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We examine whispering-gallery-mode microdisk lasers, which have some potential for use in optical
computing, in an attempt to determine their stability and switching properties. We solve the laser equa-
tions for a coupled-laser system and investigate the stability and switching properties of these solutions.
We find that the lasers are stable and switch reliably in the absence of noise. If reasonable estimates of
noise are included, spontaneous switching rates of the order of once a year can be arranged using physi-

cally reasonable parameter values.

PACS number(s): 42.60.—v

I. INTRODUCTION

Recently, lasers of a novel structure named
whispering-gallery-mode microdisk lasers were created
[1]. Current investigations are under way for the possi-
bility of fabrication of these lasers for use in photonic or
optoelectronic circuits [2,3].

A schematic in Fig. 1 shows the structure of the laser
and the way in which light propagates in the laser. These
lasers may be coupled together via dielectric material as
shown in Fig. 2. Waves propagating outward from the
disk into the surroundings dielectric, which has a low re-
fractive index compared with the laser, are evanescent
out to a certain radius, where they tunnel through an
angular-momentum potential barrier. Beyond this the
waves propagate freely outwards from the disk. Such a
coupling scheme is a useful one as it allows these semi-
conductor lasers to be arranged in large monolithic ar-
rays, and thus enhances their potential for usage in opti-
cal or optoelectronic systems.

For such small lasers, the effects of quantum noise be-
come important, hence stability and reliable switching
capabilities must be ensured, and the aim of this paper is
to investigate whether these lasers have reliable stability
and switching properties.

We do this using two theoretical models. The first
model uses a simple gas-laser saturation function in order
to avoid complex dependences on the semiconductor
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FIG. 1. Whispering-gallery-mode microdisk laser.
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band structure. The majority of our results are obtained
using this model. The second model uses a more realistic
semiconductor saturation function which includes the
effect of refractive-index saturation and frequency pul-
ling. Results using this model are included as a check on
the validity of the results of the simplified model. These
models are discussed in more detail in Sec. II.

We solve the laser equations for a system composed of
two coupled lasers (as shown in Fig. 2), which exhibit
bistability—the stable solutions correspond to the lasers
being either in phase or in antiphase. Because rigid
monolithic arrays of these lasers can be made, the use of
phase as an information element is feasible. In Sec. III
we investigate the switching and stability of these solu-
tions in the absence of noise. In Sec. IV the stability of
the bistable system against fluctuations is investigated nu-
merically, using reasonable values of the parameters. It
is found that spontaneous switching rates of the order of
a year might occur.

II. EQUATIONS FOR COUPLED LASERS

The high index contrast ratio between a whispering-
gallery-mode microdisk laser and its surroundings means
that the lasers have high-Q values. This enhances the
reflectivity and mode selectivity of the microcavity, and
hence it is valid to adiabatically eliminate all variables ex-
cept the field mode. Our coupling is therefore between
two single-mode lasers. This is in contrast to the usual
situation for semiconductors, in which it is not possible

dielectric medium

FIG. 2. Microdisks coupled together via dielectric material.
The coupling strength can be engineered by varying the length
and type of coupling material, and the gap between the coupling
material and the laser [9]. Diffracton gratings can also be used
to couple light out of the disks [3].
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to eliminate all modes but the field because the cavity
mirrors are simply the end faces of the cavity itself and
the semiconductor is therefore low Q.

This coupling between the two lasers is brought about
by introducing dielectric material to connect the lasers.
Photons can then tunnel out from one laser and propa-
gate freely into the second laser as described in Sec. 1.

We use two different saturation functions to obtain re-
sults. The first of these is the gas-laser saturation func-
tion which has the form
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where C is the cooperativity parameter, « the decay con-
stant for photons from the mode, n, is the saturation
photon number, and a is the ¢ number corresponding to
the photon annihilation operator for the mode at frequen-
cy w. This is much simpler than the actual saturation
function, which has a complex dependence on the band
structure of the semiconductor. The behavior of the gas-
laser saturation function is rather different from that of
the semiconductor saturation function [4], however we
hope that the same qualitative results may be obtained.

The validity of using the gas-laser saturation function
is tested by obtaining some results using a semiconductor
laser saturation function. This saturation function is
modeled on an ensemble of two-level atoms with a distri-
bution of transition frequencies determined by the density
of states [5]. It has the form
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where C' and C" are coefficients chosen so that the two
models have the same behavior for small |a|?> and 8=0,
and B is a dimensionless parameter dependent on the
band structure of the semiconductor. The size of B deter-
mines the size of the refractive index, and the frequency
shift of the laser. The sign of B determines the direction
of the frequency shift and if S=0 no frequency shift
occurs. This refractive-index saturation which leads to
the frequency shift of the lasing mode is not found in the
gas-laser model.

The laser equation for a single microlaser resonant for
a single mode may be obtained from the appropriate
Hamiltonian [6]. Thus we can write, in a frame rotating
at the laser frequency,

a=—ka+af(lal®)+E&~1), (3)

where £(¢) is a Gaussian noise term whose only nonzero
correlation is

(E*()E(1"))=2Q(a)8(t—1') . 4)

The value of Q(a) will be discussed later.

The equations for two coupled single-mode lasers can
be obtained from (3) by including a coupling term be-
tween the modes of each laser which comes about from
the additional Hamiltonian term

H =t#e(ala, +ala,) . (5)

coupling
Hence the laser equations for the coupled system are

= —ra;+afilla ) —iea,+& (1), (6)
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An idea of the types of solution we may expect can be

obtained by considering the deterministic equations, us-

ing the gas-laser saturation function, in the situation in

which C,=C, and k;=k,. In this situation there exist
parameters for which
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This leads to two sets of solutions of Egs. (6) and (7)
which correspond to two different physical states. These
are the antisymmetric state

a;=re'

a,=—re' ©
and the symmetric state

a,=ae ¢, 0

a,=ae '€, 1o

Thus for identical lasers we would expect the system to
evolve into the states given in (9) and (10), that is, in-
phase states oscillating at frequency —e€, and out-of-
phase states oscillating at frequency €. Numerical inves-
tigations show that this qualitative behavior is present
even when C,7#C, and k,; 7k, provided they are not too
different. These two sets of solutions may be used to
represent the binary digits O and 1 which are used in opti-
cal computing.

There are two principal requirements of a logic ele-
ment: we must be able to change states when desired;
the system must remain in a given configuration until a
change in configuration is desired.

We expect the latter to be true on a macroscopic scale
where the effects of quantum noise are small, but on the
scale we consider, which is of the order of micrometers,
the quantum effects may become significant and cause
switching to occur. In the next section we investigate the
switching of deterministic solutions, and in the following
section consider to what extent noise may induce spon-
taneous switching.

III. DETERMINISTIC SIMULATIONS

Initial simulations of the deterministic versions of Egs.
(6) and (7) were performed using the gas-laser saturation
function, to ensure that the system did indeed display the
predicted stability and that the system could be made to
switch. The following parameter sizes were used.
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(1) €=2.1X10" s~!. This is the weakest coupling
strength for which we found stability to be obtained,
given a slight detuning as discussed below.

(2) We allow for manufacturing differences and hence
slightly detune the values of x; and «,. These values are
taken as k, +(2.1+i0.1)X 10" s ! and k,=2X 10" s,

(3) We take C,~C,~S5, which suggests that we
operate well above threshold within the gain region.

(4) We choose n, to be 100. The qualitative behavior
of the system is unaffected by this choice and we take this
value for the sake of consistency with later simulations.
Some simulations were also run using the semiconductor
saturation function for which the following additional pa-
rameters were used.

(a) As mentioned previously, Ci, C3, C{, and C} are
chosen so that the gas-laser saturation function is ob-
tained in the limit of small |@;|?/n, when B=0. In other
words C{=—2C; and C;'=C; where i =1,2.

(b) We have chosen S to be 0.1. The larger the value of
B the larger the frequency shift of the laser. Eventually
this destroys the desired bistability effect, which is re-
quired for optical computing. The value we have chosen
is large enough to show the effect of refractive-index satu-
ration in the semiconductor laser saturation function in
our analysis. In practice, it is expected that the value of
B could be determined by appropriate engineering [7].

A. Stability

To test stability we used random initial conditions,
simulated the system’s evolution, and then checked to see
which final state the laser system evolved into. We ex-
pect that the system will evolve into the state closest to
the initial state. By this we mean that for an initial phase
difference between the modes of —7/2 <¢ < /2 the sys-
tem will evolve into the symmetric final state, which has
a final phase of zero, and for 7/2 <¢ <37 /2 the system
goes to an antisymmetric final state, with a phase
difference of 7. We carried out several runs, each time
using different random amplitude r and phase ¢ values
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FIG. 3. Phase-space distribution of initial points showing
final states into which they evolve for the gas-laser saturation
function. The squares represent a final phase of zero, and the
crosses a final phase of 7. The figure shows that initial phases of
¢ which satisfy 7/2 <¢ <7/2 lead to a final state of O, with a
corresponding result for 7/2 <¢ <3w/2.
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FIG. 4. Phase-space distribution of initial points showing
final states into which they evolve using the semiconductor satu-
ration function with $=0.1. The squares represent a final phase
of zero, and the crosses a final phase of 7. The size of the wedge
decreases with increasing f3.

for ay(2)=re’d, while fixing (1) to be 1. The results are
shown in Fig. 3 for the gas-laser saturation function.
From this we can see that the prediction that the system
is bistable is correct and that for the system in a given ini-
tial state, the final state can be predicted and is one of the
states given by the solution of the laser equations.

Figure 4 shows similar data where the semiconductor
laser saturation function has been used for 8=0.1. It can
be seen that two distinct final states are still obtained,
however the in-phase final state is preferred over the out-
of-phase final state. For B=—0.1 the converse is true.
For larger B the wedge of out-of-phase final values be-
comes smaller and eventually disappears altogether for
B=0.24. We thus conclude that provided B is not too
large a useful bistability behavior still exists. The predic-
tion that the system will evolve into the state closest to
the initial state is clearly no longer valid for this choice of
parameters. It should be pointed out, however, that the
wedge size can be increased by increasing the value of e,
the coupling strength. Hence by careful choice of ¢, the
size of the effect of B can be controlled.

B. Switching

We would like to be able to switch the state of the laser
reliably when desired. This can be brought about by ap-
plying a pulse to each laser in the coupled system.

If we have an initially symmetric state, the pulse must
be applied to each laser antisymmetrically; i.e., the pulse
must be applied with opposite phases to each laser, for a
phase change to take place and for antisymmetry to re-
sult. If the pulse is applied symmetrically, i.e., with the
same phase to each laser, the symmetry is being rein-
forced, and no switch will occur. Conversely, if we have
an antisymmetric state initially, the pulse must be applied
to each laser symmetrically for a switch to the symmetric
state to take place. We examine three kinds of pulse.

(1) A pulse in which the amplitude and phase are con-
stant throughout the duration of the pulse. We call this
the zero-frequency pulse.

(2) A pulse with a phase varying with the field-mode
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frequency €, which we shall call a positive-frequency
pulse. Such a pulse will be in resonance with the frequen-
cy of the antisymmetric state.

(3) A pulse with a phase varying with the field-mode
frequency —e, which we shall call a negative-frequency
pulse. Such a pulse will be in resonance with the frequen-
cy of the symmetric state.

We apply the pulse for at least as long as 27 /€. We
wish to ensure that a stable switch will occur to the final
state, given that a pulse can be applied at any point in the
oscillation cycle of the field. We thus consider a pulse
applied at various points throughout one oscillation cycle
of the field, and our graphs therefore display the final
state obtained for a given pulse delay. We consider the
results for the case of the gas-laser saturation function.

For application of a zero-frequency pulse in the case of
finite pulse duration similar switching amplitudes (by

(b)

4 5 6

time delay before pulse application ( 10-135)

this we mean the minimum amplitude which gives reli-
able switching) are obtained for switching from sym-
metric to antisymmetric states and antisymmetric to sym-
metric states. This is shown in Fig. 5. This is expected,
as the pulse which is applied has a frequency which is the
average of the positive and negative frequencies and
hence one pulse is not preferred over the other. The
slight discrepancy arises as a result of the slight detuning
in the decay constants.

For the positive-frequency pulse, entirely different re-
sults are expected depending on our initial state since this
frequency is the same as that of the antisymmetric state.
Because we have a positive-frequency pulse, we expect
that it will be easier to drive the system into an antisym-
metric final state in which the modes also have a positive
frequency, and harder to drive the system into a sym-
metric state in v ich the modes have the opposite fre-
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FIG. 7. (a) and (b) Unstable
. and stable switching for initially

symmetric states for a negative-
frequency pulse applied an-

tisymmetrically. (c) and (d) Un-
stable and stable switching for
] initially antisymmetric states for
a negative-frequency pulse ap-
plied symmetrically.

(a) ()
4 r T T T 4 T T
- W_ g /;_/\/N/\__:
: :
& B3
E (S 4 g oL -
g g
= -E.
&L ) ] 2L pulse amplitude=6.0 4
E] pulse amplitude=5.95 E
&8 =
-4 1 -t 1 -4 1
2 3 4 5 6 2 3 5 6
time delay before pulse application ( 10-135) time delay before pulse application ( 10-135)
© @
4 T T T 4 T T
g g
g 2 ] 2[
g 2r
g :
ol o —
3 1 3
5 &
3 F]
& -2 pulse amplitude=1.6 &l 4
j pulse amplitude=1.65
4 1 1 1 -4 1 1
2 3 4 s 6 2 3 5 6

time delay before pulse application ( 10-135)

quency. The results shown in Fig. 6 confirm this.

For the negative-frequency pulse we expect the oppo-
site results to those obtained for the positive-frequency
case. That is, a smaller amplitude is expected to be re-
quired to switch to the symmetric state than the antisym-
metric state. Again, the results shown in Fig. 7 confirm
this.

If a semiconductor saturation function is used it is
found that for 3=0. 1, switching to the symmetric state is
easier for all three pulse types. This is not surprising
when one recalls that in Fig. 4 the in-phase final state is
preferred. Stable switching to the antisymmetric state is
also possible but for pulse amplitudes which are ~1.5-3
times higher than those for switching from antisymmetric
to symmetric states.

For the above results we have taken a pulse length of
the order of the period of the field modes, however,
another choice of pulse length may facilitate switching in
certain cases. Hence we consider the effect of pulse
length on ease of switching. To do this we have applied a
very long pulse in each of the three pulse cases to see
whether switching is enhanced or inhibited.

We find that resonance effects become important. For
the zero-frequency case, we find that the required switch-
ing amplitudes are decreased as the step provides a con-
tinual drive into the final state. For the positive-
frequency case however, resonance effects mean that
switching from antisymmetric to symmetric states is im-
possible whereas switching from symmetric to antisym-
metric states is enhanced. For the negative-frequency
case the opposite results are obtained. That is, switching
from symmetric to antisymmetric states is impossible.

We have also examined the effects of varying the de-
tuning and the damping on our system. This must be
done as no two lasers are the same, and reflectivities will
vary from device to device. We vary the amount of de-
tuning by varying imaginary parts of one of the decay
constants «;, and the damping by varying the real parts
of k;. The results are presented in Fig. 8 for switching

time delay before pulse application ( 10-13s)

from antisymmetric to symmetric states. We see that
there is a definite boundary between stability and instabil-
ity in each case, and that the boundary occurs in different
positions of the graph for each pulse type. We see that
for the negative-frequency pulse case more detuning and
damping can be tolerated than for the zero-frequency
pulse case, which in tern can tolerate more than the
positive-frequency pulse case. This corresponds to the
previous results where switching from antisymmetric to
symmetric states required much smaller pulse amplitudes
for the negative frequency than the positive frequency.
For these results we have used the minimum pulse ampli-
tudes for which stable switching was obtained in the pre-
vious analyses, however unstable switching can be over-
come if higher pulse amplitudes are used. For switching
from symmetric states to antisymmetric states the oppo-
site results to those above are found i.e., the positive-
frequency case is able to tolerate more detuning.
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FIG. 8. Effects of varying the detuning and damping for

switching from antisymmetric to symmetric states. Stable
switching occurs for all three pulse types in the region below the
solid line. In the region between the dotted and solid lines, the
postive-frequency pulse ceases to switch in a stable manner,
and above the dotted line, only the negative-frequency pulse
case gives reliable switching.
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IV. EFFECTS OF NOISE ON STABILITY

We now consider the effects of quantum noise on this
system to see how long it takes for a spontaneous switch
to occur and to examine whether this is long enough for
optical storage to be feasible using this system. We in-
clude noise terms in our equations and perform numeri-
cal simulations. These simulations have been carried out
using the gas-laser saturation function.

The integration scheme used for the simulations is the
implicit stochastic method [8]. We use the following pa-
rameter sizes in the simulation, which are calculated
from parameters given in [1].

(1) The inverse cavity lifetime « is found from

_ 2mv

’

K

where an approximate figure for Q is 200X 10" s™! [1],
and v, can be calculated from the lasing wavelength
which is 1.3 pm.

(2) The value of C depends in a complex manner on
the pumping. A value of C of 1 represents threshold. We
wish to work well in the gain region, thus we choose a
value of C of ~5 as before.

(3) ny, which is the approximate saturation photon
number for the system, is 100 [9].

(4) € be assigned arbitrarily, but in reality we expect it
to be of the order of the decay constant. We selected a
value of 0.01 X 10" s~! for the purposes of short comput-
er runs when examining the effect of noise size on switch-
ing time.

(5) The noise size can be calculated from the spectral
properties of the lased light and from the equation [6]

2ny(C —1)

T~”~Q‘(a—)— , (11)

where 7 is the phase correlation time 7=27/8w. We find
a maximum Q(a) of 1.72X 103 s™!. This upper bound is
determined by the limited resolution of the spectrometer
used to find the spectral linewidth.

Two sets of simulations are carried out. In the first of
these the value of Q(a) is fixed and the effect of varying
the coupling strength on the switching time is examined.
The second simulation examines the effect of varying
Q(a) on the switching time while € remains fixed. The
purpose of the simulations is to ascertain an average
switching time at which the system spontaneously
switches from one state to another. These simulations
lead to two equations for the switching time as a function
of € and Q(a), which we compare.

Initially we examine the effect of coupling strength on
switching time under the influence of the maximum
theoretical amount of quantum noise as given above. For
each value of the coupling strength, the simulation is run
and several switching times are recorded. The switching
times are averaged and graphs of € vs average switching
time ¢ are produced. These results are shown in Fig. 9.
The averages are performed over 50 switching times per €
value, and an exponential relationship between € and ¢ is
found. From the lines of maximum and minimum slope
in the figure we measure a mean slope of 25.5X 10713
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FIG. 9. Semilogarithmic plot and extrapolation of Eq. (12).

with an error of about 5%. A mean intercept value of
88.70X 10" s can also be obtained. We may thus write
the expression for ¢

t=aeb s, (12)
where

a=88.70X10" Vs,

b=25.54X10"1,

Substituting for t=10" s which would correspond to a
storage time of the order of one year (1 year = 3.16 X 10’
s), and € value of 1.63X 10" s ! is found, which is ap-
proximately twice the size of the decay constant.

To examine the effects of noise on the system, we have
chosen an € value of 0.01 X 10" s™!, as mentioned previ-
ously. The results are given in Fig. 10. The relationship
found is an exponential one between ¢ and Q ~!. We find
from the lines of maximum and minimum slope in the
figure a mean slope of 0.9835X 10" with an error of
about 10%. A mean intercept value of 126.949 X 10~ 1 s
can be found also. The slope is actually a constant multi-
plied by €, therefore, removing € from our slope value we
obtain

t_.__cede/Q(a)s , (13)
where
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FIG. 10. Semilogarithmic plot and extrapolation of Eq. (13).



49 STABILITY AND SWITCHING IN WHISPERING-GALLERY-. .. 2913

c=126.949%10" s,
d=98.35 .

Using a more realistic € value of the order of the decay
constant, €=0.7X10"% s™! in (13), and setting t=10"s
we find that Q(a)=1.69X 103 s~! which is just below
the theoretical maximum. The error in this value is
about 10%. We can generalize (12) in a similar manner
by removing Q(a) from the value for the slope. Then
(12) becomes

t=gel/Qg (14)
where
F=43.86 .

Then upon substituting in this new expression for
€=0.7X10" s7! we obtain Q(a)=0.739X10" s
This value has an error of approximately 5%. Thus the
values of Q(a) obtained by the separate methods both fall
below the theoretical maximum. Although approximate
error estimates are given, these are not of great impor-

tance, as our results show that both simulations give re-
sults which have the same general behavior and both pre-
dict that switching times of one year are possible. These
results seem promising for the semiconductor
whispering-gallery-mode microdisk laser.

V. CONCLUSIONS

In conclusion we have shown that a bistable device
can be devised and it can be made to switch in a stable
manner. We have shown this to be true independently of
the explicit laser model, provided that the value of B used
is not too large. For the cases in which quantum noise is
included in the system we predict that the microdisks are
potentially stable over a time of the order of years, and
hence may be useful in optical computing.

To further determine the usefulness of these lasers, a
better estimate of the lasing linewidth is required.
Another factor which may affect the results is the quality
factor Q(a), for which we have only an approximate
value, which determines the value of «.
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FIG. 1. Whispering-gallery-mode microdisk laser.



FIG. 2. Microdisks coupled together via dielectric material.
The coupling strength can be engineered by varying the length
and type of coupling material, and the gap between the coupling
material and the laser [9]. Diffracton gratings can also be used
to couple light out of the disks [3].



