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Pattern formation and competition in nonlinear optical systems with two-dimensional feedback
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Nonlinear optical systems using a Kerr slice and two-dimensional feedback are analyzed. A
Neumann-series approach is used to study pattern formation. %e show that interactions between spatial
modes (rolls) occur in the form of "winner-takes-all" dynamics and cause formation of hexagon patterns.

PACS number(s): 42.65.—k

I. INTRODUCI ION

It seems the time of the plane-wave approximation is
ending in nonlinear optics. This fruitful approach has al-
lowed us to factorize spatial and temporal variables and
analyze effects separately. We now realize that even
more interesting and extraordinary phenomena occur
when time and space are mixed together. Even in quite
simple nonlinear optical systems [Kerr slice with a feed-
back mirror [1-4],mirrorless counterpropagating beams
[5—7], nonlinear passive resonator or interferometer
[8,9], two-dimensional (2D) feedback system with long-
range interactions [10,11]] it is possible to obtain a large
variety of dynamic regimes: bistability and multistability,
dissipative structures, traveling and switching waves, op-
tical vortices, hexagons and other polygons, bright and
dark solitons, and related difFractive patterns [12,13],
[14-16],etc. Very often several di6'erent regimes of spa-
tiotemporal self-organization coexist in the same system
and under the same or similar parameter values [17,18].

Here our concern is with nonlinear phenomena where
interactions between nonlinear modes (patterns, struc-
tures, images, etc.) play important or decisive roles. In
this respect the more traditional and convenient ap-
proach to the study of nonlinear dynamics based on
linear stability analysis is insuScient. We need to use
something more complicated; for example, multiple-scale
analysis (MSA) [19]. But for this case instead of one or
two nonlinear equations we would obtain a series of rath-
er complicated partial difFerential equations [4]. It is
some consolation that the Ginzburg-Landau equation fre-
quently appears in a second-order calculation [19,20]. As
far as higher-order equations are concerned, it has been
remarked that they involve lengthy algebra, and to use a
simpler but less rigorous approach is more convenient
[4]. We follow this latter recommendation from the be-
ginning.

In this paper we attempt to analyze and explain the
pattern formation process. During this process a continu-
ous in6nity of candidate modes collapse, through mode-
mode competition, to a small number of surviving modes
constituting the fully formed set.

Here we consider the simplest nonlinear optical sys-
tems where cooperative and competitive dynamics take

place. The basic models are presented in Fig. 1, namely a
thin antireQective slice of Kerr medium with a feedback
mirror [Fig. 1(a)] [21,1,2] and a system consisting of a
thin Kerr-like medium with refiection and external feed-
back [Fig. 1(b)]. An example of the latter is an optical
system with 2D feedback and a liquid crystal light valve
(LCLV) used as a model of a Kerr slice [10,22]. Under
certain conditions both systems can be similarly de-
scribed [23].

Our approach is based on the following observations.
(1) A finite number of more active interacting "modes"

play an important role in the formation stage of nonlinear
spatial patterns. We use this observation to reduce the
original nonlinear partial differential equations to a sys-
tem of equations for the active mode amplitudes. The an-
imate body of the nonlinear dynamics is shaped by this
system of equations.

(2) Formation of nonlinear patterns due to interaction
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FIG. 1. Two optical systems which are equivalent in terms of
the present analysis: {a) Kerr slice with feedback mirror; (b)
nonlinear passive resonator controlled by a spatial phase modu-
lator driven by light through a 20 feedback loop.
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between modes occurs with small mode amplitude values
in the vicinity of the bifurcation point where stability is
lost. We assume that the most interesting features of the
pattern that develops arise in this vicinity. This allows us
to correct the linear stability analysis and keep the most
important intermode interactions. The question is, how
do we make this correction?

It would seem natural to make the typical expansion of
the nonlinear equations in a Taylor series and keep only
the terms of the zero, first, second, and, given enough pa-
tience, third order [20,4]. However, recalling that each
nonlinear partial differential equation requires individual
treatment, we instead expand nonlinear terms in a series
of Bessel functions (a Neumann series [24]). The use of a
Neumann series instead of a Taylor expansion allows us
to obtain expressions retaining intermode interactions
even for the lowest order. This approach was previously
used for the analysis of rotatory instability in a nonlinear
interferometer with field rotation [25].

After obtaining a finite-order system of equations for
the mode amplitudes we use the slaving principle [26].
This principle is realized here in the form of winner-
takes-all (WTA) dynamics, now a popular model in the
field of artificial neural networks [27,28] and in life in

general.
This approach allows us to reduce the dimensionality

of the unstable manifold and obtain elementary dynamic
structures with minimum manifold dimension: the set of
individual rolls (elementary modes) and hexagons. We
consider hexagons as systems of interacting individual
rolls with cooperative dynamics. Examples of interac-
tions between these elementary dynamic structures are
given, and we show that it is better for individual rolls to
be involved in the competition as part of a hexagon.

This treatment goes beyond most WTA analyses in

that we consider a spatially extended system having a
continuous degeneracy of unstable Fourier modes caused
by rotational symmetry in the transverse plane. Our
analysis highlights the effects of input phase distortions,
for which there is no obvious parallel in fluid systems. In
particular, we demonstrate the importance of these
effects in the making —and breaking —of hexagonal
structures.

MATHEMATICAL MODEL

The system shown in Fig. 1(a) has been well discussed
in the nonlinear optics literature. Correspondingly, we

simply give the equations and refer to the relevant arti-
cles [2,4].

Kerr slice dynamics is described by a nonlinear
diffusion equation for the nonlinear phase modulation
u(r, t)=lkhn(r, t), where k=2vrlA, , 1 is slice thickness
and hn is change in the refractive index due to the in-
teraction of light with the slice:

+u = lD 7iu +9t
~
A ( r, z =0)

~
+9t

~
A ( r, z =L, t )

~

Here V~ is the Laplacian in the x and y directions
describing transverse diffusion in the nonlinear medium

with diffusion length ID, ~ is response time of the non-

linearity, and R is the nonlinearity parameter.
The driving terms on the extreme right of (1) represent

the effects of the direct and feedback intensities. The to-
tal distance from Kerr slice to mirror and back is equal to
L. We consciously ignore several interesting effects con-
nected with the feedback time delay and assume that
~»L/c. Moreover, instead of a real laser beam of
definite width, we study the somewhat unusual case of an
input light field with uniform amplitude and nonuniform
phase y(r ). In this intermediate case the input field is no
longer a plane wave, but in some sense still approximates
the behavior of a plane wave:

A (r, z =0)= A;„=Aoexp[iy(r )] . (2)

Finally, the complex amplitude of the optical field after
traveling a distance z beyond the slice is defined as
Ao A (r,z, t ), i.e., we normalize it to the input amplitude

Ao, which is then incorporated into the nonlinearity pa-
rameter 9t.

These manipulations of the input field allow us to omit
the term 9t~A(r, z=0)~ =StAO in Eq. (1), as its presence
can cause only an unimportant spatially homogeneous
phase shift. A second advantage in form (2) is that the
mathematical models coincide for both optical schemes
under discussion [Figs. 1(a) and 1(b)] [23].

The normalized Eq. (1), free of insignificant terms and
constants, becomes

+u =DViu+E( A(r, L, t)[Bu
(3)

where D is a normalized diffusion coefficient and
E =%A o is one of three key parameters of the problem:
E, D, L. All parameters on which the nonlinear interac-
tion depends are contained in K: A 0, n2, k, I, R, where

n2 is nonlinear refractive index and R is the feedback
mirror reflection coefficient. We can consider E as a con-
trol or bifurcation parameter. Our definition for u im-

plies that E has the same sign as n2, viz. , K & 0 for a self-
focusing medium, and K &0 for a self-defocusing rnedi-
urn. We assume that E is switched on at t =0 from below
the instability threshold, where u is very small, to a value
for which some spatial frequencies begin to grow. We ex-
amine the growth and interaction of these components,
with K assumed constant for t & 0.

To complete the mathematical description requires the
free-space propagation equation

. BA
Bz

(4)

In (4) we normalized r by a and z by zd (a and zd =ka
are the aperture size of the Kerr slice and the diffraction
length).

Note that the question of the normalization of spatial
variables in (1)—(4) is rather delicate. For a laser beam
of definite width the diameter a is a natural spatial scale

with boundary condition determined outside the Kerr
slice

A (r, O, t ) =exp[iu(r, t )+iy(r )] .
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of the problem and the distance z can be normalized by
zd. In our case of unlimited aperture, diffractive effects
are determined by the spatial scale of induced phase dis-
tortions in the Kerr slice. The minimum spatial size of
these distortions can be restricted by diffusion with the
characteristic length lz. Certainly we could scale z to
lak. However, using this normalization we cannot make
the transition to the case of la =0. There is a further re-
striction of the minimum spatial scale and thus again the
size a of the input beam in the Kerr slice. For phase dis-
tortions with a spatial scale a the diffraction-limited
spot diameter at the distance L is a, =L/(ka ). For
these distortions feedback can be regarded as closed only
if a, &a, that is, a )a '"=L/(ka). It means that for a
more correct statement of the problem we need to take
into account the aperture diameter a. Nevertheless we
need to do this only for the refiected field in the plane of
the Kerr slice in order to cut

off

hig spatial frequencies.

and

k„.r, n =1, . . . , N
C k„r.+m/2, n =N+1, . . . , 2N .

2N

u(r, 0)= g b„sin(g„),
n=1

2N

q&(r)= g qr„sin(g„). (9)

Many, or indeed all, of the y„may be zero, the latter case
describing an ideal plane wave input.

Substituting (7) into (5) yields the expression for com-
plex amplitude A just beyond the Kerr slice:

We must choose the same type of series to describe both
the initial condition and phase distortion function y:

EQUATIONS FOR MODE AMPLITUDES
2N

A (r, O, t ) = g exp[ia„(t)sin(f„)], (10)

Consider a solution of (3) as a series of a large number
N of discrete spectral components:

N N

u(r, t)= g b'si n(g„) +g b„'ocs(g„),
n=1 n=1

where P„=k„.r and b„'(t),b„'(t) are real mode ampli-

tudes, and k„represents the wave vectors. The "dis-
tance" ~k„—k

~
between the separate wave vectors k„

and k can be very small but nevertheless we have a
discrete spectrum and separate modes. Represent (6) in

the following form:

2N

u(r, t)= g b„sin(g„),
n=1

n=1

where a„=b„+y„.
The physical sense of this expression is clear. Each

term in (10) describes a plane wave passed through a har-
monic phase grating with depth of modulation a„and
spatial frequency k„.

Using the standard expansion of the exponential terms
in (10) gives

2N OC

&(r,O, t)= g Jo(a„}+2ig J&& ~(a„}sin[(2j—1)g„]
n=1 j=l

+2 g J2, (a„)cos(2jg„)
j=l

where

b„', n=1, . . . , N

b„', n =N+1, . . . , 2N,

We assume that mode amplitudes in the vicinity of the bi
furcation point are small enough for us to keep in the
Neumann expansion (11) only the terms up to second or-
der in Jl, first order in Jz, and to neglect all J„for n ~ 3.
Then

2N 2N 2N 2N n —1

A(r, O, t)= g Jo(a„) 1+2i g Q„sin(f„)+2g P„cos(2$„)+2g g Q Q„[cos(g„+f) —cos(g„—1I'j )]
n=1 n=1 n=1 n=l m=1

(12)

where Q„=J,(a„)/Jo(a„}and P„=J2(a„)/Jo(a„)are
normalized Bessel functions. This truncation shows that
the set (6) of wave vectors and phases must include all
second harmonics, sums, and differences of k„to obtain
closure. One way to achieve this is to assume that k„
constitutes an infinite space-periodic lattice. By making
the unit cell small enough, the wave vector continuum
can be approximated as closely as desired. Such a
discretization remains valid after we form the intensity

~A ~, and indeed for the full Neumann series. Notice
that in accordance with (12) the complex amplitude
A(r, O, t) is the sum of plane waves with different wave
vectors k„.

The solution of the free-space propagation equation at
a distance z can be easily obtained by multiplying each
plane-wave component by the propagation term
exp( ik„z)[29].—The feedback field in the Kerr slice is
then given by
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2N 2Nl

A(r, L, t)=2DO '1/2+i g Q„exp( i—k„L)sin(g„)+g P„exp( —4ik2L)cos(2$„)
n=1 n=1

2 n —1

+ g g Q Q„exp( i—
~
k„+k

~
L)cos( tij„+g )

n =1 m =1

2 n —1

Q Q„exp(—i ~k„—k
~

L )c os(g„—g )

n =1 m =1
(13)

where DO=11@,Jo(a„).In (13) we take advantage of the finite Kerr slice diameter. The Kerr slice aperture truncates
high spatial frequency components. As a result the numbers E, and N2 appear in (13). Thus the first reduction in man-
ifold dimension occurs due to the finite aperture. Instead of calculating Xl and 1V2 we take into account the spatial fre-
quency threshold k,„=(a'"/a) '=1/L where the distance L is normalized by zd. In the following development we
assume that all important wave vectors are less than k,„andthus write the corresponding series without the upper in-
dices.

In the same second-order Neumann approximation we obtain the following expression for normalized feedback inten-
sity:

I(r, L, t)=
~
A(r, L, t)~ =4(Do) 1/4+(1/2)g Q„+gQ„sin(k„L)sin(f„)+g[P„cos(4k„L)—(1/2)Q„]cos(2$„)

n —1—g g Q„Q [cos(~k„—k
~
L)—cos[(k„—k2 )L]]cos(g„—g )

n m=1

n —1

+g g Q Q„Icos(~k„+k
~
L)—cos[(k„—k )L]]cos(g„+g )

n m=1
(14)

Substituting (6) and (14) into Eq. (3) for the nonlinear
phase modulation gives

g [rd„+(1+Dk„)(a„—y„)]sing„=KI(r,L, t ) . (15)

n=l, . . . , 2N . (16)

Note that although we have used in (15) only the first-
order Neumann approximation we have kept intermode
interactions. The collective term Do=+~=,JO(a. ) de-
scribes the influence of the system state on individual
mode behavior.

LINEAR STABILITY ANALYSIS;
INFLUENCE OF PHASE DISTORTIONS

In the tradition of nonlinear dynamics we start from a
linear stability analysis. In the first order of a Taylor ex-

Consider the simplest case when the initial mode am-
plitudes a„=a„(0)belong to a 2N-dimensional sphere in

the space of mode amplitudes, with a small radius ep « l.
Select a second sphere with radius el&E'p. Inside this
second sphere the amplitudes a„are small enough to
keep in (14) terms up to the first order of the Bessel func-
tions. The original system dynamics are analyzed only
up to time tl, at which the system trajectory crosses the
surface of sphere el. As an estimate let
Jz(e& ) =0.1Ji(ei ), which yields ei —-0.4 (not such a small
sphere).

Inside sphere ei (15) reduces to

2N

ra„+(1+Dk„)(a„—y„)=4Ksin(k„L ) g Jo(a ) Q„,
j=l

Kth =(1+Dk„)/[2sin(k„L)] . (18)

There are no intermode interactions in this case, meaning
feedback occurs separately for each individual mode.
Neglecting phase distortions we obtain the excitation
condition for the nth mode

K/I(,"h ) l, (19)

and the eigenvalues A,
„

for the nonlinear system of equa-
tions (16) in the neighborhood of the stationary point
a =0:

n

A,„=—(1+Dk„)(1 K/K,"i, ) . — (20)

If (19) holds the corresponding eigenvalue is positive.
The sine function in (18) arising from propagation must
have the same sign as the nonlinearity K for this to occur.
In Fig. 2 the threshold curves for a self-defocusing medi-
um (K (0) are shown. Notice the gap at small wave vec-
tors. A self-focusing medium would show instabilities in
this and subsequent gaps. By changing the aperture size
a or the threshold spatial frequency k,

„

it is possible to
control the number of instability branches. Vfe ignore
the influence of the aperture a for calculation of the out-
going wave amplitude A(r, L, t). A more complete

pansion [Jo(a„)=1,Ji(a„)=a„/2],instead of (16) we

obtain, using a modi6ed notation and generalizing to al-
low for input phase distortions, the known system of
equations [2]

ra„+( +IDk)(1 —K /K,"„)a„=(1+Dk„)y„, (17)

where
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K,"h =(1+Dk„}/[2g„sin(k„L)], (21)

where g„=g(k„L)are values of the Gaussian aperture
function g(r) =exp( r—) at the points k„L (assume

k„L»1}. Expression (21) indicates that the minimum
threshold in each branch increases with wave vector.
This means the lowest branch will usually dominate the
dynamics.

We omit the rigorous algebraic manipulations that lead
to expression (21). The physical meaning behind the
weighting coefficients g„is rather obvious. After travel-

S.O

K: (

2.5-

analysis of the problem for a beam with Gaussian intensi-
ty distribution gives [30]

8„=q)„/(1K/K—,"h ) . (22)

In stable regions where (1 K/K—,"h ) & 1, input phase dis-
tortions are suppressed ( ~d„~& ~tp„~). But in the vicinity
of bifurcation, phase distortions are amplified. Note, that
(22) is reasonable only for quite small phase perturbations
(when (p„~&&1).

ing a distance L the plane-wave component having wave
vector k„obtains the linear "shift" b, =sin(a„)E
=(k /k)E, where k=2m/A(, all parameters now have
dimensions). The intensity of the "shifted" portion of
this plane wave in the plane of the Kerr slice is deter-
mined by g(b, /a). Taking into account the expression
for 5 and normalizations introduced earlier, we obtain a
factor that decreases the feedback intensity coefficient
g„=g(k„L).

Now consider in the linear approximation the inhuence
of phase distortions. The stationary-state amplitudes &„
are determined by

C

2.0- ACTIVE MODES AND THE FIRST MANIFOLD
DIMENSION REDUCTION

i.5-

C

0.5-

0.0
0

8.0

k L/&
~ I g l I I ~ $ I I 0 I I I I I 0 ( 1 I 4 f I I I 0 ~

1 2 3 4 5

Consider the nonlinear system (16) for mode ampli-
tudes, which can be related to the well-known order-
parameter equations [26]. There is no general method for
an analysis of these systems, but there is a common ten-
dency: to reduce the manifold dimension. In the vicinity
of the bifurcation point this reduction can be justified on
the basis of a slaving principle [26].

According to this principle, in the vicinity of a critical
point the solution of the original system (16) asymptoti-
cally approaches the solution of a system with lower
manifold dimension. The reduced system includes only
2M equations corresponding to the modes having non-
negative eigenvalues A, & 0, m = 1, . . . , 2M (the acti Ue

modes):

: (b}
2.5-

2.0-

ed~ + (1+Dk }(a —
q) )

2M
=4Ksin(k L) g g (g,. ) Z, (u )/g (

j=1

m =1, . . . , 2M(2E . (23)

1.5-

1.0-

0.5-

0.0
it L/TT

I I I I I '

~ I I w I I I I I g I I f w 'I % I I I g I l l

FICr. 2. Threshold curves for a self-defocusing Kerr slide. (a)
L =0.1, D =0, k L/m =12.7 (due to aperture efFects there are
six active branches); (b) L =0.I, D =0.01.

We enumerate these equations in order of decreasing ei-
genvalues:

~1 —~2 — —~2M —0 '

In the linear approximation, equations for amplitudes a„'
and a„' coincide and A,

&
=A.I+M, 1=1, . . . , M. The

remaining 2(N —M ) modes either die or survive only be-
cause they are driven by the active modes {or the phase
distortions). In either case their amplitudes remain small,
and hardly affect those of the active modes.

Note that we can apply the slaving principle only for a
special type of initial condition: the initial a of the ac-
tive modes (AM) are inside the small sphere ez centered
on the stationary point with all a =0. This reduction
means we can ignore the in6uence of modes with negative
eigenvalues (the passive modes).
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WTA —DYNAMICS AND THE SECOND REDUCTION
OF THE MANIFOLD DIMENSION

Assuming that K is not too far above threshold, active
modes (with A, &0) lie on one or more annuli in the
transverse k space. On the combined basis of analytical
and numerical evidence it appears that the first effects of
nonlinear coupling arise as competition among active
modes, rapidly shrinking these annuli down to a set of
"superactive modes" (SAM) lying on or very near the k
space circle of modes with maximal eigenvalue (points A

on the threshold curves shown in Fig. 2). Exceptionally,
in the presence of degeneracy several circles of SAM may
exist. The SAM are still very numerous —in the continu-
um limit there are an infinite number. We demonstrate
below the presence of winner-take-all dynamics in this
system, which acts to kill off all but one, or a few SAM.
WTA dynamics has been little studied for spatially ex-
tended systems such as the present one [17,25].

Consider the problem of intermode interactions in our
first-order Neumann-series approximation. The reduced
systein of equations (23) can be related to systems of
artificial neural networks [31]. Thus we rewrite (23) in a
form similar to neural network models:

ra /t2 = —(1+Dk )+f (a„.. . , a2M ), (24)

X [J,(a )/a ]/Jo(a ), (25)

with m =1, . . . , 2M. Note that f is an even function of
a, i.e., a function of the "intensities" of the modes only.

In the case where

a (p
Ba

(26)

for all jism in the system of equations in (24), the WTA
condition of competition is fulfilled. The condition given
in (26) states that an increase in the intensity of any of the
active modes (for example, a ) decreases the growth rate
for the remaining amplitudes. Any mode whose growth
rate is driven negative begins to decay, and in doing so
enhances the growth rates of all the others, again through
(26). The winner of this competition will be that one
mode whose initial growth rate and amplitude best fit it
for the struggle. That our system possesses such WTA
dynamics can be seen by inspection. The coupling func-
tion f is a product of positive definite terms, at least
while all amplitudes remain small enough that no Bessel
function changes sign. Since Jo is a decreasing function
in this range, the WTA condition is satisfied.

Figure 3 gives some examples of the WTA behavior ex-
hibited by (23) for a small body of active modes. These
modes were in two groups of six modes. The modes
within each group has the same value for the threshold
parameter: K th

=I(,'h' for the first six modes and

where we have temporarily neglected phase distortions,
and where

2M

f =2(1+Dk )(K/K h) p J (o )

j=1

Kih =KIhi(K,'h' ~K,'„')for the second group.
On what does the victory in the competition depend?

Two factors are very important in the mode battle: the
initial condition a and the eigenvalues A, , or
equivalently, the parameters

D' '=(K K—)/K =A, /(1+Dk ) (27)

SECOND-ORDER EQUATIONS FOR SUPERACTIVE
MODES AND HEXAGON APPEARANCE

What happens to superactive modes that survive the
competition inside sphere e, to reach the moment t,

which are more convenient for us. If growth rates were
constant then a mode whose growth rate exceeded that of
another by hA, but with initial amplitude smaller by a fac-
tor C, would nonetheless overtake it in a time of order
logic~/hA, . Thus if the initial sphere is small enough

only the mode or modes with largest eigenvalue will sur-

vive. The effect of WTA competition in altering growth
rates and the fact that (26) is valid only while all ampli-

tudes remain small means the competition outcome is
somewhat uncertain. We must therefore allow for the
possibility that several, or even multiple, modes may sur-

vive until the time we must consider higher-order mode

coupling s.
Various aspects of intermode competition are shown in

Fig. 3 for different parameters D'" and D' '. Even a
disadvantage in the initial conditions [Fig. 3(a)] did not
spoil victory for the mode with the largest parameter
D' '. More strenuous competition takes place between
modes with similar values for the parameter D' ' [Fig.
3(b)]. Nevertheless, the result can be predicted because
D'" &D' '. Result of the competition between the modes
with equal parameters D' ' depends only on the initial
condition [Fig. 3(c)]. As mentioned, modes a' and a'
have equal wave vectors k and eigenvalues A, so that
WTA competition determines the phase of the rolls that
have the advantage in growth rate. Note that the
competition s decisive events take place inside sphere e&

where expression (23) is valid.
Using this analysis allows a second reduction in rnani-

fold dimension so that we keep only a small body of po-
tential winner modes located at the bottom of the insta-
bility branches (the points A in Fig. 2). We also keep a
few modes that have an advantage in initial conditions
and only slightly lower values for the D' ' parameters.

Even in the case of a large degeneracy for the largest
eigenvalue A, , (e.g. , on a circle in k space) WTA competi-
tion between these modes still ensures that only a small

number of modes (differentiated by the azimuth angle on
the circle) survive. At this stage, which angle survives

depends only on initial conditions.
In the presence of small phase distortions this picture

of intermode competition changes somewhat (Fig. 4). As
in the previous case, the advantage lies with the mode
having the largest value for the parameter D' ' [Fig.
4(a)]. Among equivalent modes the victory will go to the
mode with the maximum phase distortion coefficient

[Fig. 4(b)]. With increasing phase distortion WTA dy-

namics is destroyed [Fig. 4(c)].



PATTERN FORMATION AND COMPETITION IN NONLINEAR. . . 2897

when one mode amplitude crosses the boundary of this
sphere? Define a larger sphere with radius e2&e, that is
still small enough to ensure that the second-order Bessel
function approximation in (14) and (15) is valid. For an
estimate, J3(ez) =0.1Jz(ez) gives ez-—0.65.

%e need to separate the spatial and time-dependent
functions in (15) and to obtain a closed system of equa-
tions for the SAM amplitudes. In accordance with our
scenario of the intermode competition, inside sphere ez
we need to take into account the second-order Bessel
function terms in (14) only for the SAM amplitudes, with

wave-vectors located at the bottom of the instability
branches (points A in Fig. 2). Call these vectors ~

Assume that diffusion is strong enough or the Kerr
slice aperture a is small enough to keep only the SAM
amplitudes from the most unstable branch [the point A

Fig. 2(b)], that is,

~a ~=z, sgn(K)sin(~L)&0, m=1, . . . , M, . (28)

where M, is the number of SAM wave vectors close to
the bottom of this branch. From (14) the intensity is
given by
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FIG. 3. WTA-type dynamics for active modes. Behavior of the solution to Eqs. (23) for %=0.8, D=0, L =0.1, y=0, a &a +&,

m =1, . . . , 11. Parameters for the first group of modes (m =1, . . . , 6) are k"'=6.86, K,"'=0.5, D"'=0.6. Parameters for the
second group of modes (m=7, . . . , 12) are (a) k' '=7.31, K,'&'=0.62, D' '=0.29; (b) k' '=7.09, K,'„'=0.52, D' '=0.54; (c)
k' '=6.86, K' '=0.50, D"'=0.6.



2898 M. A. VORONTSOV AND W. J. FIRTH 49

I(r, L, t) =4D,'[I'"+I"+I ')+I +)+I& )]-

where
2N

Do= P Jo(a, ),
n=1

2NI' '=1/4+(I/2) g Q~,
2M

1

n=1
= g Q~sjn(k L)sjn(p )

(29) 2M,
I' '= g [P cos(4a L)—(1/2)Q ]cos(2$ ),

m=1

2M' m —1I'+'= —g g Q Q„[1—cos(~a.„+ir
~
L)]

m=1 n=1

Xcos(g„+g ),
2M

m=1

2M,
I' '= g g Q Q„[1—cos( ~a„—a

~

L )]
m=1 n=l

1.0

rn -.

O.B-

+sin(a L) g Q sjn(p ),
m=1

0.6

Xcos(p„—1( ) .
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FIG. 4. Intermode competition in the presence of phase distortions: (a) qr =0.001m, m = 1, . . . , 12 [all parameters correspond to
Fig. 3(a)]; (b) y =0.001(12—m ), m =1, . . . , 12 [all parameters correspond to Fig. 3(b)]; (c) y =0.01m, m =1, . . . , 12 [all parame-
ters correspond to Fig. 3(c)].
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In (29) N =M, +M„where M, is the number of active
mode wave vectors inside sphere e& that have not died as
of the moment t, . The I' ' term has wave vector 2a
which in general is that of a passive mode and is
insignificant except at large amplitudes. The same is true
for terms bilinear in the Q's unless z +lc„=a or
K K„=K,which occurs when K and K„make an angle
of 1r/3 or 2~/3 (Fig. 5). These terms are associated with
hexagon formation.

We cannot yet equate components in (15) with
equivalent wave-vector values because they contain
difFerent phase shifts g +g„and f 1'„.—In the first-

order Neumann approximation (inside sphere e)) the
behavior of mode a„(t)sing„depends only on the ampli-
tude a„.Outside sphere e, we must account for the rela-
tionship between amplitudes a!' and a!' (the sine and
cosine components) that determine the time-dependent
phase (Ml(t} of the original mode with the wave vector
1(![tan(pl ) =aI /al ].

Now examine the couple of superactive modes with
wave vector KI

Il =a!'(t)sin(a( r )+a!'(t)cos(s.!.r ),
I= 1, . . . , M, , (30)

f 5 Mf
I(+)—g g I(+) I(—

) y y I(—)

m =11=p m =1 I =P
(31)

where

to find the components of feedback intensity that afFect
the behavior of these modes. First separate all the com-
ponents in (29) having wave vector z&. The vector a& can
be obtained as a result of the superposition of different
wave vectors. For completeness we amend our definition
of SAM so as to require that M, include all five
"partners" of any KI contributing to a hexagon at that K(.
We further assume that no other pairs combine to give a
wave vector lying on the SAM circle. This is always true
for a suSciently coarse discretization of the k plane, or,
more generally, to the WTA competition, thus leaving
only isolated survivors on that circle.

Figure 5 shows a group of six vectors
(l=0, . . . , 5) forming a regular hexagon (the hexagon
"family" ). Define m =1, . . . , Mf to be a hexagon group
index with Mf the number of mode families. Then the
terms I'+ ' and I' ' in (29) can be written in the following
form:

Im, l Cm(Qm, [l+1]Qm, [l+5] Qm, [l+1)Qm, [l+5] )cos(sm, l r }+Cm(Qm, [l+1]Qm, [l+5]+Qm [l+1]Qm [l+5) )sin(s' 1'p ),

m, ! m [(Qm, [l+1]Qm, [I+2] +Qm, [l+1]Qm, [l+2] }+(Qm,[!+5]Qm,[I+4] +Qm, [l+5]Qm, [I+4]}] ( m, l
'

+Cm [(Qm, [l+ l]Qm, [1+2] Qm, [l+1]Qm, [l+2] )+(Qm, [l+5]Qm, [I+4] Qm, [1+5]Qm, [l+4] )] ( m, l (32)

and Qm l
=J)(am, l )/~0(am, l } Qm, l ~1(a,l )/JO(am, l )

and am I, am I are mode amplitudes of the hexagon fami-

ly; also, define in (32) that [1]= ( Imod6) and
C = [1 cos(lr L ) ]. —

Previously we asserted that the WTA-type system (24}
correctly describes early evolution and competition. It
appears that if we use a Taylor rather than a Neumann
expansion I'+' or I' ', which is second order in the am-

plitudes, it should be considered prior to the occurrence
of competing terms in (24) which are of third order. This
is not so. In the early stages when there are many active
modes any one mode will have numerous source terms
arising from I'+' and I' '. These contribute with ran-

rd', +(1+D~ ) ~ (a', —y', ) =F', ,

where

(33)

dom phases, and will normally be insignificant in compar-
ison with the phase-independent third-order couplings
through the Jo terms in (23) and (24). Thus the Neumann
series correctly orders the significant terms in the early
evolution.

Substituting the cosine and sine components into (15)
we obtain equations for the hexagon family's SAM ampli-
tudes inside the second sphere:

rd' 1+(1+De. ) (a' l
—y' l)=F' 1,

s —4g (D f)2(D )2[+ res +C t(res c
m, ! 0 0 [ mQm, l m ['Qm, [l+1]Qm, [l+5) +Qm, [l+1]Qm, [l+5] +(Qm, [l 1)Q+[lm]+2Qm, [1+1]Qm,[l+2]

C S

and

+ ( Qm, [1+5]Qm, [1+4] Qm, [I +5]Qm, [!+4] (34)

, 1 4'(Dp ) (Dp ) [Sm Qm 1 +Cm [(Qm [1+1]Qm,[l+5] Qm[l+1]Qm[l+5, ] (Q, m, [1+1]Qm,[l+2] Qm, [l+1]Qm, [l+2]

+ ( Qm, [!+5]Qm, [I+4] +Qm, [I+5]Qm, [I +4] }] ] (35)
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K
m, 1+1

~a„'+( 1+Dk„)(a„' q—P„)= 4K (D ofDo )2C„Q„',

ra„'+(1+Dk')(a' ~')=4~(D fD )'C Q~

(36)

n =6Mf+1, . . . , X .

K
m, 1+4 K

m, 1+2

PHYSICS OF ELEMENTARY INTERACTIONS
AND COOPERATIVE DYNAMICS

K
ae, 1+3

K = K - K
m l Na 1+1 m I+2

K = K
m, 1 m, &+5

K
m, 1+4

FIG. 5. A group of six wave vectors forming a hexagon.
There are three different pairs of wave vectors contributing to
ki.

Here m =1, . . . , Mf', 1=0, . . . , 5; S =sin(a L); and

Mf
Dfo= g g [Jo(a' )J (a' )],

m =1 j=0
N

Do= g [J,(a,') J,(a;)] .
j=6M +1f

Note that Eqs. (33) are not independent, since mode am-
plitudes for the wave vectors ~ l and —~ l are linked as
follows: am [lj =am [l+3] and am [lj

= —
am [l+3].

In fact, we have only six independent equations. Nev-
ertheless it is more convenient for us to deal with the
original system of equations (33).

The number of modes taking part in the system dy-
namics inside sphere e2 is IV =M&+6Mf. For a complete
system of equations we must include equations for the ac-
tive modes inside sphere e, that have not died as of t, :

sc ' ~ sc
+am, [i+i] Uam, [i+ij

(3&)

where the functions I",l Fm, &
are determined by expres-

sions (34) and (35).
Using the formulas for Bessel functions [24] we obtain

for the first-order approximation:

Let us investigate the relationships between neighbor-
ing modes inside the second sphere. Consider the follow-
ing "elementary" interactions (Fig. 6).

(i) SAM SAM. Interaction between very near famil-

iar neighbors; cosine and sine type SA.M a'
&

and a, I',
1=0,1, . . . , 5.

(ii) SAM~AM. Interaction between SAM and the
active modes a„',a„',n = 1, . . . , M &, which have not died
in the e0 sphere.

(iii) AM AM. Interaction between active modes.
Interaction between the active modes in (36) and (37) is
determined by the term (DfoD0) . This suggests the
WTA competition that occurs here is the same as the
~TA competition inside sphere e& ("e, sphere dynam-
ics").

(iv) SAM AM+ SAM. The pattern repeats. In
(33)—(37) the hexagon family equations share the same
"WTA term" which combines the inhuence of the active
modes, with the net result that we again obtain WTA
competition.

Explaining elementary interactions inside sphere e, is
not as simple. Let us analyze the nature of interactions in
the hexagon family of SA modes (the members of this 4
mode family are a'

I and a'
&, 1=0, . . . , 5). First calcu-

late the partial derivatives:

C C

Qm, [I+5]+ Q [l m+2] &

+m, [l + 1. ]

~m, [1+1]&

TCxo,
~m, [l+5] &

Qm, [I + i] +Q [I +4]

i =3 +O, ,(Q"),
i =4

(39)

S
~am, [I + i]

Qm, [1+5]+ Q [1 +2]m&

Km, [1+1]&

TC x~o,
Qm, [I+5]&

Qm, [i+ i] +Q [1+4]

E
—2

i =3 . +O, ,(Q"),
i=4
i=5

(40)
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HEXAGON k - WTA - HEXAGON R

%TA &

t WTA

'mA

FIG. 6. Intermode interactions that occur during the pattern
formation process. "O'TA" represents "winner-takes-a11" dy-
namics (dashed arrows); "CD" represents cooperative dynamics
(continuous arrows).

Fc
&0.

Bam, [I + i]
(41)

In this case within the family of SA modes the conditions
of cooperative dynamics are fulfilled [27,28].

Examples of cooperative dynamics are shown in Fig. 7.
There is no single winner as in the case of WTA competi-

I

where T=4K(D0fDD) and O, ,(Q"), O„(Qm ) are
second-order terms. Similar formulas are possible for
BE' l /Ba "[l+;]as well.

The complicated brackets in (39}and (40) demonstrate
the unequal rights in the mode family, but here another
circumstance is more important. Taking into account
second-order terms in mode equation (33) (i.e., transition
to sphere e2) we obtain the first-order response for inter-
mode terms in (39) and (40). So it is dangerous to omit
second-order terms when trying to analyze intermode in-
teractions.

Let us analyze a special type of solutions a' I=0,
a' i%0 of Eq. (33}. Then for a' l(0})0, K&0 or
a' l(0}&0, K &0 inside spheres e, and e2 for all partial
derivatives in (39), we obtain

tion. Six members of the mode family win or lose togeth-
er. Changes in the initial values of mode amplitudes can
destroy the cooperative condition (41), and different types
of hexagon patterns containing cosine and sine com-
ponents may appear [Fig. 7(b)]. Amplitudes of successful
modes produce only symmetric stationary solutions u(r )

in the form of hexagonal patterns. Diferent symmetric
solutions can be shifted in phase, which is not important
for system dynamics. It is interesting that the hexagon
family originates in the early development stages inside
sphere e, .

For successful hexagon family formation only one ini-

tially active mode is enough. The cooperative nature of
interactions within the family results in initially passive
modes turning superactive [Fig. 7(a)].

Figure 7 shows sample results of a numerical investiga-
tion into the stability problem for the system of equations
(33)-(37). These studies give evidence of stable solutions
in the form of hexagonal structures having various orien-
tations (i.e., different phases), and also stable rolls which
can appear in the place of hexagons when initial condi-
tions favor the roll structure. Are the hexagonal and roll
form of stable solution the only possible stable solutions
for this system, or perhaps are there more complicated
forms similar to the society of hexagons? We cannot
answer this question. The system of equations (33)—(37)
could benefit from further analytical study. For the sim-
ple case of an isolated hexagon Mf =1 and small values
of mode amplitudes, the system of hexagon equations can
be performed into the mode equations, obtainable using
MSA techniques [4,3S]. For this case, one can use these
results of the stability analysis obtained for the mode
equations.

INTERACTION OF HEXAGONS

Let us follow the story of the typical six-mode "lucky"
family. We will neglect the inQuence of sine-type modes;
either the initial conditions do not include them, or they
all died during the initial competition inside sphere E'&

when our hexagon family first formed.
The hexagon equations describing a lucky family are

derived from (33)

m l+( +D m }am, l T [~m Qm l+ ~m [Qm[l+1]Qm, [l+5] +Qm[l+1]Qm, [1+2]+Qm[ i+5]Qua[i+4] ] j (42)

where1=0, . . . , 5 and T=4K(Df0) (D0)2.
At the beginning of pattern formation there are many

active modes inside sphere e„soit is possible to en-
counter hexagons with wave vectors other than x (recall
that a are the wave vectors at the bottom of the insta-
bility branch). Accordingly, we need to expand the previ-
ous description for pattern formation inside sphere e,
since the hexagons compete as separate units. The in-
teractions between hexagons ( H ~ H interaction) and

active modes and a hexagon ( A]g ~ H ) inust be con-
sidered (Fig. 6).

Interhexagon interactions are characterized by the
heroic struggle that occurs as each hexagon attempts to

confiscate its neighbor's WTA term while keeping its

own. A typical H ~ H scenario is shown in Fig. 8.
Slight changes in initial conditions can switch the advan-

tage from one hexagon [Fig. 8(a)] to the other [Fig. 8(b)].
The victorious hexagon is the one having its wave vector
at the bottom of the instability branch, and generally the
advantage in initial conditions as well. The result of a
competition between a hexagon and an individual mode
is usually obvious [Fig. 7(c)]; hexagons win this coinpeti-
tion rather easily. The separate mode is able to kill the
hexagon only if its wave vector is closer to the bottom of
the instability branch, or if its initial conditions are
significantly more favorable.
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HYSTERESIS BEHAVIOR OF HEXAGONS d +(1+DE )a

Hexagon excitation and hexagon hysteresis were inves-
tigated in [4] using multiple-scale analysis. Similar re-
sults can be obtained from the hexagon equations (42).

Assume that initial conditions hexagon modes are uni-
form: a' &(0)=a and a' I(o)=0. Then, instead of (42),
we obtain

=4KJO (a ){sin(s. L)Q, (a )

+3[1 c—os(x L)]Qf(a )], (43)

where we have defined a (t) =a' &(t).
The dependence of the stationary state solution on the

parameter E is shown in Fig. 9. Inside the interval
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FIG. 7. Cooperative dynamics and hexagon formation (~=6.86). Behavior of the solution to (33) for Mf =1, K= —0.8, D =0,
L=0.1, y' I=y' I=0 (continuous curves correspond to cosine-type modes, dashed curves to sine-type modes). (a) ai'(0)=0
(1=0, . . . , 5); ai'(0)=0 (1=0, . . . , 4), a&(0)=0.02. (b) ai'(0)=0.0051 (1=0, . . . , 5), a)'(0)=0.0001l, (1=0, . . . , 5). (c) Interaction
between hexagons (continuous curves) and six individual SA modes with the same wave vector. Hexagon family initial conditions are
ai'(0) =0, ai'(0) =0.00151 (1=0, . . . , 5). Initial conditions for the SA modes are a =0.0035m +0.02 (m = 1, . . . , 6).
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(K,"&,Eth) are three different stationary-state solutions;

only two are stable. Thus it is possible to excite hexagons
in an area of stability even for control parameter values
where K&Kth. This conclusion is not contradictory
since stability analysis results are valid only under the as-
sumption that the initial amplitudes a are within a
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FIG. 9. Hexagon hysteresis; a =12.53, L=0.01, D=O;
K&0.
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small sphere with radius eo &(1. In the area
Kth &E &Kth hexagons can be excited only if the initial
mode amplitudes a are placed under the unstable
branch, as shown in Fig. 9. Note that the coeScient
4Esin(a L) in (43) determines the disposition of the
threshold value Eth, while E,"h depends on the coefficient
12E[1—cos(a L )]. Correspondingly, variations in the
wave vectors ~a

~
lead to shifts in the boundaries Eth and

K,"h. Note that the shift of the threshold E,"h is less than
that for K,h, and as a result the hysteresis area increases.

-0.0 PHASE DISTORTION
AND HEXAGON DISINTEGRATION

-0.4-

Oo '

,
I e e r a ~ r e s I I r a e I ~ e e r g r r e e a ~ I ~ I

0 5 l0 t/~ 15

FIG. 8. Interhexagon interactions. Dependence on mode
amplitudes for two hexagons with different initial conditions.
Hexagon parameters are K=0.55, a =12.53, L =0.01, D =0,
a, (0)=0 (1=0, . . . , 5). (a) a, (0) 0.002(1+1) (1=0, . . . , 4),
a 5 =0.05 for the first hexagon (dashed curves) and
ai'(0) =0.002(l+ 1) (1=7, . . . , 11), a6 =0.05 for the second
hexagon (solid curves). (b) ai'(0) =0.002(l + 1)—0.005 (1=0, . . . , 4), as=0.05 for the first hexagon (dashed
curves) and ai'(0)=0.002(1+1) (1=7, . . . , 11), a6=0.05 for
the second hexagon (solid curves).

The hexagon pattern's dominant position in the field of
mode dynamics appears indestructible. But all hope is
not lost, as we do have yet in reserve several opportuni-
ties to annihilate the hexagon. The first is the inter-
branch interaction. Our "free sphere theory" does not
account for feedback intensity components (29) with dou-
ble wave vectors 2~, as di8'usion is suSciently strong
that we can keep only the most unstable branch [Fig.
2(b)]. However, for the case of minimal diffusion all
branches are equally likely [Fig. 2(a)] and we need to ac-
count for components with second spatial frequencies
v =2' . This leads to additional terms in the right-
hand side of (33) for the v hexagon type. This result is
coupling between two hexagons.

As the numerical simulation shows, in spite of coupling
the second spatial frequencies are not excited. This is be-
cause modes with the wave vectors v =2' are stable
since at the bottom of the instability branch Kth ~ao.

Our last hope to destroy the hexagon is through phase
distortion. Under the pressure of strong phase distortion,
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hexagons begin to disintegrate [Fig. 10(b)]. As numerical
simulations show, the gap between stationary-state mode

amplitudes increases as phase distortion increases. The
result is that in the presence of phase distortions indivi-

dual SA modes and the other hexagons are not

suppressed and instead survive. Amplification of phase
distortions and the disintegration of hexagonal structures
cause spatial modulation of the intensity; something simi-

lar to speckle modulation appears. For strong phase dis-

tortions the hexagon remains a sink in the sea of rein-

forced SA modes. The discontinuation of hexagon con-
struction is accompanied by transitions between hexa-
gons with different phases. Accordingly, spots in the in-
tensity distribution will have short-range motions. Simi-
lar hexagon behavior occurs during transition to the tur-
bulent regime [4]. This hexagon disintegration detracts
from WTA dynamics, and, consequently, active modes
independent of hexagons appear.

CONCLUSION

0.5 .a: (
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FIG. 10. Influence of phase distortions on hexagon
formation; K =0 SS, ~ =12 S3, I.=0 01, D =0. (a)
Without phase distortions: p& =yI =0, (1=0, . . . , S);
a~'{0)=0.0015(1+1)(1=0, . . . , 4), a&(0)=0.02 (solid curves),
a&'(0) =aI'(0) (dashed curves). (b) yI =

qP& =0.01(1+1)

(1=0, . . . , S). Initial conditions identical to case (a).

There is a classical three-step approach typically used
for the study of nonlinear optical systems.

(1) Linear stability analysis, which is a reliable tool for
finding potential mode candidates for the pattern forma-
tion process.

(2) Next the "guessing" of possible nonlinear modes
(patterns).

(3) After carefully deciding that it is worthwhile to an-
alyze only a selected few of these "guessed" solutions and
completely ignore all other active and superactive modes,
we can demonstrate the power of multiple-scale analyses
or other techniques to find equations for the nonlinear
mode amplitudes (in this case, hexagons).

The main point in this approach is the "guessing" of
the solutions. From this point of view, a computer simu-
lation of pattern formation helps us in this business, but
not so much. In the case of rather complicated systems
with long-range [32] or nonlocal [33,34] interactions,
there are usually a number of nonlinear patterns with an
approximately equal excitation threshold. How can we

guess this?
The winning pattern depends on the interactions of

patterns with themselves and with other active modes,
the latter doomed to die in the process of pattern forma-
tion. This process is very sensitive to initial conditions,
the influence of external perturbations, boundary condi-
tions, etc. In this situation, neither the guessing of pat-
tern structure nor simulation using computer are reliable
methods of finding a solution.

In a Neumann-series approach we avoid merely guess-

ing the solution by retaining the influence of all active
modes. The selection of the winning pattern was based
on the history of mode competition. The consequence of
this competition is that the majority of modes die; this is

indirectly confirmed by previous extensive numerical
simulation of the Kerr-slice- feedback-mirror system

[4,15]. The rolls spatial spectrum participating in the
pattern formation process becomes increasingly pure.
Prior to the appearance of hexagons in this numerical
simulation, the solution of the original system of equa-
tions yields an erratic combination of rolls having wave
vectors located at the bottom of the instability branches
[4,35].

At the same time, numerical simulations do not answer
the following: Is this process of mode extinction "WTA"
in character? To find out, we need to separate mode am-
plitudes and control WTA conditions (26) for all modes
during numerical simulation. Since there are a large
number of modes to consider, this analysis is a rather
complicated problem.
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In the Neumann's-series approach we made the transi-
tion from the actual dynamic process with a continuous
spectrum of modes, towards a model having a discrete
spectrum of active modes k . %hat is the destiny of
modes with wave vectors k +5 located in the small vi-
cinity of k ? In our approach we ignore these modes.

In justification we offer the following. Formally, we
could include in the model a large number of wave vec-
tors (modes) located close to the superactive mode wave
vectors. This would mean that a great number of addi-
tional hexagonal families and superactive modes would
appear and take part in the competition. Because all of
these hexagons have almost the same excitation threshold
and highly similar initial conditions, the competition pro-
cess will develop slowly. Instead of just one single hexa-
gon family, we now have an envelope of hexagon families
that will exist a rather long time. Due to competition the
width of this envelope in k space decreases, forming in
the limit one hexagon family containing discrete k vec-
tors.

This is true only for the case of a Kerr slice with un-
limited aperture size. %ith numerical simulation this
case is obtained by using periodic boundary conditions.
In real experiments the spectrum width will stop decreas-
ing, due to the influence of boundary conditions [36,18];
finite systems cannot have discrete spectra.

Boundary conditions have eff'ects other than simply
causing imperfections in hexagons. We ignore this efFect
in our approach. If the distance (JIL)' under the
influence of diffraction from the aperture is on the order
of the aperture size tt, that is, L/(ktt )= I/2m. , we have
the new situation of the a system with long-range interac-
tions. In fact, the influence of boundary conditions can
cause radical changes in dynamics even if (A.L)'~ is
significantly less than a. This reason, along with the pres-
ence of phase distortions, yields the result that in actual
experiments hexagons appear less often than other pat-
terns such as polygons, spots, etc.

The problem of boundary conditions, or, in a more
general statement, the problem of pattern formation in
systems having long-range or global interactions, is very
interesting and important [38,15]. Hopefully, future
studies wi11 show if it is advantageous to apply the
Neumann-series approach to this problem. The answer
to this question will perhaps depend on the level of rigor
in formulas derived.
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