities.

II. ABNORMAL GROUP VELOCITIES
IN AN INVERTED POPULATION MEDIUM

*Permanent address: Lawrence Livermore National Laborato-

ry, University of California, Livermore, California 94550.

It is well known that the inversion of level populations
in an atomic material leads to gain for light tuned to the
resonance frequency of the two levels. Outside this gain
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band, the material appears transparent. Using the
Kramers-Kronig relations we have previously shown that
abnormal group velocities occur around a strong enough
gain line, independent of the line shape [1]. The simplest
example, and one which is sufficient for our calculation,
is a Lorentz dielectric with negative oscillator strength.
Ignoring the effect of inhomogeneous line broadening, the
complex index of refraction is

2 1/2

n(ro) = 1—
Np N —lpN

Here Np is the frequency difference between the two levels

and y is the linewidth of the resonance. In this classical
model, the square of the atomic plasma frequency is
defined to be

4~x1f 1e'
m

where N, e, and m are the atomic density, electron
charge, and mass, respectively. The oscillator strength is
given by f, which is negative; we have included its sign
explicitly in Eq. (1). Note that this expression for the in-
dex of refraction is exactly what would be obtained from
a semiclassical two-level model in the linear regime. It
has been shown from the equations of motion for the den-
sity matrix for two levels 11) and 12) (without making
the rotating wave approximation) that the average of the
dipole moment satisfies [7]

while the imaginary part results in a gain coefficient

21m(con)
g ro

C

It is usually true that the resonance frequency is much
greater than the plasma frequency, which is in turn much
larger than the linewidth, so we will assume

y «N «Np . (7)

For this inequality to hold we require a large gain band-
width product, but a narrow bandwidth. Typical orders
of magnitude for obtainable inversion in noble gases are
y/to~ =10 and ro /too=10 (see Sec. IV for a numeri-
cal example), so this assumption is easily met. [The left
inequality of Eq. (7) differs from an example considered
by Garrett and Mccumber [4], who assumed the plasma
frequency was smaller than the gain bandwidth. Here we
are detuned sufficiently far from the center of the line so
that gain is not very substantial, although for generality
we have included it.] To simplify subsequent computa-
tion we introduce the dimensionless detuning

preted classically. For our case of an inverted popula-
tion, f is negative. From the real part of the index we
find the phase velocity

C
U~(ro) =

d d g e
+y —+too (r(t) ) = fE(t), —

dt m
(3)

where the oscillator strength for polarization c is defined

by

f= 1(11r12) a1'hp . (4)

Notice that the fractional population inversion bp is con-
stant, so that for a given substance f is constant. Thus
the index given in Eq. (1) will apply if most of the atoms
remain in the excited state while a weak pulse propagates
through the medium. Equation (3) is the usual starting
point for the Lorentz model, but with the oscillator
strength always positive and the dipole moment inter-

' « 141 «
Np Np

The power-series expansion of the index of refraction in
the small ratios y/co and ro /coo is

Np Np
n(g) =1+

4k o Np
(10)

which will be of order unity within the region of interest.
More precisely, in order to make power-series expansions
in the small ratio to~/too, we will require the dirnension-
less detuning to lie in the range
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FIG. 1. Reciprocal group velocity (so»d
curve) and reciprocal energy velocity (dashed)
in units of 1/c, vs angular frequency for a
Lorentz-model medium with negative oscilla-
tor strength [Eq. (1)]. The parameters used for
the plots are coo= 10, co~ = 1, and y =0.2. Out-
side the high-gain region, the reciprocal veloci-
ties are nearly equal, and are negative in a
"window" of width co~ centered on coo.

-10-
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The real part of the first derivative of the wave number
con(co)/c with respect to co is the reciprocal of the group
velocity, as calculated by the method of stationary phase.
The reciprocal of the group velocity is plotted in Fig. 1,
along with the reciprocal energy velocity as found in Ap-
pendix A. The energy velocity is defined as the ratio of
the time-averaged Poynting vector to the time-averaged
energy density of the fields and the atoms. Notice that
for the detunings we are considering, in a relatively low-
gain region, these two reciprocal velocities are nearly
equal, as well as abnormal. The imaginary part of the
derivative of the wave number results in preferential gain
of frequencies nearer to the gain line. From Eq. (10) we
find the power-series expansion

d 1 . 1 y
d co 4(2 4(3 co~

[con(co)] =1— +i

velocity dispersion and preferential gain place a limita-
tion on the distance a pulse can travel without distortion.

III. PROPAGATION OF A GAUSSIAN PULSE
AT ABNORMAL GROUP VELOCITY:

ANALYTICAL CALCULATION

In this section we consider an initially Gaussian pulse
traveling through a finite cell containing the inverted
population medium. We make analytical approximations
to calculate the shape of the pulse as a function of time
and distance traversed. We find that a pulse of spectral
width less than the plasma frequency travels a distance of
many plasma wavelengths c/co at an abnormal group
velocity before becoming very distorted.

The medium extends from z =0 to z =a. Propagation
of a wave at frequency cu is obtained by solving the
Helmholtz equation,

It is useful also to consider the group delay, defined as
the difference in transit times for a pulse traveling
through the medium versus one traveling through an
equal length of vacuum. This delay will be negative
whenever the group velocity is abnormal. For the
Lorentz gain medium it is where

2
cl co+ n(co, z —)

c)zz
E(z, co) =. 0,

b, t(co) = Re(con(co) j
—1

d - z 1 z

dt's

c 4(~ c
(12)

n(co) for 0&z &a
1 fo &Oo (16)

notice that the group delay is always negative. This
means that the peak of the transmitted pulse always ap-
pears before one which travels through vacuum. A re-
gion of particular interest occurs when the group veloci-
ties are negative, since then certain pulse envelopes actu-
ally travel backwards. Setting the group velocity equal to
zero and solving for the frequency, we find this region
corresponds to

(13)

Continuity of the field and its derivative leads to
coefficients for the transmitted and rejected waves.
However, we will assume that since the index of refrac-
tion of a gas is close to 1, all of the wave is transmitted.
Including rejections at each surface only introduces a
factor with much weaker frequency dependence than the
factor due to propagation through the medium. Thus, as-
suming all waves are traveling towards the right, the field
is given by

which is consistent with Eq. (9). Thus, negative group ve-

locities occur in a frequency "window" centered around
(but excluding) the gain line, with a width equal to the
plasma frequency.

Differentiating Eq. (11)gives the group-velocity disper-
sion (real part) and second-order preferential gain (imagi-
nary part),

E(z, co) =F(co) .

. CO

exp i—z for z &0
C

. CO

exp i [n (co)a +—z —a ]
C

for z)a,

. CO

exp i n(co)z —for 0&z &a
C

(17)

d2
(con(co)) =

dco

1 1 . 3 yl
co~ g'3 4g co~

(14) where F(co) is some wave packet in the frequency
domain.

We choose a Gaussian pulse with carrier frequency co,
and time width ~, with Fourier transform

Note the different functional dependences of Eqs. (12)
and (14) on the dimensionless detuning. As the detuning
is decreased, the magnitude of the group delay becomes
very large, but the dispersion increases more rapidly. %'e
will demonstrate in the next section how the group-

F(co)=v'2m~Eoexp[ —
—,'r (co—co, ) ) .

This corresponds to the peak of the incoming pulse pass-
ing z=0 at t =0; the time-dependent field is then given
by
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Z

C

2

Eoexp exp( i—co, t } for z (0
2

(19a)

E(z, t)= 7 00—Eo dcoexp[ —
—,'H(co —co, ) ]exp i z ic—ot for 0(z (a. a)n(co)

v'p c
(19b)

00—Eo dcoexp[ ,'—t —(co co—, } ]exp i a+i —(z a—) ic—ot for z &a ..con(co) . co

v'p c c
(19c}

1 (( /co~ coo/ (20)

The main point of this section is now to calculate the in-
tegrals (19b) and (19c), for propagation within and to the
right of the medium. Since they have the same functional
form, we only need to evaluate Eq. (19b); then Eq. (19c)
can be found by simply replacing z by a and t by
t —(z —a )/c.

Following the method used in [4], we expand the
second exponent in powers of co —co„upto second order.
This approximation is valid provided that the bandwidth
of the pulse does not significantly overlap with the gain
line, that is,

ian, but it now travels at the abnormal group velocity.
On the other hand, the spatial variation at a given time is
only Gaussian as long as A(z) is close to l. In order to
find the relevant length scales to satisfy this requirement,
we substitute Eqs. (11) and (14) for the first and second
derivatives of the wave number and simplify, neglecting
terms of higher order than the second in y/co~. The en-

velope of the electric field (excluding the carrier wave)
then becomes

Eo gZE(z, T)= exp&1+6(z) 2

Actually we will find below that frequencies very close to
resonance are amplified by the gain medium to such an
extent that the power-series expansion breaks down; how-
ever if the Gaussian spectrum is filtered by first being
passes through the same medium with noninverted popu-
lation, those frequencies can be eliminated. Since the cal-
culation for propagation through the absorbing medium
is similar to that for the gain medium, we only need to
show that little distortion will occur in the latter case, to
justify beginning with the Gaussian spectrum Eq. (18).
For actual experiments, and also for numerical simula-
tions, it is important to exclude frequency components
which are on resonance; see Secs. IV and V.

Using the power-series approach, the integral Eq. (19b)
can be done in closed form to yield the result

Xexp

where

z 1T=t —— 1—
c 4g,

r
4 g2

Z1—
Wi

1+6,(z}

W2

1+h(z)

[T T,(z)]-
2T'

(T T2)—
(23)

2

(24)

(25}

1E(z, t )—= Eoexp i
A (z)

co,n(co, )
Z —

CO, t
C

'2

b(z)= — +2Z Z

Wi W2
(26)

Xexp

2

t — [co,n ( co, )]-d Z

dco& c

2HA(z)

and

T2=2yd (27)

where

for 0(z (a, (21)
T, (z)=T2 (28)

d'
A(z)=1 i —[co,n(co, )] .

c dco~
(22)

wi

The length at which distortion due to preferential gain
occurs is

By looking at the expression in curly brackets in Eq. (21),
we see that for a fixed depth in the medium, the temporal
variation of the pulse is nearly that of the original Gauss-

4 c &co
w

3 r (29)
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and the (signed) length for which group-velocity disper-
sion becomes evident is

w2=8cco Hg, . (30)

The first exponential factor in Eq. (23) is simply the gain
at the carrier, which can be made small if the linewidth is
sum. ciently narrow. The second exponential shows that,
aside from gain and chirping effects, the Gaussian propa-
gates at the group velocity for z less than both of the
lengths w, and ~w2~. For very narrow linewidths ~w2~

will be the shorter length, so that group-velocity disper-
sion places an upper limit on the length of the medium:

a&/w, /
. (31)

(This condition is similar to Rayleigh's criterion to
resolve interference fringes. ) Using Eq. (12) for the group
delay we find that the length of the medium must be great
enough to allow the resolution of the pulse traveling
through it and the pulse going through the vacuum,

a )4crg~ (33)

Assuming that
~ w2 ~

& w i, we can combine the inequalities
(31) and (33) to obtain

1
ohio~

2,7
(34)

which is consistent with the pulse bandwidth lying out-
side the gain region [Eq. (20)]. To find the allowable
length for the medium, we rewrite the inequalities (31)
and (33) in terms of the plasma wave number k =co /c,

4' rg,'&k a &8(a~~r)'~g', I
. (35)

For oiler suSciently large (that is, for a pulse with narrow

enough bandwidth) we can always find a length to satisfy
both inequalities in Eq. (35); in general this will mean the
medium should have a length of many plasma wave-

lengths.
If the inequality Eq. (35) is met, then the comparison

pulse which travels through the vacuum and the one
which travels through the medium are well resolved from
each other, and the pulse in the medium travels undis-

torted (aside from gain) at the group velocity. If in addi-
tion the group velocity is negative we have a situation
which seems counterintuitive: most of the pulse has al-

ready appeared at the exit face before the main part of
the pulse has entered the medium. In the next two sec-
tions we will describe this remarkable effect in greater de-

tail, and propose an experiment to confirm it.

The last exponential factor in Eq. (23) gives rise to a small
frequency chirp which only becomes significant once the
intensity profile is already distorted.

The effect of propagation at abnormal velocity will be
most striking if the magnitude of the group delay is at
least on the order of the time width of the pulse, that is,

(32)

IV. PREDICTIONS FOR A PROPOSED EXPERIMENT

Before presenting graphs based on the analytical calcu-
lation and numerical simulations, we describe an experi-
ment to demonstrate pulses moving at negative velocities.
The most important consideration comes from the in-

equality Eq. (7), especially the requirement that the
linewidth should be narrow compared to the plasma fre-
quency. The plasma frequency can be found most simply
from the maximum gain go [setting ai =coo in Eq. (6)] and
the homogeneous linewidth y,

&p Qgopc (36)

Substituting into Eq. (7) shows that the gain must be
large compared with the linewidth expressed in wave
numbers,

gp »
C

(37)

Large gains have been reported in noble-gas lasers, al-
though these do not have homogeneously broadened
spectra. Instead they are Doppler broadened; the gain
spectrum within a Doppler width of the line center is
Gaussian, but far from line center the index of refraction
is described by Eq. (1) from the Lorentz model. Equation
(36) is modified only by a normalization factor,

co& =(m ln2) ' +2go5cooc =1.164+gofirooc (38)

where 5coz is the full Doppler width at half maximum.
For the 5d[ —,']s-6@[—,'), transition (wavelength=3. 507')
of Xe, gains as high as 60 dB/m have been reported in a
Xe:He mixture [8—10]. At a temperature of 300 K, the
Doppler width of the gain line is 5aio /2n =92 MHz. Ac-
tually, a considerably broader linewidth of 270 MHz, at-
tributed to hyperfine splitting and isotope shifts, is ob-
served [11]. Using this method linewidth we estimated
the plasma frequency to be

co&
/2n =420 MHz [where we

have used Eq. (38) and ignored an unknown normaliza-
tion factor of order unity]. To prevent broadening from
mass shifts and hyperfine splitting, we propose to use the
isotope ' Xe, which has no nuclear spin. Thus the in-

equality Eq. (7) (where y is replaced by the Doppler
width) is satisfied, so we are in the high-dispersion but
low-gain regime. The small parameters used in the prop-
agation calculation of Sec. III are found from the plasma
frequency and the homogeneous linewidth of y/2m. =4
MHz,

~- =10
COp

(39)

(40)

Of course, the power-series Eqs. (10), (11), and (14) are
only valid for detuning outside the Doppler width, so for
small detunings it may be necessary to narrow the
linewidth by cooling.

In this narrow-linewidth regime superAuorescence has
been observed, but we do not expect that to occur for a
system which is continuously and incoherently pumped
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(by electron-impact excitation). Simulations of a continu-
ously pumped, pointlike system of three-level atoms show
that after a transient superradiant pulse, the populations
approach a steady state with inversion of the upper two
levels, as we have assumed. Since superfluorescence in an
extended gain medium requires more stringent conditions
to occur, these simulations support our expectations.

As an illustration, suppose we choose a dimensionless
detuning of g= —,'. We must take the product of the plas-

ma frequency and the pulse duration to be much greater
than —', to satisfy Eq. (35), which now reads

~4' r&k l. « (co r)
27

(41}

Let us take ~~~=30; this corresponds to a pulse duration
of ~=10 ns. Thus the Xe cell can have a length of 50 re-
duced plasma wavelengths, or about 5 m, to avoid distor-
tion and yet still provide sufficient separation of the
pulses.

As mentioned earlier, because the pulse frequency is so
close to the gain line, filtering of the on-resonance fre-
quencies is necessary to avoid large amplification of these
components. A convenient way to achieve this is to first
pass the laser pulse through an absorbing, i.e., uninverted
population sample of the same medium. The form of the
index of refraction for the absorbing section is then iden-
tical to Eq. (1) but with the opposite sign in front of the
square of the plasma frequency. For simplicity, assume
there is total inversion in the gain section and all atoms in
the absorbing section are in the lower state. Then a gain
cell of length L preceded by an absorbing cell of the same
length will compensate exactly for the attenuation. Of
course, it will also cancel out the dispersion so that the
final pulse is identical to the original and arrives as
though it had traveled through a vacuum of length 2L.
Thus we must measure the time between when the pulse
exits the absorbing cell and when it exits the gain cell. In
practice, complete inversion is difficult to obtain, but ex-
act compensation of the gain can still be made by increas-
ing the atomic density or length of the gain section, as we
show explicitly in Appendix B.

The complete schematic for the proposed experiment is
shown in Fig. 2. An InAs diode laser is tuned to the car-
rier frequency and the current is modulated to produce a
pulse, which then passes through the absorbing cell filled
with Xe, pumped to the lower level by an electrical
discharge. This cell is followed by a beam splitter; note
that at this point both the reflected and the transmitted
pulse are identical, although slightly distorted due to the
absorber. One pulse travels through vacuum to a detec-
tor D2; the path length to D2 is varied by a delay line.
The second pulse travels through the Xe gain cell
(pumped to the upper level), and is then detected at D l.
This pulse will be restored by the gain ce11 to the original
laser-pulse shape. To find the relative velocities of the
two pulses, the path length to D2 is adjusted until the
peaks of detector signals coincide. The anticipated result
is that the path length from the beam splitter to D2 must
be made shorter than the distance from the beam splitter
to D l. Correlation techniques may also be used to com-
pare the pulse shapes.

laser

beam
splitter

a a a i a a a a a a a a a aII.
La a a a a a a a a a a a a a

&23

~ trombone prism

FIG. 2. Schematic of proposed experiment. The laser diode

produces a pulse with carrier detuned about a plasma frequency
from resonance. This propagates through cell with uninverted

Xe population, which absorbs on-resonance frequencies. After
the beam splitter, the reflected pulse goes along a path with a
delay line (trombone prism), and to detector D2. The transmit-
ted pulse travels through the Xe cell with inverted population,
and is detected at D1. The delay line is adjusted until the sig-
nals from D1 and D2 coincide.

V. COMPARISON OF ANALYTICAL RESULTS
WITH NUMERICAL COMPUTATION

In Fig. 3 we show a time sequence of the expected
propagation for the values given above for Xe, based on
the analytical calculation. The pulse duration is 26.4 in-
verse plasma frequencies, and the dimensionless detuning
is —,'. Propagation through the absorber, which begins at
z =0, a vacuum gap, and the gain section are shown; this
is equivalent to the path from the laser to D l. (The cal-
culation for the absorber is similar to that of the gain cell
done in Sec. III.) The sequence of events can be de-
scribed as follows. First, the incoming pulse begins prop-
agating through the absorber, and its leading edge creates
a cusped peak at the exit face of the gain section. This
peak then splits into a forward- and a backward-moving
pulse. The forward-moving pulse continues through the
vacuum (and is detected at Dl}, while the backwards-
moving pulse collides with the main part of the incoming
pulse at the entrance of the gain cell, and both are annihi-
lated by destructive interference. Although at t =200 we
see there are three pulses (two moving forward and one
moving backward), energy is still conserved since the "ex-
tra" pulses have borrowed the energy from the inverted
atoms. In a future paper we will examine the microscop-
ic process underlying this "virtual gain" eff'ect. For the
macroscopic model considered here, we note that after a
long enough time, there is only one final pulse with the
same energy as the initial pulse.

Although the results of the calculation of Sec. III may
appear preposterous, we have done numerical calcula-
tions which agree with them. Using a fast Fourier trans-
form in time for each z in steps of two plasma wave-
lengths gave results virtually identical to those plotted in
Fig. 3. Since the appearance of the backwards-moving
pulse depends crucially on the small amplitude of the
leading edge of the Gaussian, the question naturally
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arises: how can the backwards-propagating pulse emerge
if one switches the Gaussian on at a definite time (e.g. , by
suddenly opening a shutter just before the peak arrives)?
To answer this question, and to more thoroughly under-
stand what is occurring in the gain cell, we have also
done numerical simulations starting with this step-
modulated Gaussian pulse, where the shutter is opened at
time to,

E(z=O, r)=
0 for t (to,

2

E exp
2

exp( ic—o, t) for t & to .

(42)

Beginning with the analytical Fourier transform,

' 1/2
7T

F(a)}=
2

rEoexp[ ,'r—(—co cu,—) ] 1+erf — [to+i' (co —co, )]
2r

(43)

decreases the amount of computation needed. Propaga-
tion of this pulse with to=~ is shown in Fig. 4. Notice
that the front defined by the sharp cutofF moves at exactly
the vacuum speed of light regardless of the medium. This
delays the formation of the small cusp at the exit face of
the gain cell until the front has passed through [compare
Figs. 3 and 4 at t =100]. Once that has occurred, the
motion is qualitatively the same as that shown in Fig. 3.
Thus we can expect that the particular pulse shape is not

I

crucial to producing a well resolved backwards-
propagating pulse. As long as it has an unambiguous
maximum and its duration satisfies Eq. (35), the pulse
must travel at the group velocity. The numerical simula-
tions illustrate three important facts: (a} causality is al-
ways maintained; (b) the group velocity is useful for
describing motion of the peak of a pulse; and (c) the gain
medium is unstable in the sense that it can easily be per-
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FIG. 3. Time sequence of Gaussian pulse propagation through cells filled with uninverted and inverted atomic population of the
same medium, based on analytical calculation. Uninverted medium extends from z =0 to 50, inverted medium from z = 100 to 150,
and all other positions are vacuum. Carrier frequency is detuned co~/3 above resonance. Distances are in reduced plasma wave-
lengths, times in inverse plasma frequencies. The peak of pulse is at z =0 at t =0. The pulse velocity is subluminal in the uninverted
section, but negative in the inverted section.
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FIG. 4. Same configuration as for Fig. 3, but the Gaussian is step modulated; the step occurs at 1/e point of intensity. Graphs are
based on numerical simulations. The location of the front (z =ct) is indicated by the pointer at each time. (Ripples near the step are
due to numerical error. )

turbed into producing a backwards-moving pulse from a
small leading edge.

VI. CONCLUSION

Of the five velocities defined in [2], we have considered
the phase, group, energy, and front velocities. For detun-
ing near a narrow gain line, the group velocity becomes
negative, but still remains meaningful for near-Gaussian
pulses, as we have demonstrated analytically and numeri-
cally. The energy velocity is similar to the group veloci-
ty, so within the gain medium energy travels in the oppo-
site direction as the phase velocity. In spite of these
peculiarities, the front velocity is exactly the vacuum
speed of light, so causality is not violated. While it is
tempting to define a signal velocity using the time it takes
for the intensity to reach a fraction of its maximum, this
is unsuitable for our problem [12].

The motion of the peak(s) can be summarized in a
space-time diagram, Fig. 5. One should not be misled by
its resemblance to a Feynman diagram used in discussing
virtual electron-positron pair creation and annihilation.
The figure should not be interpreted in this way, because
although the atoms are making virtual transitions, the
backwards-moving pulse is composed entirely of photons
with k vectors in the positiue z direction. (To see this

more physically, notice that a beam splitter placed at nor-
mal incidence inside the gain medium would reflect light
only to the left. }

Throughout this paper, we have dealt with the
inverted-population medium in a purely macroscopic
way, by prescribing a uniform, time-invariant index of re-
fraction. We also assumed classical (as opposed to quan-
tum) fields. It remains to be shown that the medium ac-
tually does approach a steady state as long as the pump
remains on, i.e., there are no oscillations or super-
Quorescent pulses. For accurate comparison with experi-
ment, we must also consider possible saturation effects

FIG. 5. Motion of the peak(s) of the pulse. The shaded re-
gion indicates the inverted medium. Point A is the exit face at
which a pair of pulses appears, point B is the entrance face at
which two pulses disappear due to destructive interference.
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due to on-resonance amplified spontaneous emission,
which may cause reduction of the inversion towards the
ends of the gain cell. Note that although the
spontaneous-emission field undergoes power broadening,
the (weak) probe pulse sees the same gain spectrum as in
our linear model. These problems require a detailed
analysis of fluctuations and stability of the medium, and
will be investigated in a future article. Carrying out such
a fully quantum-mechanical calculation would also
answer two questions related to the backwards-moving
pulse. First, the energy transfer between the atoms and
fields could be seen to produce the temporary "extra"
pulse. Second, the results of this paper could be extended
to single-photon pulses. Since the carrier frequency is
outside the gain line, spontaneous emission should not
destroy the backwards-pulse effect, even as one ap-
proaches the single-photon limit. Using quantum propa-
gation theory, we can interpret the electric field as the
probability amplitude for finding a photon, as long as the
quasimonochromatic approximation is valid [13,14].
Therefore we expect the result of a fully quantum-
mechanical calculation wi11 agree with the classical one
given above, but its interpretation will differ.
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APPENDIX A: CALCULATION
OF THE ENERGY VELOCITY

sity. [In this Appendix we use the notation for real and
imaginary parts of the index of refraction,
n(co) =n„(co)+in;(co)] . The equation of energy conserva-
tion for a volume V enclosed by a surface c)V is

E2+g2
cN, S da= —J'

v at 8m
+E dV . (A4)

at

To identify the energy density of the atoms, we will ex-
press the last term in the integrand as a sum of a perfect
time derivative and an energy gain or loss term:

E c)P aaw
dt dt

(A5)

This can be done by using the definition of the polariza-
tion and the equation of motion [Eq. (3)],

c)P m d d z dE = +y —+coo (r) Ne —(r), (A6)
Bt ef dt dt dt

N d ((,) +„,(,) )+ Ny (,) (A7)

E +8W= + ((r)'+~2(r)') .
8~ 2f

(A8)

For a sinusoidally varying electric field of frequency m,
the time average over one cycle is

W= (1+~n„+in, ~
)E + (co +coo)(r) . (A9)

To express this in terms of the fields, we use the solution

Here the first and second terms of the last expression can
be interpreted classically as the time derivative of kinetic
and potential energy of the dipole oscillators, respective-
ly, and the third term is the power loss (for positive f) or
gain (negative f). Thus the total energy density must be

This calculation is based on a similar discussion of the
propagation of electromagnetic energy in the classical
Lorentz model [15]. Here we will use the semiclassical
equation of motion for the dipole moment (allowing pop-
ulation inversion) and show that in the transparent re-
gion, the energy velocity is approximately equal to the
group velocity, and is abnormal.

The energy velocity at frequency co is defined by

(r)='f E,
COO N l /CO

of Eq. (3) to eliminate ( r ):

N 2 ~2+~2
1 2 p Nef o

16~ ~ ' 4m (
2 2)2+ 2 2

(A10)

(A I 1)
S(co)

vs(co) =
W(co )

where

S= EXB
4m

(A 1)

(A2)

By using the explicit expressions for real and imaginary
parts of the square of the index of refraction, we obtain
after some algebra

2con 7l;W= ' ' +n,' fE/'. (A12)
8m y

cn, (co)

8m.
(A3)

so the remaining problem is to determine the energy den-

and 8' is the energy density of the fields and mechanical
energy density of the medium; bars indicate time aver-
ages over one cycle. From the relation between electric
and magnetic fields, the Poynting vector is easily found to
be

v~(co) =c 2con;(co) +n„(co) (A13)

By finding the minimum and maximum values of
vz(co), it can be shown that for f (0 vz(co) is always

Substituting this expression and Eq. (A2) for the Poynt-
ing vector leads to the exact result for the energy veloci-
ty,
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greater than c or is negative; this is because energy is be-
ing added to the wave. It is generally true [2,16] that as
the linewidth goes to zero, the reciprocal of the energy
velocity reduces to the reciprocal group velocity in the
transparent region. This can also be verified in this case
by explicitly substituting narrow-linewidth approxima-
tions for n„(co)and n; (co) into Eqs. (13) and (11).

with the same resonance and linewidth is

n, ( co) -=1+ ~.l~p. l

m co02 —co2—i ye@
(B2)

On propagating through a length of absorber and length
of gain medium, each frequency component acquires a
phase

APPENDIX B: CANCELLATION OF GAIN
AND ABNORMAL DISPERSION BY AN ABSORBER

P(to)= (ton—,L, +ton L )
1

(B3)

In this appendix we will show that by sending any
pulse through an absorbing medium followed by the same
medium but with inverted population, the original pulse
can be recovered. Subscripts g and a refer to properties
of the gain and absorbing medium, respectively. Expand-
ing the square root in Eq. (1), and substituting the plasma
frequency Eq. (2), the index for the gain medium becomes

ns(co) = 1 ——2m'If le & I~P I

COD N l gN
(Bl)

where for generality we have included a fractional popu-
lation inversion Ap . Similarly, the index for an absorber

co
(L +L )+ 2mlfle'

C
a g BC Q)0 Q) $ QQ)

2 2

X(r, lap, lL, Nels—psILs) .

The second term will vanish if we take

ltd, Isp. IL.=X,Isp, IL,

(B4)

(B5)

so that we are left with the first term, which is what we
would obtain for free-space propagation through L, +Lg.
Therefore, both the gain and the dispersion can be com-
pletely canceled out.
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