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Quantum cooperative efFects in a micromaser
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We study the collective effects in the trapping states in a one-photon micromaser. We find that, for

small photon numbers, the trapping states are difficult to detect experimentally due to these effects. On

the other hand, for higher trapping conditions, the behavior of (n ) is similar to the usual trapping

states, except for the appearance of spikes and also large fluctuations of the photon number.

PACS number(s): 42.52.+x, 42.50.Dv

I. INTRODUCTION V=Ag(ao&+a o &)12+Ag(ao 2+a o2)1& . (2)

Cooperative effects in a micromaser have been recently
studied in a semiclassical regime for high fluxes [1]. The
present paper deals with cooperative effects in a totally
different context; namely, we analyze the effects of hav-

ing, for a short while, two atoms at the same time inside
the microwave cavity on the trapping states [2,3]. So, ob-
viously, here we are dealing with quantum cooperative
effects, which can be applied for both low or high atomic
fluxes. We think that this may be of relevance for the ex-
perimental detection of the trapping states, since the
atomic beams are distributed with a Poisson injection
statistics [4]. Therefore, no mater how low the beam in-
tensity is, there will always be a finite (nonzero) probabili-
ty of simultaneously having two atoms. Naively think-
ing, one could say that besides the usual one-photon tran-
sition, the presence of a second atom will introduce two-
photon transitions. Therefore, since both trapping condi-
tions (the one and two photon) cannot be satisfied simul-
taneously, one would suspect that the trap will leak or
that the system will stay in a trap for a while and then
jump to the next trap with a higher photon number and
so on. We find this to be the case, with the surprising
fact that the effect is very strong even for probabilities of
having two atoms of the order or less than l%%uo.

II. MODEL

Whenever two atoms are present in a microwave cavi-
ty, we can model this, in the dipole and rotating-wave ap-
proximation, by the following Hamiltonian:

~(1) ~(2)o3 03
H =%co +A'co +Rema a'2 '2

+Ag(ao. &+a o,

)+Ag(aors+a

o2),

where o.3" and o. , represent the Pauli matrices for atom
number 1 and similarly for atom 2, and g is the atom-field
coupling constant. We also assumed that these atoms are
in resonance with the cavity field. In the interaction pic-
ture, we can write

If the upper and lower levels are denoted by ~a ) and
b ), the system can be described by means of the basis
a), ~a)2, ~a), ~b)2, ~b), ~a)z, and ~b), ~b)2. On that

basis, Vis a 4X4 matrix which can be written as

0 a a 0

a 0 0 a
V=Rg

0 a~ a~ 0

(3)

It is not difficult to find the time-evolution operator for
this system, since the Hamiltonian is time independent
under the above-mentioned conditions. The result is
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where we have defined the different operators in U(b, r)
as follows:
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—1E= (1—C), C =cos(~2ghrV2&+ I ),

sin( 2ghr 2&+1)
&2't~ 2it+1)

a (C —1)a
A

h~ being the interaction time during which two atoxns
are present inside the cavity. For the time being, h~ is
considered fixed, but this model will be improved later on
introducing some statistical features.

The total density matrix of the system has the follow-
ing elements:
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Paa, aa Paa, ab Pat, aa Pab, ab and similarly

PT
Paa, ba Paa, bb Pab, ba Pab, bb

7

Pba, aa Pba, ab Pbb, aa Pbb, ab

Pba, ba Pba, bb Pbb, ba Pbb, bb p2
Paa, aa +Pbb, aa Paa, ab Pbb, ab

Paa, ba +Pbb, ba Paa, bb Pbb, bb

where the first pair of labels corresponds to atom 1 and
the second pair to atom 2. Then, when one partially
traces one atom, 1 or 2, we obtain

p(= «tp—T= g &ilpTli&~
i =a, b

Paa, aa +Paa, bb Pab, aa +Pab, ab

Pba, aa +Pba, bb Pbb, ba +Pbb, bb

Now let us assume that the atom enters the cavity regu-
larly every At, =b, t =const&~„where ~, is the atomic
flight time through the cavity, so that if the process starts
at time t,. there will be one atom during a time 7 p=kt,
and two atoms during h~=~, —At, . This sequence re-
peats (Fig. 1).

For the sequence described above, we can write

p( t; +vz ) =P ( t; ) =

C p„(t; )C +Sapbb(t; )a 1
+i C p,b ( t; )a eV i Sapb, ( t;—) C

ia Sp„—(t, )C +i C pbb(t, )a "S

+a Sp,b(t;)a I+Cpb, (t, )C

i Cp„(t, )esca i tap—bb(t, )8

+Sap, t, (t, )/a+Cp, „(t,)C

Cpbb(t;)C+a +ptb(t;)+a

+i C'pb, (t, )a 1 iatfp, —
t, (t, )C

(9)

where p( t; +~o ) is just the time-evolved version of p( t; )

under the Jaynes-Cummings model, with

C =cos(g %0+8+ 1 ),
sin(geo+&+ 1)

&@+1
C(R') =C(h —1) .

Next, during an interval Av, there are two atoms in the
cavity, that is,

pz(t, +i)=U(b. w)p(t, +so)p„, U. (b~) .

We notice that in Eq. (11) a direct product is formed be-
tween p(t;+so), given by Eq. (9) and the density matrix
for the new atom that enters the cavity. The result is a
4 X 4 matrix if we inject a new atom in its upper state:

p„(t) pb(t) 0 0

p(t, +~ )op,
Pt, (t; ) Pbb(t; ) 0 0

0 0
0 0

0 0
0 0

Next, we proceed to perform the calculation suggested in
Eq. (11). At the end of the time period (b,~) an atom of
type 2 leaves the cavity. That is, one traces over the
second pair of indices, leading to the following result:

p(t, +, )=p(t, +~,+b~)=tr, U(hr)p(t, +r, )gp„, Ut(br)
type 1

A p„A +aSpbbSa

+i A p.bSa —iaSpba A

+Sa p„aS+DpbbD

+iDpb, aS —iSa p,+
a Spb, aS+Sa p,bSa

+iB p„aS +I.EpbbSa

+B P,bD+EPb, A

—ia SpbbD —iSa p„A

aSpb, aS +Sa p,bSa

+i A p,.aS +iDP»Sa

+ Ap, bE+DPbaB
—iaSp»E —iSa p,Q
Sa p„aS +a SpbbSa

+iEpb, aS +iBtp,bSa

+B paaB +EpbbE
—iSa p,bE —ia Spb, B

(13)

Finally, the matrix elements of the total density matrix, after the atom 2 leaves the cavity, are given by
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(p'„+')„~=
I 1+a„+1(cosy„+1—1)+a~+1~cospm+1 —1)+a„+1(cosy„+1—1)am+1(cosym+1 —1)j(p«)„~

+
4 (cosy~+ 1)(cosy„+1)(pbb )„m+i+a +, /2 sing +, I 1+a„+,(cosy„+,—I ) j (p, b )„~+,

—iQa„+,/2 sing„+, [ 1+a +,( cosy~ +,—1)j (pb, )„+,~ (14)

+—Qa /2 sing& I 1+cosy„j (pb, )„~,——Qa„/2sinq&„ I 1+cosy& I (p,b )„
2 2

/ ~ ~+ z y a„+1a~+~ sm%n+1smtm+1(pbb)a+1, m+1+ 2 v an m %n sinPm(p«)n —1,m —1

(pbb ')„=+a„l2 sing„Qa l2 sing (p„)„, , +—,'(cosy —1)(cosy„—1)(pbb )„

+—Qa /2 sing (cosy&„—1)(pb, )„,——Qa„/2 sing„(cosy —1)(p,b )„

+i +13„P a„,l2 sinq, (cosy„,—1)(p,b )„z
imp„—p a 1/2»nq„1(cosy 1

—1)(pb, )„

++a„,P„a,P (cosq„,—1)(cosq, —1)(p..)„,~,+QP„P /2sinq„, »nq~, (pbb)„

(cosgr —1)
(p,'b+')„~ =

[ I+a„+,(cosy'„+, —I) I (p,b )„~+i+a /2 sing& (1+a„+,(cosy„+,+I) I (p„)„

(15)

Qn +1Am+ sinq„+, sing (pb, )„+, , +
a„

sing„sing, (p, b )„

sinq„+, Qa„+,(cosq&~ —1)(pbb )„+,~ — —Qa„a,p sing„(cosy, —1)(p„)„, 2 (16)

a,P (cosy„+1)
(cosqr„+ 1)(cosy, —1)(pb, )„2+i — VP»nq 1(Pbb ), —1

where a„=n /(2n + 1), P„=n l(2n —1), and
=ger&2(2n +1).

Actually, if we want to check these results experimen-
tally, the model with fixed h~'s alternating with periods
of one atom in the cavity is not very realistic. In a typical
experiment [4] one has a Poissonian atomic injection with
an average injection time (ht ) =—,

' X 10 s or
b, t/~, —15.6, where ~, —SX10 s is the atomic flight
time inside the cavity. 94'iso of the time there are no
atoms in the cavity, 5.4% of the time one atom, and
0.6/o of the time two atoms. In order to simulate such
an experiment, we assumed that the velocities are fixed
with a Poissonian incidence. For a fixed ~„we basically
have two cases (Fig. 2). The case (i) corresponds to
ht, & v„where we have one atom followed by zero
atoms, which under the present experimental conditions
would be the most common case. The second case (ii) cor-
responds to At, & ~, in which case, starting from zero, a

period of one atom is followed by a period of two atoms.
If ht;+, is still less than v„ this sequence repeats until
the situation reverses, in which case it ends with a period
of one atom followed by zero atoms.

III. NUMERICAL RESULTS

7 G
(a)

We have numerically simulated a Poissonian arrival of
atoms for the sequences shown in Fig. 2. For atoms be-
longing to case (i), which corresponds to the sequence
0-1-0 [Fig. 2(a)], the system evolves with the usual

TG &G (b)
TG (c)

j7

0 1 2 1 0 0 1 2; 2 1

V V V

atom atom
type 2 type 1

atom
in

atom
out

FIG. 1. Periodic sequence of one and two atoms inside the
micromaser cavity. The atomic injection here is assumed regu-
lar and ht; (~,.

FIG. 2. Poissonian injection of atoms. The upward arrow
means an atom enters the cavity and a downward arrow means
it leaves. (a) ht; &~, and we have either zero or one atom inside
the cavity. (b) ht; &~„ht;+1&r, . (c) Lt; (~„ht;+& (v„and
ht;+2 & ~, .
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Jaynes-Cummings model. On the other hand, for atoms
belonging to case (ii), possible sequences are 0-1-2-1-0
[Fig. 2(b)] and 0-1-2-1-2-1-0 [Fig. 2(c)]. In these cases the
system evolves according to Eqs. (9)—(16). All the se-
quences start and end with 0 atoms. For a very low beam
density, the most probable sequences are 0-1-0. Occasion-
ally, two atoms will be present, and this may occur only
once in the time interval r, as shown in Fig. 2(b). A more
rare case is that in which the two-atom event occurs
twice during the time interval r, [Fig. 2(c)]. More com-
plicated sequences are very rare in this simulation. How-
ever, we have discarded events with three or more simul-
taneous atoms which of course sets a limitation for ex-
tremely high cruxes.

In Fig. 3 the average photon number (n ) is plotted
versus the number of atoms N for gr, = rrl&3, which
corresponds to the trapping condition (for a one-photon
case) QN„+ Igr, =qm, for q =1 and N„=2, for q =2
and N„=11, etc. The system started at vacuum and in
the first region, N =0—273, the system quickly went to
the ~2 ) state (atoms are injected in the upper level, so the
trapping state is a pure ~n ) state}. After N =274, a two-
atom event occurred (0-1-2-1-0}. This provoked a leak in
the N„(q

= 1 }=2 trapping block and some probability
crossed over to n =3,4, . . . , continuing upward in n un-
til it stopped at the next upward trap, N„(q =2)=11.
The linear increase in (n ) shows this probability flow to
N„(q =2)=11. The next flat region implies that we

reached a state p=0.9249~2) (2~+0.075~11)( 11~, which
gives precisely the (n ) in the figure. This probability
0.75 Rowed originally n =2 to n =3 in a two-atom event
and after some time reached n =11. The remainder of
the evolution is similar. It describes the slow probability
diffusion through the n space, from one trapping block to
the next. In Fig. 4 we plotted (b,n) vs N and it just
confirms the previous interpretation.

Now we increase our beam intensity to b, tlr, —15.6,
taking a typical experimental value. In Fig. 5 we observe
a little of the steplike features shown before, although

18—

h
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V
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FIG. 4. ((b,n)') vs N (numbers of photon atoms). The prob-
ability difFusion also appears here as a steady increase in

((hn )').

here the steps are rather short because the two-atom
events are more frequent and the field never quite makes
it for the trapping state. In this case we took
N„(q = 1 ) =2 and observed a new feature, the appearance
of spikes. Numerically, they appear every time there is a
sequence 0-1-2-1-2-1-0; that is, the two-atom events ap-
pear twice. The explanation is rather simple. The first
0-1-2 sequence produces a probability leak between the
upper end of the trapping block q and the downward
trapping of the next block q + 1, that is,

Nd(q+1)=N„(q)+1 . (17)

This event, of course, increases ( n ), but now another
1-2-1-0 sequence is present. At this point, we have to
remember that the downward trapping condition of the
(q+1) block is also bypassed by the two photon eue-nts

In other words, the (q+1) block also leaks downward,
producing this time a decrease in (n ). In Fig. 6, we

selected a bigger N„=50 or a shorter interaction time

gr, =m. /v 51. Here we observed that the leakage is prac-
tically continuous. The steplike features are gone and the

5 ~
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FIG. 3. ( n ) vs N (number of atoms) for a low-density atomic
beam, ht/~, =150.7 and N„(q =1)=2; that is, g~, =m. /&3.
The various "linear" increases start with a two-atom event. The
curves become flat again when the probability that escaped from
the block q ends in X„(q+1). The beam has a Poissonian dis-
tribution.

FIG. 5. (n) vs N (number of atoms) for a beam density
characterized by ht /~, = 15.6 and X„(q = 1)=2, or
g~, =~/&3. The steps are shorter due to the higher frequency
of two-atom events. The spikes appear when the 1-2 sequence
repeats twice.
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FIG. 6. (n) vs N (number of atoms) for ht/r, =15.6 and

N„(q =1)=50. The steps are gone and replaced by a slow but
continuous increase. The curve looks similar to a normal trap-
ping state curve, except for the spikes and the fact that (n ) is

slightly above 50 for N =20000.

curve looks very similar to a trapping state curve, except
for the spikes and the fact that (n ) in the flat region is
slightly higher than 50. Figure 7 shows that only at the
beginning we have pure ~n ) state, but after N=2000,
(b n ) shows a continuous increase.

IV. DISCUSSION

We studied, in this work, the collective effects on the
trapping states in a one-photon micromaser. We find
that for small photon numbers (N„},these states could be
difficult to detect experimentally for both low and higher
beam intensities. However, this situation improves as 1V„
gets larger, and for N„=50 the behavior of ( n ) does not

FIG. 7. ((hn) ) vs N (nnmbers of photon atoms) for the
same parameters as in Fig. 6.

look too different from the usual trapping state, except
for the spikes and that the plateau is reached slightly
above 50. As a matter of fact, a plateau is never reached.
Instead, this is a curve that increases very slowly due to
the long time it takes for the probability to diffuse from
the lower to the upper end of the trapping block, which is
now quite large.

Finally, losses have not been considered here [6,7].
Probably, its effect would be to increase the probability
diffusion to the trapping blocks. This and the effects of
the atomic measurements on the trapping states [5,8] will
be the subject of a future publication.
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