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A theory is presented that describes collision-induced modifications of the grating stimulated echo
(GSE) signal. In the GSE [B. Dubetsky, P. R. Berman, and T. Sleator, Phys. Rev. A 46, 2213 (1992)],a

spatially modulated atomic population is created which undergoes Doppler dephasing and rephasing as
a result of the interaction of the atoms with a number of input pulses. At low pressures, there is a rapid
decay of the GSE signal owing to a collisional breaking of the dephasing-rephasing process. At high per-
turber pressures, however, there can be a revival of the GSE signal owing to a collisional inhibition of
the Doppler dephasing. These collisional processes are described in detail, with a special emphasis given
to the distinction between "open" and "closed" atom-field systems. The manner in which the GSE can
be used to determine collision kernels and diffusion coefficients is also discussed.

PACS number(s): 42.50.Md, 51.10.+y

I. INTRODUCTION

Coherent transient phenomena often provide an
effective means for measuring relaxation in vapors,
liquids, and solids. Recently, an echo scheme, the grating
stimulated echo (GSE), was proposed as a technique
which was especially well suited to monitor atomic
ground-state relaxation in vapors [1]. In the GSE, two
counterpropagating pulses separated in time by T2,
create a spatial ground-state population grating, varying
as cos(2k R), where k is the propagation vector of the
first pulse. Owing to Doppler dephasing of the different
atomic velocity groups, the population grating for the en-
semble rapidly decays following the second pulse. As in
all echo phenomena, however, this decay is not an ir-
reversible process, and the application of a standing-wave
pulse at a time T following the second pulse starts a re-
phasing of the different velocity groups that can contrib-
ute to the grating. The rephasing is complete at a time T
following the third pulse, at which time the macroscopic
ground-state grating created by the first two pulses is re-
stored. The application of a traveling-wave pulse at this
time leads to an echo signal at a time T2& following the
application of this traveling-wave pulse. The pulse se-

quence is shown in Fig. 1.
The time T2& must be chosen smaller than the lifetime

of the atomic dipole coherence, but the interval T is lim-

ited only by some effective ground-state relaxation time.
For example, the effective ground-state lifetime might be
determined by the time the atoms spend in the atom-field
interaction volume. On the other hand, it could be relat-
ed to a collision-induced change in the Doppler phase as-
sociated with the ground-state grating. As has been
pointed out in Ref. [1], the GSE can serve as an extreme-
ly sensitive probe of ground-state relaxation.

Preliminary results related to the inAuence of collisions
on the GSE signal were presented in [1] to indicate the
sensitivity of the GSE to small velocity changes. Fried-
berg and Hartmann [2] extended these results by consid-
ering the limiting case in which T2, =0; in this manner,

spatial harmonics varying as exp(+2ink R) (n =a posi-
tive integer) are created which, for n )2, may lead to a
sensitivity greater than that of the GSE. The limiting
case of Tz& =0 had been discussed earlier in theories of
echo phenomena in standing-wave fields [3—5], where the
inhuence of collisions on the signals was also discussed.
A renewed interest in this type of echo phenomena was
kindled by the atom-interferometric scheme of Kasevich

73.2

00
LLI

E,

T, =O

I

T2

Es

FICz. 1. Doppler phase associated with various density-

matrix elements leading to a grating stimulated echo (GSE).
The four input pulses E; (i =1—4) give rise to an echo E, at
t = t, . The field propagation vectors for pulses 1, 2, and 4 are kl,
k&, and k4=k&, respectively, while the third pulse consists of
two traveling waves having wave vectors k& and k2. The signal

propagates in the kl direction. The atomic-energy-level dia-

gram is shown in the inset. Each level can also decay to some

external reservoir. The incident fields drive only the 1-3 transi-

tion. The diagram is drawn for kl =
kg =k&z.
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and Chu [6]. They proposed a pulse sequence closely re-
lated to that associated with grating echoes [4,5]; howev-

er, as applied to atoms at microkelvin temperatures rath-
er than to atoms at 450 K (so that the interval T between
pulses could be increased owing to the longer time the
atoms spend in the interaction volume), they demonstrat-
ed that this pulse sequence has great potential in atomic

interferometry owing to its exceptional sensitivity to
small velocity changes. It should also be noted that there
has been considerable work [7] involving the use of opti-
cal transient spectroscopy other than the GSE to probe
ground-state relaxation.

In this paper, the role that collisions play in modifying
the GSE signal is examined in some detail. Most earlier
theories of grating echoes [1-5] incorporated a collision
model in which the collision kernel W(v, v'), defined as
the probability density per unit time that collisions result
in a velocity change from v' to v, is a function of (v-v')

only. While such a kernel adequately describes weak col-
lisions in many cases of experimental interest, it is known
that this kernel cannot give rise to phenomena associated
with the collisional narrowing of spectral profiles [8]. It
may seem that the grating echoes have very little connec-
tion with the collisional narrowing of spectral profiles,
but, in fact, there is a very close correspondence.

A necessary [9] condition for the narrowing of spectral
profiles is that the mean free path of the atoms is less
than the transition wavelength. This condition can be
written as

k5u /I « I,
where 5u is ~2 times the (one-dimensional) rms velocity
change per collision, and I is a collision rate. Condition
(1} implies that, as a result of collisions, the Doppler
phase factor always remains much less than unity, result-
ing in a suppression of the Doppler width. In the case of
the grating echoes, we are not dealing with an atomic
transition. Rather, we are dealing with a ground-state
population density that is modulated as cos(2k R); how-
ever, just as in the case of spectral profiles, this modula-
tion gives rise to a Doppler dephasing. The Doppler
phase factor for the modulated population varies as
exp(+2ik vt ) [whereas the Doppler dephasing associated
with spectral profiles varies as exp(haik vt)]. To be
specific, the GSE amplitude varies as

T2) + T T2) +2T
(exp[2ik (lr —f r +z v(t)dt)]}, where the aver-

age is over collision histories. With no collisions, the two
integrals cancel and this factor is unity. On the other
hand, if k5uT))1, collisions tend to destroy the echo
amplitude by interfering with the dephasing-rephasing
process. The collisional destruction occurs unless the
mean free path is less than 1/(2k); for perturber pres-
sures such that

densities, a diffusion model can be used. It should be not-
ed that collisional narrowing effects associated with spa-
tially modulated ground-state populations has already
been observed experimentally in the frequency domain in
four-wave mixing experiments [10,11]. In contrast to fre-
quency domain experiments in which the fields are on at
all times and can lead to power broadening of the two-
photon resonance, the populations evolve in field-free re-
gions in the GSE and power broadening does not
inhuence the signal.

It is not always possible to observe long-lived ground-
state transients (i.e., transients whose lifetime is deter-
mined by some effective ground-state lifetime}. For ex-
ample, if the atoms interacting with the fields can be
modeled as "two-level" atoms, and if the sum of excited
and ground-state populations is conserved, then the life-
time of the ground-state transients is determined by the
excited rather than the ground-state lifetime for such a
closed system [12—14]. In order to monitor long-time
ground-state relaxation, the atom-field system must be
"open" in some respect. This can be accomplished in a
number of ways. For example, if the ground state con-
sists of two hyperfine levels, and the incident radiation
fields drive transitions between only one of these states
and an excited state, then the atom-field system is open
via decay to the other hyperfine level. Alternatively, the
ground and excited states can each consist of a number of
magnetic sublevels, and the atom-field interaction can
probe properties such as magnetic-state orientation and
alignment which are not conserved [13]. Finally, even for
a two-level atom, the sum of excited and ground-state
populations for each velocity subclass of atoms is not
conserved if effects such as collisions with perturber
atoms [14] or recoil on the absorption and emission of ra-
diation [15] are taken into account. In this paper, both
homogeneous and inhomogeneous opening of the atom-
field system are considered; homogeneous processes (such
as nonconservation of magnetic alignment in the absence
of collisions) are those which are the same for all atoms
in the ensemble, while inhomogeneous processes (such as
velocity-changing collisions) differ for atoms having
different velocities.

The paper is organized as follows: In Sec. II, the phys-
ical system is described and several approximations are
introduced. The calculation of the GSE signal is present-
ed in Sec. III for an arbitrary collision kernel. In Sec. IV,
a discussion of the low and high perturber pressure limits
is given. A difference collision kernel is used for the low-
pressure calculations and a diffusion model for the high-
pressure calculations. Special emphasis is placed on the
roles played by effects related to collisional suppression of
Doppler dephasing and the dependence of the GSE arn-
phtude on the homogeneous or inhomogeneous opening
of the atom-field system.

2k5u/I «1, (2)
II. PHYSICAL SYSTEM AND APPROXIMATIONS

the Doppler phase factor ceases to be important and the
GSE signal can be restored. Thus, if one wishes to inves-
tigate the collisional suppression of Doppler dephasing in
the GSE, one cannot use a difference kernel to describe
the collisions. As an alternative model at high perturber

An ensemble of "active" atoms in a vapor cell which
undergo binary collisions with a reservoir of foreign gas
atoms is subjected to a number of laser pulses. The level
scheme for the active atoms is shown in Fig. 1. The
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pulses, having temporal width ~, drive transitions be-
tween states 1 and 3. Each of the pulses is assumed to be
sufficiently long to guarantee that its spatial extent is
larger than the sample size. For a cell of length L, this
condition can be stated as

&L/c . (3)

For a 1.0-cm sample, this condition implies pulse dura-
tions greater than 30 ps. Although condition (3) is not
critical, it does simplify the calculations somewhat. The
pulse sequence is shown in Fig. 1. Pulses 1, 2, and 4 are
traveling-wave pulses having propagation vectors k&, kz,
and k4=k2, respectively, while pulse 3 consists of two
traveling-wave pulses having propagation vectors k& and
k2. Pulse i is centered at t = T;, and the pulse intervals

T —T —T

are chosen such that

(4)

The signal is monitored for times t )T4.
For atom-field detunings,

and collision rates I, the following inequalities are as-
sumed to hold:

velocity-changing collisions, the system is open if the
branching ratio to level 2 is nonzero, i.e., if y3 2&0. In
the present calculation, level 2 is an all purpose level. It
can represent another hyperfine level to which level 3 can
decay, or it can simulate other magnetic-state sublevels
degenerate with level 1. In the latter case, the magnetic-
state alignment or orientation for the system need not be
conserved, and the system is "open" for these properties
[13].

When y3 2%0, spontaneous emission results in a homo-
geneous opening of the system for all velocity classes of
atoms. Velocity-changing collisions can result in an inho-
mogeneous opening of the system, even when y3 2 0 As
long as the ground- and excited-state collision kernels
differ, the sum pii(v)+p33(v) is not conserved for each
velocity subclass of atoms. As a result, the system is

open, and transients characterized by ground-state decay
rates can be observed [14]. In this paper, both homo-
geneous and inhornogeneous openings of the system are
examined.

The ground-state decay occurs at a rate y& which may
be due to transit time effects (the atom spends a finite
time in the atom-field interaction volume) or collisions
which transfer population from states 1 to 2. In this cal-
culation, it is assumed that y, ' represents the longest
time scale in the problem. In particular, it is assumed
that

I T2i (1,
$3T& 1,
vuT »1,
'V3Tzi «1

(7a)

(7c)

(7d)

Xi «'Y3 .

III. CALCULATION OF THE SIGNAL

The pulse sequence and the atomic level scheme is
given in Fig. 1. The field amplitude is given by

k, u~ «1, @3~ «1, t~ «1,
~A~r, «1, r, «T,,

where

«=(k, —k2)/2 .

(7e)

E(R, t)=( —,')e g @J(R)e ' 'g(t —Tj)+c.c. ,
J

where

8 exp(ik. R), j=1,2, 4

63[exp(iki R)+exp(ik2 R)], j=3 .R ='

(10a)

(lob)

Inequalities (7e) allow one to neglect all relaxation and
dephasing of atomic density matrix elements (in an in-
teraction representation) during the applied pulses. Ine-
qualities (7a) and (7d) ensure that the signal does not de-

cay owing to homogeneous decay of the atomic dipole
coherence in the time interval between the first two
pulses, while inequality (7c) guarantees that different ve-

locity subgroups of atoms lead to an inhomogeneous de-

cay of the spatially modulated part of the atomic state
populations in the time interval between the second and
third pulses. Inequality (7b) implies that the entire'signal
is associated with the ground-state gratings that are
formed and persist in this excitation scheme; any
excited-state gratings quickly decay away on a time scale

y3
Levels 1 and 3 form a "two-level" system which in-

teracts with the external fields. In order to observe
ground-state transients on a time scale T&y3, it is
necessary for the system to be "open" in some respect.
The system can be opened in two ways. In the absence of

I(t)=
i JP»(v, t)dvi',

where p3, is a density-matrix element, written in an in-

teraction representation in which the state amplitudes are
defined by ai =a, exp(iQt /2), a3 =a3exp( —iQt/2), and

density-matrix elements by

p„=a,a 3 =p, 3exp( —iAt)=p3, . (12)

In order to calculate the GSE, one follows the density-
matrix chain shown in Fig. 1. That is, only those com-
ponents of the various density-matrix elements having
the spatial dependence shown in Fig. 1 contribute to the
GSE signal.

P(t) is a pulse envelope function centered at t =0 having
a temporal width of order ~, e is a polarization vector in

a direction perpendicular to the plane of k, and k2,
%4=k2, and c.c. stands for complex conjugate. The echo
signal is proportional to a quantity I( t) defined by



49 COLLISIONAL DECAY AND REVIVAL OF THE GRATING. . . 2925

a, =i[y (R)]'P(t —T )V3,

if3 =iy (R)g(t —T )V, , .

where

(13a)

(13b)

The calculation is carried out conveniently by breaking
up the problem into time regions where the external fields
act and intervals that are field free. During the field in-
teraction, one can neglect the motion of the atoms and
any relaxation processes owing to conditions (7e). As a
consequence one can obtain the atomic response to the
jth pulse by using the following equations for the state
amplitudes:

y (R)=p@ (R)/2A', (14)

p is the 1—3 matrix element (assumed real) of the com-
ponent of the atomic dipole moment in the direction e.
In writing Eqs. (13), an atom-field interaction of the form
—p E(R, t) has been assumed, (y, is the atomic dipole
moment operator) and the rotating-wave approximation
has been made.

It is an easy matter to solve Eqs. (13). As a result of
pulse j, the change in density-matrix elements p;; =a;a
(unless noted otherwise, indices take on the values 1 and
3) and p» is given by

pii(TJ+ }=(—,')[1+cos[at(R)8J ]]pii(TJ }+(—,
' }[1—cos[a (R)8 ]]p33(T )

—(i /2)sin[ aj(R }8&]p i3( TJ )e +(i/2)sin[a (R}8 ]p3i(T )e

pi3(Tt+)=( —,') Il +c os[ aj(R) 8J]]p»( T~ )+(—,')[1—cos[a (R)8 )}p 3(iT )e

—(i/2)sin[aj(R)81 ]e ' pi i( TJ )+(i/2)sin[a (R)8. ]p33( T )e

(15a)

(15b)

where TJ*(j =1—4) are times immediately after and be-
fore the application of pulse j,

z+
8~=2' f QJ(t —TJ)dt, j=1—4, (16)

J

a3(R)=cos(«R), ai=az=a4=1, (17)

gj=iMC /2A', j =1—4,
k3=(k, +k~)/2,

«=(k, —k~)/2,

(18)

(19)

and equations for p» and p33 can be obtained by inter-
changing the subscripts 1 and 3 and making the replace-
ment kj~—kj in Eqs. (15a) and (15b).

In the field-free regions between pulses 2 and 3 and be-
tween pulses 3 and 4, the atomic-state populations evolve
as

pi3(v, t)=[8/Bt+v V]pi3(v t. )

= [P3i(v, t )]'=0, (22)

since all relaxation can be neglected, owing to conditions
(7a) and 7(d).

It is now possible to piece together the solution for the
density-matrix chain depicted in Fig. l. Using Eq. (15b)
for the action of the first pulse, (22) for the interval be-
tween the first and second pulses, and (15a) for the action
of the second pulse, one finds that, immediately following
the second pulse,

= —A, Azn, Wo(v)exp(ik, vTz, )

tween pulse 4 and the echo, the atomic-state coherences
evolve as

p»(v, t )= —[y, +r, (v) ]p»(v, t )+y3 ip33

+f W, (v, v')p»(v', t)dv', (20a) where

X exp( —2i«.R}, (23)

P33(v t)= —[r3+r3 )]p33

+f W3(vyv')p33(v', t )dv' (20b)

AJ—:( —,')sin(8, ), j =1,2,4,

Wo(v)=(nu') '~'exp[ —(v/u)']

(24)

(25)

r,.(v)= f W, (v, v')dv' (21)

is the rate of such collisions.
In the field-free regions between pulses 1 and 2 and be-

where the overdot signifies 8/Bt+v. V, W,.(v, v') is the
probability density per unit time that collisions with per-
turber atoms change the velocity of an atom in state j
from v' to v, and

is the initial velocity distribution in state 1, n, is the ini-
tial population of level 1, and the minus sign labels the
component of p;; varying as exp( —2i«.R}needed for the
time interval between the second and third pulses (see
Fig. 1).

In the interval between pulses 2 and 3, one uses Eq.
(23) to write the formal solution to Eqs. (20}as
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p„(R,v, t; —)=f G, (v, v', t —T,+; —) G (v, v', 0; —)=5(v—v') . (27c)

Xp„(R,v', T2+; —)d v',

p33(R, v, t; —
) = —fG, (v, v', t —T2+ ',

—
)

(26a)

Xp»(R, v', T2+, —)d v', (26b)

where the propagators G (v, v', t; —
) satisfy the equations

dG, (v, v', t; —)Idt 2iz—vG, (v, v', t; —)

= —[y, +r, (v)]G, (v, v', t; —
)

p»(R, v, T3+,'+ }=—p33(R, v, T3 y+)

=Bp&&(R,v, T3,' —), (28)

The third pulse converts p»(R, v, T3, —) and

p33(R, v, T3; —) into p;;(R, v, T3, + ), where "+"labels
the component of the density-matrix element varying as
exp(2iz R). Owing to condition (7b) (y3T »1), one can
set p33(R, v, T3, —)=0. Explicitly, from Eqs. (15), one
then finds

y, G—, (v, v', t; —)

+ f W, (v, v")G, (v",v', t; —)dv", (27a)

where

B=(—,')J4(83), (29)

BG, (v, v', t; —)Ir}t 2i—ir vG3(v, v', t; —
)

= —[y3+ I 3(v ) ]G3 (v, v', t; —
)

+ f W3(v, v")G3(v",v', t; —)dv",

subject to the initial conditions

(27b}

and J4 is a fourth-order Bessel function. Taking into ac-
count the evolution from t=T3+ to times t & T4 using

Eqs. (5), (26), (28), (15b), and (23), one finds that, for
t & T4, the component of p31 contributing to the GSE sig-
nal propagating in the k, direction is

ik R —ik v(t —T4)
p3&(R, v, t)=i A& A2A3Bn&e ' e

ik~ 'v T21
X f dv"dv'G, (v, v', T;+)G&(v', v"; T; —)e ' "Wo(v"), (30)

where 5u;/u «1, (33)

G, (v, v', T;+)=[G,(v, v', T; —)]" . (31)

A. Collisions

The inhuence of collisions is contained in the propaga-
tors G;, (v, v', T;+). From Eqs. (11) and (30), it follows
that the GSE signal intensity is proportional to ~S(t}
where

where the subscript i allows for a state-dependent charac-
teristic velocity change. Since the specific form of the
collision kernel is not critical to the present discussion, a
kernel is assumed for which condition (33) is satisfied
(weak collision model). Before examining the low- and
high-pressure regimes, it is useful to point out the impor-
tance of open versus closed systems in determining the
signal.

S(t)= f dvdv'dv"e

X G, (v, v'; T; + )G, (v', v", T; —)

B. Open versus closed systems

A "closed" system is defined here as one in which

X3 V3, 1+r1 (34)

II

Xe ' "Wo(v") . (32)

In general it is impossible to obtain analytic forms for
G, (v, v', T; ). For the purposes of this discussion, it will

be su5cient to consider only low- and high-pressure re-
gimes (to be defined below) for which analytical expres-
sions can be obtained, provided that we adopt a collision
model in which the characteristic velocity change per col-
lision 6u is much less than the most probable active atom
speed u; that is,

which implies that the total population density

[p»(v, t)+p33(v, t)] decays to the reservoir at rate y, in

the absence of collisions. In the limit that yt-0, (recall
that y &

' represents the longest time scale in the problem)
the population density Q»(v, t)+p33(v, t)] is a conserved
quantity.

The significance of a closed system is connected to the
fact that any field-induced modifications of the popula-
tion densities relax at the excited-state decay rate and not
the ground-state decay rate. This result can be seen
directly in Eqs. (27) for the propagators which, in the ab-
sence of collisions, can be rewritten as
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B[G,(v, v';t;+) —G, (v, v';t;k)]IBt+2i» v[G, (v, v', t; )
—G, (v, v';t;+)]= —y, [G, (v, v', t;+) —G, (v, v', t;+)],

(35)

provided that condition (34) holds. Since the initial con-
dition is [G,(v, v';0;4}—G3(v, v', 0;+)]=0,one sees that

G&(v, v';t;k)=G3(v, v', t;k) (36)

for closed systems. Consequently G, (v, v', t; 6) decays at
the same rate as G3(v, v', t; k ), namely y3. From the as-
sumption that y3T »1, it follows that G3(v, v', T; 2 }-0,
and there is a negligible GSE signal for a closed system in
the absence of collisions.

How do collisions modify this result? For systems that
are already open as a result of spontaneous emission

(y3 2%0), collisions alter the GSE signal, but do not play
a critical role in opening or closing the system. On the
other hand, for closed systems, collision do play a critical
role in opening the system. If the collision kernels
and/or rates for levels 1 and 3 differ, the total population
density [p&&(v, t)+p33(v, t)] is no longer conserved (since
collisions affect the velocity distributions of states 1 and 3
differently) and the system is "opened" by collisions,
leading to a collision-induced GSE signal. [If the col-
lision kernels for levels 1 and 3 were identical, Eq. (35},
modified to include collisional effects, remains an homo-
geneous equation with the same solution (36).] At very
high pressures, collisions redistribute the velocities over
the entire Maxwellian distribution, and the system can
"reclose." These features are seen in the examples given
below.

C. Low pressure

r,'=r, (5u, Iu )'/2,

and the low-pressure limit by

I",T= I'; (5u, /u ) T« 1 .

(37)

(38)

From condition (7c) it follows that I';(5u;/u ) /(»u ) « 1

when condition (38) is satisfied.
In the low-pressure limit, it is convenient to choose a

kernel of the form

W, (v, v'}—= W; (v v') = I', F(v—v'), — (39)

where F(v) is an even function of v. Although this
difference kernel does not satisfy detailed balance, it can
still be used provided condition (38) holds. The advan-
tage of the difference kernel is that it allows for an analyt-
ical solution of Eqs. (27). Setting

G; ( v, v', t; + ) =G; ( v, v'; t; k )exp( % 2i »"v t ),
one finds that the G, (v, v', t;+ ) satisfy

(40)

The low-pressure limit is defined as one in which col-
lisions do not lead to rethermalization on the time scale
(2B of the experiment. For weak collisions defined by
(33},the effective rate at which collisions rethermalize the
sample is given by [16]

BGi( vv;t; +)IBt= ( yi +ri)Gi( ,vvt; +) y3 iG (3v, v; t+ )

+ 8'& v —v" exp 2iz v —v" t G& v",v', t;+ v", (41a)

5G (v, v; t; + )Idt = —(y3+ I )G3(v, v;t; + )

+ f W3(v v")exp[2i». (—v v")t]G3(v",—v', t;+ )dv" . (41b)

It is clear from these equations that G; (v, v'; t;+ ) =G;(v v', t;+ )—is a fun—ction of (v —v') only. Consequently, the sig-
nal amplitude S(t) given by Eq. (32) may be written as

S(t)=(2n ) n, 9'& I [2»T+k&(t —T4)];T; + ] Q&[k&(t —T& };T;+ ]exp[ —kfu (t —T4 —
T2& )2/4],

where

Q, (P;t;+)=(2n. )
~ f dv G;(v;t;+)exp( iP v)—

(42)

(43)

is the Fourier transform of G;(v;t;+ ), and the relationship Q(f3;t; —)=9'(P;t;+ }=9( P;t;+ } has been —used, the
last equality following from the fact that the kernel is an even function of v.

Equations (41) are readily solved by transform techniques to obtain Q, (P; t; + ). For y3T »1, one finds

T
Q&(P; T;+ ) =(2m) exp[ y&(P, », T)T] —1 —y3 & f drexpI [y, (P,», r) y3(P, », r)]w]— (44)

where

y;(P, », r}=y,+I;[1 H;(P.,», r)], — (45}
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H, (p a r)=(1/r) J dr J dvF, (v)exp( —ip v+2ia vr )

=(2~)'"(I/r) J dr' V, (P 2—«'),
0

(46)

and 1,9';(P) is the Fourier transform of the collision ker-
nel. This result is discussed in detail in Sec. IIID. In
general terms, however, collisions result in a decrease in
the GSE signal if a5u T »1.

resulting from spatial diffusion is given by

Bp,, (R, t;+)/Bt = d;p—;;(R,t;k),
where

(52)

d;=4' D; . (53)
D. High-pressure regime

The high-pressure regime is defined by

r =I,'/(2au )=1;(5u;lu ) /(4zu ) »1 . (47)

Condition (47) can be interpreted as a requirement that
the effective mean free path is much smaller than the
wavelength A,,s =

~ k, —kz /k, k z associated with two-
photon transitions involving fields 1 and 2. In stationary
spectroscopy of two-photon transitions, this would be a
regime of collisional narrowing of the two-photon spec-
tral profile (absorption or emission). As is shown below,
in transient spectroscopy this pressure regime can corre-
spond to a revival of the GSE signal.

Owing to conditions (7c) and (47), it follows that
I,' T &&1. If, in addition, it is assumed that

I,'/y, »1, (48)

G, (v, v'; t;+ ) = 8'0(v)G, (t)[1+O(r ')], (49)

where G; is a function that is determined below.
Since the atomic velocity distribution is thermalized on

the time scale of the experiment, it is no longer valid to
use a difference kernel to describe collisional relaxation.
On the other hand, one can use a diffusion model to de-
scribe collisions in the time interval T42 since the col-
lisional mean free path is much smaller than the charac-
teristic distance [of order (2vu ) '] over which p;, (R, v, t)
varies when condition (47) holds. In the diffusion model,
one writes the atomic current density j; as

the thermalization in both the ground and excited states
can be considered to be complete in the time interval T42.
A11 memory of the initial velocity is lost on a time scale of
order (1,') '«y3 '. Therefore, for times t »y3 ', the

propagator G, (v, v'; t; + ) can be written as

It then follows from Eqs. (26), (27), (30), and (52) that the
G, ( t) satisfy

dG, (t)ldt = (y, +—d, )G, (t) —
y3 ]G3(t),

dG, (t) Idt = —(y, +d, )G, (t) .

(54a)

(54b)

G;(v, v'; t;+ )

=G, (t) Wo(v)[1+i(tr" v/au )g;+O(r )], (55)

where g; is a constant of order r ' «1 [18].
To zeroth order in r ', the final expression for

G, (v, v', t; + ) obtained from Eqs. (49), (54), and (53) is

y3 2+4' (D3 D,)—
G, (v, v', T;+)=

y3+4tt (D3 D,)—
X 8'0(v)exp[ —(y, +4' D, )T], (56)

where Eq. (5) has been used. The diffusion coefficient is
related to the effective collision rate I"by [19]

D; =u /(2I", ) . (57)

At very high pressures where D, -0, G, (v, v', T;+ ) is re-
stored to its collision-free value.

IV. DISCUSSION

A. Low pressure —decay

Equations (49) and (54) also follow from a rigorous
solution of the Fokker-Planck equation in phase space
[17], when the limit I", »T ', y3, is taken. Moreover,
they can be obtained directly from Eqs. (27) by using a
trial solution of the form

j,(R, t) = D, Vp, , (R, t), — (50)

Bp;;(R, t)IBt=D;V p;;(R, t) . (51)

where D, is the diffusion coefficient for scattering of
atoms in level i by the perturbers and j,.(R, t) and

p, , (R, t ) are velocity-averaged quantities. Combining the
divergence of Eq. (50) with the equation of continuity,
one finds that the collisional time rate of change of
p;;(R, t ) is given by

I, T(k5uT h)2 «1, .

where

(58)

The low-pressure limit is defined by condition (38). To
avoid any collisional decay associated with the Doppler
phase acquired by the optical dipoles in the interval be-
tween the first and second pulses, and following the fina1

pulse, it is assumed that

In the intervals T32 and T43 p, , (R,v, t;+) varies as
exp(+2i~. R), so that the collisional decay of p;, (R, t;+) T~„=Max( T2, , t —T4 ) . (59)
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The signal is proportional to ~S(t)~, where S(t), as
given by Eq. (42), depends on the product

Q& [[2»T+k&(t —T4 }];T;+ ] Q&[k&(t —T4); T;+ ], with

Q, (P; T; + ) given by Eqs. (44)-(46). Each of the

Q, (P; T;+ )'s appearing in Eq. (42) contains an exponen-
tial factor. When condition (58) holds, the exponential
factor is the same for both terms and is equal to [see Eqs.
(44)—(46)]

T
E(» T)—:exp — y, +I", 1 —( T) f dr f dv F, (v )exp(2i»'v1 ) T

0
(60)

The exponential decay of the signal depends on the magnitude of »5uT, where 5u is v'2u times the (one-dimensional}
rms velocity change per collision. This phase factor is related to the collision-induced change in the phase associated
with the modulated ground-state population. If 2»5u T« 1, Eq. (60) becomes

E(», T) =exp( —[[y,T+( —,
' )I,T(»5uT) ]]) . (61)

On the other hand, if »5uT »1, any collision destroys the echo signal and only those atoms which do not collide in a
time T contribute to the signal. As a consequence, the exponential factor reduces to

E(», T)—=exp[ —(y&+ I't)T] . (62)

For arbitrary values of »5uT, the exponential factor is directly related to the Fourier transform of the collision kernel
through Eq. (60). As such, one can probe the collision kernel by varying either» (by varying the angle between k, and

k2) or varying T. The signal intensity varies as ~E(», t ) ~
.

As was noted previously [1], the GSE becomes an extremely sensitive probe of weak velocity changes when one
chooses k, and k2 to be counterpropagating such that »=2k, . In that case, one can measure velocity changes as small

as y, /2», where y, is determined by the rate at which atoms leave the interaction volume.

In addition to the exponential factors, each of the Q&(P; T; + ) s contains an amplitude factor given by

A(P, », T)=1—y, ,f 'drexp[[y&(P, », 7) y3(P» r)]r],

where y;(P, », r} is defined by (45) and (46). The amplitude factors refiect the degree to which the system has been

opened by spontaneous decay or collisions. The system must open on a time scale of order y3 . This is seen in Eq. (63},
where only times r y3 contribute to the integral. After that time, the atom is back in its ground state. The ground-

state population must retain some memory of the spatial modulation if the GSE signal is to be nonvanishing.
If y3 zWO, spontaneous emission leads to an opening of the system on a time scale y3 of order y3 2/y3. Collisions

open the system only if, on a time scale of order y3, the velocity changes in the intervals T32 and T43 lead to
significant changes in the Doppler phase acquired by the optical dipoles or the spatially modulated populations. This
condition is difFerent for the amplitudes corresponding to the time intervals T32 and T43 for which

P& —=k&(t —T4) and P2
——[2»T+k&(t —T4)],

respectively. Let us consider these two terms separately:

P, =k, (t —T4) .

From Eqs. (45) and (46), it follows that

y(P), », 7 ) —y;+I; 1 —(r) f dr' f dv F, (v)exp(2i. » vT iP& 'v)
0

(64)

(65)

One sees the contribution from the collision-induced
change in the phase of the optical dipoles [P, -v
=k, v(t —T4) term] and that from the phase acquired
owing to the spatial modulation of the populations
(2» v~' term). As an example, consider the limiting case
in which

»5u/y3«1, k5uT h «1, I;(k&5u) /y3«1 .

In this limit, it follows from Eq. (65}and (63) that

y, (P„»,r) =y, +[r,(5u )'/47]..

X f '«'I2«' P, l'. — (67)

(66) and
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A(p„», T) =(y3 2/y3)

+(y3, 1/y3)[13(5u3 }'—I 1(5u1}']

X [2(K/y3) —(p, .»/y3)+(p, ) /4] .

(68)

If K is of order k „the terms involving p1 =k1(t —T4) can
be dropped owing to condition (7d) [20]. If, instead of
the limit (66), one takes

If y3 2=0 (closed system) it may be possible to see the
collisional opening of the system; however, the collisional
terms are always small in regions where the exponentia1
factor E(a, T) is non-negligible —the same collisional
mechanism that is responsible for opening the system also
leads to decay of the GSE signal. To observe such small
collisional terms, the time T must be chosen sufBciently
large to ensure that they are larger than terms of order
exp( y3T—) which contribute to the signal but have been
neglected throughout this discussion.

k, 5u /y, »1,
then it follows from Eqs. (63) and (65) thalt

(69)
P2= [2»T+k1(t —T4)] .

A(p» T) [y3 2+1 I 1]/[y +F I ] (70} In this case,

y, (p2, », r)=y, +I; 1 —(r) f dr' f dv F;(v)exp[2i» v(r' T) i—p, v—]
0

(71)

This value of y; corresponds to the interval between the third and fourth pulses and differs qualitatively from the value

given in Eq. (65) corresponding to the interval between the second and third pulses. The origin of the difFerence can be
traced to the fact that the modulated population has acquired a phase 2~ v T at the time of the application of the third
pulse. This phase factor can be seen in Eq. (71). With increasing r, the phase proportional to a"v decreases; however,
since the maximum ~ which contributes is of order y3 and since y3T)&1, the phase factor does not change
significantly from its value at r'=0 In fac.t, it is possible to use inequalities (7b), (7c), and (58) to show that corrections
to the phase factor for times r'%0 can be ignored, so that

y; (p, , », r) =y;+ (2m )' 'I, V;(p, ) .

One can write the amplitude factor A (p2, T ) as

A (P2 T ) = [y3,2+ Y3(P2 } Yl(P2)] /[y3+ Y3(P2 } Y1(P2) ]

where

Y;(p) =(21r) ~ I;9;(p) .

For a5u T » 1, Y;(P)= I';.
To summarize these low-pressure results, one writes the signal amplitude S (t) as

S(t)= A(p1 K T)A(p K2T) E(K, T) exp[ —[k1u(t —T4 —T21)] /4]

(72)

(73)

(74)

(75)

where A(p„», T) is given by Eqs. (68) or (70), A(p2, », T) by Eq. (73), and E(a, T) by Eq. (60). The echo occurs at

(t —T4) =T2, , and its decay properties are determined by E(», T) as described above. The collisional contributions to
the amplitudes are small whenever E (», T) is not negligibly small (the collisional mechanism which opens the system is

also responsible for the decay of the signal). As a consequence, if (y3 2/y3) is of order unity, the product of amplitudes

can be approximated as

A(P1, », T) A(P2, », T) =(y3,2/y3} (76)

On the other hand, for a system that is closed in the absence of collisions (y3 2=0), the product of the amplitudes is

equal to

A (P,K, T) A (P,K, T)=(y ) '[I (5u ) —I,(5u, ) ][2(aly ) (P, a ly )+(P, ) —l4]

X [ Y3(p2) Y1(p2)]/[y3+ Y3(p2) —Y, (p2)] (77)

for ~5u &&y3, and

A(p„», T) A(p , T2}K=[(l 3
—I,)/(y3+I 3 I, )] (78)

for ~6u ))y3.

B. High pressures —revival

In the high-pressure regime (47}, it follows from Eqs.
(32), (53), and (56) that
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S(t)= [(y3 2+d3 —d, )/(y3+d3 —d, )] y, =5.8Di/R (83)

2(gl+d] )T (kl QT2& ) /4

X
—[k Q(T—T )] l4

(79)

where d; =4~ D;, and D; is a diffusion coefficient inverse-

ly proportional to the collision rate. Owing to collisions,
all velocity correlation between the initial and final inter-
vals is lost. As a consequence the signal is maximum at
(t —T4)=0 and can be referred to as a grating free-
induction decay [21] rather than an echo. For the signal
to be non-negligible, one must choose T2& such that
k, uT2, &&1 and I »T2, &&1, where I » is the collision
decay rate associated with the optical dipoles [22].

The role of collisions in the time interval T42 is
reflected in the amplitude and exponential factors in (79).
There is a collisional inhibition of the Doppler dephasing
associated with the modulated ground-state populations
that leads to a revival of the exponential factor when

2d] T=4K D& T

=8m u T/I", =16~ u T/[I", (5u, lu) ]&1 . (80)

The amplitude factor contains contributions from both
spontaneous decay and collisions, reflecting the opening
of the 1-3 "two-level" system by these processes. In anal-

ogy with the low-pressure regime, the collisional process
that leads to a revival of the system also "recloses" the
collisional contribution to the signal, since the atoms
have been redistributed over the entire Maxwellian distri-
bution by collisions [14]. Thus, when condition (80) is
satisfied, it is easiest to see the revival of the signal when

y3 /%0. In that case the amplitude of the signal is pro-
portional to (y3 2/y3) [23].

When condition (80) holds, the signal amplitude varies
as exp( —2y, T). Typically, y, consists of two parts

yl yt+ys (81)

where y, is the rate at which atoms leave the interaction
volume (inverse transit time), and y, is the rate at which
collisions transfer population from states 1 to 2 (for an
alkali-metal ground state, y, would represent the rate for
spin-flip collisions). For the moment, we neglect y, and
determine under what conditions one can reasonably
hope to see a revival of the signal.

First of all, we must satisfy condition (47) in the high-
pressure region. The revival effect is most easily seen if
one takes a small angle 8 between k, and k2 such that
~=k, 8&(k, . The angle 8 must be chosen large enough
to spatially separate the two beams. I shall assume a
value 8 =1.0X10 so that 8=0.03. %ith this value of
8, an effective collision cross section tr'=I" /Nu, on the
order of 1.0X 10 cm~ and u„=5.0X 10 cm/s (u, is the
most probable active atom-perturber relative speed), con-
dition (47) is satisfied provided N & 1.0X 10' atoms/cm .
Next, to avoid transit time damping, we must require
that

di &y (82)

when 2d
&
T 1; if these conditions are satisfied, all transit

time effects can be ignored. The rate y, is given by [24]

where R is the radius of the excitation beam. It follows
from Eqs. (80) and (83) that condition (82) is valid provid-
ed (zR ) »1, which is satisfied for k, in the optical re-
gion of the spectrum, 8)0.01, and 8 =1.0 cm.

If D& is written in terms of a diffusion cross section as
[25]

o d
=—(3&m /16)u„/ND, , (84)

condition (80) for the observation of the revival effect be-
comes

( ,')~m—a u „T/(N cr d ) & 1 . (85)

For o z =4.0X 10 ' cm (typical of alkali-metal-
atom —rare-gas collisions [25]) and N = 1.0X 10'9

atoms/cm, condition (85) is satisfied provided T &0.04
ps, a value that is often consistent with conditions (7b)
and (7c) [26]. Thus collisional revival phenomena should
be observable.

Let us now return to y, , It is interesting to determine
the order of magnitude of the cross sections
o, =y, l(Nu„) that one can measure using the GSE. In
order to be able to measure y„one must have 2y, T of or-
der unity, i.e.,

o, =y, /Nu„=(2Nu, T) (86)

Since condition (85) must be satisfied simultaneously, one
finds that cross sections

o, & ( 3/4) ~i~ /(N o d ) (87)

o, &(3/4)5. 8v'n/(N odR ) (89)

can be measured. For N = 1.0X 10 ' atoms/cm, R =1.0
cm, and o.d=4. 0X10 ' cm, o., &2.0X10 cm . For
these parameters, a time delay of order 10 s is needed if
the cross section is o, =2.0X 10 cm .
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can be measured. For the values of ~ and od given
above, and for N= 1.0X10' atoms/ctn, cross sections
as small as 2.0X10 ' cm can be detected [26].

This might seem like a small cross section, but alkali-
metal-atom-rare-gas spin-flip cross sections can be as
small as 10 cm [27]. Actually the GSE is not the best
method for an optical detection of these cross sections. If
one creates an initial ground-state magnetization with a
radiation pulse and probes it at some later time T, the in-
terval T is limited only by the atom's interaction time in
the beam, i.e.,

y, T~1. (88)
Combining conditions (86) and (88) and using Eq. (83),
one finds that cross sections
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