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Vectorial nonlinear dynamics in lasers with one or two stable eigenstates
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The dynamical behavior of the polarization of a laser with one or two stable eigenstates subjected to
the action of an ac longitudinal magnetic field with or without a dc longitudinal magnetic field is investi-

gatged both theoretically and experimentally. In the case of an ac magnetic field only, the low-field

linear and high-field nonlinear behaviors of the laser are isolated. For the low-field case, a typical cutoff
frequency due to pure cavity effects is introduced. For the high-field case, two 1ocations of the motion
are isolated, depending on the amplitude and frequency of the ac magnetic field. This provides the tools
used to understand the locking between the rotation of the polarization induced by the dc magnetic field

and the vibration of the polarization induced by the ac magnetic field. In particular, thanks to the two
dimensions of the polarization vector, it is shown that the ratio of locked frequencies depends on the
number of stable polarization eigenstates. Unlike mechanical systems where coalescence of Arnold
tongues is possible, our system, without any inertia, exhibits typical twisted Arnold tongues, for which a
theoretical model provides a great precision and a good agreement between theory and experiment.

PACS number(s): 42.60.Mi

I. INTRODUCTION

Much interest has recently been devoted to the dynam-
ical behavior of vectorial systems, which have been shown
to exhibit instabilities. Indeed, some vectorial instabili-
ties have been observed in mechanical vectorial systems
such as a compass needle [1],or a bipolar motor [2], sub-
jected to the superposition of a dc and an ac magnetic
field. In particular, these systems have exhibited frequen-
cy locking and chaos, like many scalar systems [3]. In
these systems, a dc magnetic field alone fixes an equilibri-
um position around which a vibrational motion can take
place. In addition, an ac or rotating magnetic field pro-
duces a rotational motion. Chaos can occur in these sys-
tems because inertia imposes the existence of two dynam-
ic variables: the angular position 8 of the vector and its
angular velocity 8. An external forcing (the ac magnetic
field) provides then the third dynamic variable necessary
to obtain chaotic behavior [4]. Instabilities and chaos
have also been observed on the two scalar variables of a
laser, namely, its intensity [5] and its phase [6]. Some
vectorial instabilities have also been observed [7,8] or
theoretically predicted [9,10] with the polarization of a
laser. In particular, in the case of a laser subjected to the
Earth's magnetic field [11,12], this has recently led to the
design of a new type of laser magnetometer [13]. Thus
the question arises now as to whether the polarization
vector of a laser can exhibit a behavior similar to that of
a compass needle. The polarization vector of a laser does
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not have any inertia, but, in addition to its orientation 6I,

it is also defined by its length (the intensity of light) and
its thickness (the ellipticity) [14], which may replace 8 as
one of the three necessary dynamic variables. Moreover,
both rotation and vibration motions can also be obtained
with the polarization of a laser, each one at its own fre-
quency. In a preceding paper [15], the rotational motion
and the locking between the rotation and vibration
motions have already been observed. However, in this
work, as only weak amplitudes of the ac forcing could be
generated, one could not investigate the possibility for
the locking tongues to overlap. Here, after having ex-
haustively studied the vibrational motion with weak or
strong amplitudes of the forcing, we will investigate
whether the application of such strong ac forcings to-
gether with a dc forcing can make the locking tongues
overlap, ofFering then the possibility of chaos. This
would allow us, when the intensity is almost constant and
the polarization remains linear, to consider to some ex-
tent the polarization of light as an "optical compass. "

In the absence of magnetic field, the distribution of po-
larization in the laser cavity is fixed by the eigenstates,
calculated by the resonance condition [16], i.e., the self-
consistency of the light field after one round-trip in the
cavity. Depending on the nature of the linear anisotro-
pies (loss or phase), and because of the two-
dimensionality of the Jones vector, only one or both eigen-
states can be stable [17]. The aim of this paper is to study
the e8ects of a weak or strong ac magnetic field and of
the simultaneous action of an ac and a dc magnetic field
on the polarization dynamics of a laser, which will appear
to depend strongly on the stability of the eigenstates.
The importance of the existence of one or two stable
eigenstates leads us to recall the eigenstates' stability con-
ditions (Sec. II). Following this approach, Secs. III and
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IV are devoted to the study of the dynamical behavior of
the polarization of a laser with one and two stable eigen-
states, respectively. Finally, Sec. V summarizes the re-
sults and discusses some unsolved problems.

II. STABILITY OF THE EIGENSTATES
OF THE UNPERTURBED LASER

As will be shown in the following, the dynamical
behavior of a forced system strongly depends on its equi-
librium state. Therefore it is interesting to first recall the
results previously obtained on the stability of the two
eigenstates of a laser in the absence of magnetic field.
The experimental system here is the 3.39-pm He-Ne laser
operating on a J=1~J=2 transition. In this case, the
weak atomic coupling allows linearly polarized eigen-
states to oscillate [18]. These linear eigenstates are deter-
mined by the intracavity anisotropies, and calculated
thanks to the resonance condition ME =A,E [16], where
M is the 2X2 Jones matrix for one round-trip in the cavi-
ty, and E is the Jones vector of the laser light. To each
eigenstate, there may correspond different losses and res-
onance frequencies. In particular, in our case of a laser
containing loss and phase linear anisotropies [Fig. 1(a)],
these eigenstates are perpendicularly linearly polarized.
Their eigenfrequency difference is proportional to the
phase anisotropy, and the difference between their net
gains depends of course on the value of the loss anisotro-
py. Depending on the relative values of these linear loss
and phase anisotropies, competition effects will allow
only one or both eigenstates to be stable [17],as shown in
Fig. 1(b). The typical shape of these stability domains is
shown here in the plane (t„/t —1,64„„).t„/t is the ra-
tio of the electric field transmission coeScients of the in-
tracavity tilted plate that creates the loss anisotropy, and
l(ah@ y is the phase anisotropy for one pass in the intracav-

ity stressed plate, where the x and y axes are defined in
Fig. 1. The two domains are separated by a line which
depends on the excitation of the active medium, and
which can be calculated thanks to a third-order theory
[19]. These domains are computed by considering the
sign of the cross-saturated gain of each eigenstate, i.e.,
the gain of one eigenstate saturated by the field of the
other one. The two-stable-eigenstate domain corresponds
to the case where the cross-saturated gains of the two
eigenstates have the same sign, either positive (vectorial
simultaneity) or negative (vectorial bistability) [17]. On
the contrary, in the one-stable-eigenstate domain, only
one of the eigenstates always has a negative cross-
saturated gain and can never oscillate. This stability
analysis can also be performed in the framework of a
Landau potential V(E„,E~) model, where the electric
fields E„andE of the two eigenstates are taken as order
parameters [20], and where the atomic variables have
been adiabatically eliminated. From this point of view
[see Fig. 1(b)], the one-stable-eigenstate regime corre-
sponds to a one-well (along the lower loss axis) potential
and the two-stable-eigenstate regime corresponds to a
two-well potential. Notice that for the relatively weak
phase anisotropies considered here, a two-stable-
eigenstate regime always corresponds to vectorial bista-
bility. Vectorial simultaneity would indeed occur for
much larger values of the phase anisotropy [17]. In the
following, we will study the simplest case of either a pure
controlled loss anisotropy [x axis of Fig. 1(b)], leading to
the stability of only one stable eigenstate, or a pure con-
trolled phase anisotropy (y axis of Fig. 1), leading to the
stability of both eigenstates. These concepts of eigenstate
and of stability are valid only for our laser with no mag-
netic field, but they appear to be useful to understand the
dynamical behavior of the laser subjected to a nonstation-
ary magnetic field, hereafter called a forced laser.

Z
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FIG. 1. (a) Laser containing loss (hp„„)and phase (h4„~)an-
isotropies. (b) One-eigenstate and two-eigenstate stability
domains. The diagram is displayed in the plane of phase ani-
sotropies versus loss anisotropies. In each domain, the corre-
sponding potential wells are represented. The abscissa and ordi-
nate axes correspond to pure loss and phase anisotropies, re-
spectively.

III. MAGNETIC FORCING
OF THE ONE-STABLE-EIGKNSTATE LASER

As recalled in the preceding section, when the laser of
Fig. 1(a) contains only a loss anisotropy (given, e.g., by a
tilted plate), it exhibits, in the absence of magnetic field,
only one stable eigenstate, polarized along the x axis. Be-
sides, it has been shown that when this laser is perturbed
by a longitudinal dc magnetic field Bd„its polarization
exhibits a typical Adler-type dynamics [11,21]. Indeed,
for magnetic fields larger than the so-called critical mag-
netic field, the Faraday rotation induced by this magnetic
field in the active medium is sufhcient to make the linear
polarization rotate periodically. In other words, it is
strong enough to make the polarization leave the poten-
tial well imposed by the anisotropies of the optical ele-
ments of the laser cavity. This rotation is similar to that
of the compass needle subjected to a rotating (ac) magnet-
ic field. Besides, a longitudinal ac magnetic field applied
to the active medium [22] makes the sign of the Faraday
rotation change periodically, and thus induces a polariza-
tion vibration similar to the vibration of the compass nee-
dle subjected to a dc magnetic field. In this section, we
investigate theoretically and experimentally the behavior
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of the light polarization when the one-stable-eigenstate
laser is subjected first to an ac magnetic field alone and
then to the simultaneous action of an ac and a dc longitu-
dinal magnetic field, and we compare these behaviors
with those of the compass needle.

A. Theoretical predictions

The one-stable-eigenstate laser with a pure loss anisot-
ropy subjected to the superposition of a dc longitudinal
magnetic field Bz, and an ac longitudinal magnetic field

B„cos(to„t)can be described by the angle 8 of its polar-
ization with respect to the x axis of Fig. 1(a) and by its
normalized intensity I [23] through the following
differential equations:

0 =M sin28+ I'(I)[B&,+B„cosco„t], (la)

QI 2
DpI= —(K„cos8+K sin 8)I+

dt
(lb)

Here K„andK are the loss coefficients (positive) for the
x and y polarizations, Dp the unsaturated gain coefficient,
and 1 (I) the saturated Faraday rotation coefficient which
depends on the intensity. The saturation of the gain
coefficient Dp is taken into account by the factor
1/(1+(I ), where g depends on the degree of homogenei-
ty of the transition. In particular, for a homogeneous
transition, one must take (= 1 while for an inhomogene-
ous transition one must take (=0.5 (we consider only
low intensity levels). For intermediate cases, taking a
value of g between 0.5 and 1 will give a convenient ap-
proximation of the saturation behavior of the transition.
M &0 is defined by

c
2L

tx
1 ——

ty
(2)

where t, and t are the electric field transmission
coefficients of the tilted plate which creates the loss an-

isotropy, for the x and y polarizations, respectively. c is
the velocity of light, and L the cavity length. In these
equations, we have adiabatically eliminated the atomic
variables, which are much more rapid than the field vari-
ables. Besides, as we consider only a pure loss anisotro-

py, we can regard the polarization as a linear polarization
at angle 0, without any ellipticity. In the absence of any
magnetic field, Eq. (la) leads then to a stable equilibrium
position at 0=0, and an unstable equilibrium position at
0=m. /2, which correspond, respectively, to the well and
the saddle point of the potential discussed in Sec. II.
Equation (lb) describes the variations of the laser intensi-

ty I due to the different losses undergone by the laser
when 0 passes from the lower loss axis x to the higher
loss axis y. However, we restrict ourselves to the case of
weak loss anisotropies (t„/t~—1 &&1) and 1/Do is short
compared to the typical time scales of the system, allow-
ing us to consider I as constant and to eliminate it adia-
batically. Equations (1) then simply reduce to the follow-

ing forced Adler-type equation:

1. B~,=0: Pure vibration dynamics

Starting from the laser at rest in its stable eigenstate, in
the case of small sinusoidal magnetic perturbations, Eq.
(3) may be linearized, and we can discuss the frequency
response of the linearized system. The nonlinear
behavior of the system subjected to large magnetic fields
is treated in the following subsection.

(a) Small amplitude motions around 8=0. In the case
where the alternative field amplitude B„is small com-
pared to M/y, 8 will remain around 0, and then Eq. (3)
can be linearized with respect to 8, to read

=2MH+yB„costa„t.9
dt

(4)

For the sake of simplicity, we assume the origin at the
equilibrium state. This linear first-order differential equa-
tion leads, in the permanent regime, to a sinusoidal time
evolution of 8 around the stable position 8=0 at angular
frequency co„with an amplitude 8& and phase y& given

by

8(t) =B,sin(to„t+p&),

RCB

+~et+~ac

(5a)

(Sb)

p, = —arctan(co„/to„), (5c)

where

is the 1/v 2 cuto8' angular frequency of the polarization
in the case of a loss anisotropy, which limits the band-
width of the modulation. This means that for a given

B„,the amplitude 8, of the movement of 8 is v'2 small-

er for co„=co„than for co„(&co„.In the experiment, we
will measure the laser output power P(t) through a polar-
izer:

P(t) =Pocos [8(t ) —8~ ],
where 0 is the angle between the axis of the polarizer
and the x axis. Equation (7) then becomes

~oP(t)= [1+cos[26,sin(co„t+p,) —28~]] .
2

Thanks to a Bessel function expansion [24], we obtain

dO =M sin28+ y(B&, +B„cosco„t),
dt

where y is now the saturated Faraday rotation
coefficient. If B„=O,there is not any forcing anymore,
but only the dc magnetic field Bz,. Then, 0 evolves
monotonically if B~, is larger than the critical field

B,=M/y, and the signal observed through a polarizer
has an angular frequency co~, =2yB~, (1 B,—/B~, )'

As stated above, we will begin with B~,=0.
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Po 00

P(t) = 1+cos28& Jo(2ei)+2 g Jz„(2ei }cos2n(co«t+pi }
2 n=1

Po 00

+ sin28& 2 g Jz„+,(2ei)sin(2n+1)(co «t+y, )
2 0

(9)

=M sin28+ yB„cosa'„t, (10)

0 56'
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FIG. 2. Response of the polarization to an ac magnetic field
in the case of one stable eigenstate. JI(2eI), proportional to the
modulation of the intensity observed through the polarizer, is
represented versus the frequency of the ac magnetic field (full
line: theory; dots: experiment).

As already observed by Culshaw and Kannelaud [22], Eq.
(9) shows that odd harmonics of co„vanish when the axis
of the polarizer is oriented along one of the eigenstates
(8~ =0 or m /2), and even harmonics disappear when the
axis of the polarizer is aligned along one of the bisectors
of x and y (8 =m/4 or 3n/4). However, these authors
considered the response of the polarization to the ac mag-
netic field to be instantaneous. This would be valid only
for a single pass of light through a Faraday medium, for
which the orientation of the output polarization would be
exactly proportional to the weak magnetic field. For a
weak ac Faraday rotation occurring inside a cavity, we
must consider a difFerential equation, because the light
goes alternatively through the active medium and the an-
isotropies. Indeed, because of the cumulative nature of
the Faraday rotation, the back and forth propagation in-
side the cavity makes the response of the polarization to
the ac magnetic field variations slower. But, the accumu-
lation of the Faraday rotation, thanks to the multiple
passes in the Faraday medium, provides a larger ampli-
tude of vibration of the polarization than for a single
pass. The cutoff frequency of Eq. (6) resulting from these
cavity eFects can be seen from the full line of Fig. 2,
which displays the typical theoretical evolution of the
predominant component J,(28, ) of P ( t ) at co„versus
modulation frequency.

(b) Large amplitude motions. When B„becomes large
compared to M/y, the polarization leaves the potential
well and makes several turns in one direction during a
given half period of the ac forcing. We notice from Eq.
(3) that for B„»M/y, the locking term M sin28 is most
of the time small compared to the forcing term
B„cos(co„t).Consequently, we look for a solution of

2yBac
sin(280) .

~ac
(12)

This equation for 80 has the same shape as Eq. (10) for 8,
with the locking term just multiplied by Jo(2yB„/co„).
It leads to two "equilibrium" values for 80: 80=0 and
m. /2. Depending on the sign of the new locking
coefficient M=MJ (02yB„/co„),either one solution or
the other is stable. As M &0, 80=0 is stable for
Jo(2yB„/co„)& 0 and 80= n /2 is stable for
Jc(2yB„/co„)&0.For the large values of B„con-
sidered here, we have

' 1/2
ac 2rBacM=M cos (13)

m yBac ac 4

and the motion of 8 will take place around 0 for
&P~ ~/4&2yB„/~„&&pm+3m/4 and around n. /2
«r 2p~+3m'/4 & 2@B„/co & 2pm+7n /4, p 'being an in-

teger In par. ticular, the values 2y B„/~„=pm+3m /4

will correspond to a transition for the mean position of
the polarization. Then, for large amplitude motions, the
mean value of 8, around which the motion occurs, can
only take two values, which correspond to the stable and
the unstable eigenstates. The motion's mean value will
flip between the two eigenstates, for particular values of
2yB„/co„.Then, for each B„,there exists a set of
values of co„given by co«=2yB„/(pm+3m/4), for
which the mean value of the polarization flips from one
eigenstate to the other. This behavior can also be under-
stood in terms of potential wells (see Fig. 3). Because of
considerations of symmetry (the potential is symmetrical
around the stable eigenstate, 80=0, and around the un-
stable eigenstate, 8o=n. /2}, the motion must take place
around either 80=0 or 8o=m. /2. The choice between
00=0 and 80=m/2 depends on the slope of the potential
at the U turns of the motion. Indeed, one can see from
(11) and (12) that 80 is chosen so that the U turns occur
along the "natural" slope of the potential, i.e., that the
system climbs the barrier before each U turn, and slides
back down the barrier after the U turn. Depending on
the value of 2yB„/co„,this fixes the position of Op. For
example, in Fig. 3(a) [respectively, 3(b)], the amplitude of
the movement obliges the oscillation to be centered

of the shape

yBac
8(t) = si neo«t+80(t),

ac

in which the leading term has been made explicit. 80 is
smaller than the leading term amplitude yB„/co«. After
a time averaging over one period of the forcing frequen-
cy, we keep only the slowest varying term and obtain
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This can be brought into a more familiar form, thanks to
the substitution

q(t) =(2yB„—co.,)t+25(t) .

We then obtain

(19)

p(t)=2yB&, co„—+2MJ
2yBac

sin[p(t)] .
~ac

J

case, an angular shift s occurs at each U turn. s is the
difference, for one half period of the ac magnetic field, be-
tween a nonlinear time evolution of 8 (caused by the an-
isotropy}, and a linear time evolution. Using a calcula-
tion performed by Chow et al. [26] for locking in laser
gyros, the nonlinear evolution of 8 can be written as

8N„(t)=8t (t)+5(t), (14)

where 8t (t) is the time evolution of 8, in the case where
nonlinearity is neglected (M =0):

FIG. 5. Evolution of the orientation angle 8 of the polariza-
tion during one period of the ac magnetic field when the dc and
ac magnetic fields are applied simultaneously. Starting from S
and neglecting the nonlinear term, the next U turn occurs at
point a if ~„=2yB«,or at point a' if co„&2yB«,after one
half period of the ac magnetic field. After the following half
period, the U turns occur, respectively, at points b and b'. The
role of the nonlinearity is to bring a' and b' back to a and b, i.e.,
to compensate for the delay c, and thus to maintain the locking
between the rotational and vibrational motions.

This equation is again an Adler-type equation [21].
Locking occurs when jp(t) =0, i.e., when 5 compensates
the shift symbolized by e, in Fig. 5. Introducing e, in Eq.
(19}yields

GEO~

q (t) =25(t)— (21)

2yBdc Mac

2yB„
2MJ

ac

&+1. (22)

The locking tongues, for the general case where ~„and
2yBd, In are locked, are then limited by these two curves
in the plane (co„l2m,B„),for a fixed Bo,:

Thus y(t) behaves as an error signal, in order to maintain
the locking between co and 2yBd, . IfJ,(2yB„/co„)%0,y(t) can first drift, until the slope of
sing(t) is such that y(t)=0, which corresponds to a
locked state. But, if J,(2yB«/co«)=0, y(t) cannot be
null if co„%2yBd,. No locking can then occur. To ex-
tract the locking zones, p(t) =0 leads to

yBac
8L (t)=y Bo,t + sin(co„t) .

COac

(15) ac=
2yBdc 2M J—n

n

2yBac

ac
(23a)

In Eq. (14), 5 is the nonlinear contribution of the anisot-
ropy to the time evolution of 8, and makes the polariza-
tion behave as if a)„=2yBd„although a)„&2yBd, . e, is
then the opposite of the variation of 5 for one half period
of the ac magnetic field, i.e., between two successive U

turns of the polarization. By reintroducing (14) in (3), we
obtain

2yBd + 2M J~ac= —nn n

2yBac

ac
(23b)

They are represented in Fig. 6 for a fixed value of Bd„
and for three difFerent values of n. Note that co„doesnot
lock with coo, ln exactly, but with 2yBd, ln, a value
which would be equal to cod, /n if there was no anisotro-

2yBac
5(t) =M sin 2yB&,t+ sinco«t+25(t)

ac

Expanding in terms of Bessel functions yields

(16) B-(G)
Jl

5(t)= g MJ
m= —ce

2yB„
~ac

Xsin[(2yB&, +mco„)t+25(t)], (17)

where J is the Bessel function of order m. We are in-
terested in locking between co„and 2yBd, . Because of
time averaging effects, only the slowly varying resonant
term survives, simplifying Eq. (17) significantly:

0
50 100 150 m«[kHz}

2K

5(t) =MJ 2yBac
sin[(2yBd, co„)t+25(t)] .—(18)

COac

FIG. 6. Theoretical locking tongues obtained analytically
from Eqs. (23), valid only for a rather high amplitude of the ac
magnetic field. The hatched domains correspond to a motion
with unlocked frequencies (quasiperiodicity).
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py. This is due to the fact that the total magnetic field

Bd, +B„cos(co„t)is most of the time much greater than
the critical field, so that the anisotropies are rarely
influential. Moreover, one can find values of B„for
which locking is less efFicient, i.e., for which the width of
the locking tongue is null, by equalizing Eqs. (23). This
condition leads to

2yB„ =0.
~ac

(24)

The roots of (24) give the values of 8„for which the
range of co„/2n where locking occurs is null. Between
these roots, there are some values for which this range is
maximum. For sufficiently high values of 8„,(24) can be
approximated by

1/2 2yB„ 7T 7T—n ———=0.
2 4

(25)cos
myB„

For example, for n =1 (cod, =co„),the locking range of
co„/2' will be null for 2yB„/co„=m/4+k', and max-
imum for 2yB„/co„=3ir/4+km; k being an integer.

We have obtained twisted Arnold tongues (see Fig. 6),
characterized by the fact that their widths vary with B„
and with M, and that they do not overlap, ruling out the
possibility of chaos by the quasiperiodicity route [3].
Three dynamic variables are indeed necessary to observe
chaos: we only have 8 and the forcing yB„cosco„t,be-
cause I is adiabatically eliminated.

B. Experimental verification
for one stable eigenstate

Mi A M2B„,+B„cos(Oi„t]
pSRSI I ' " wl

(o — D--
WFlmr . . R%al!%IIM(~

Y Z l

PLATE 2 PLATE I P
(6@„) (~p„„)

FIG. 7. Experimental setup used to observe the behavior of
the polarization with an ac magnetic field alone (Bd, =0), or su-

perimposed onto a dc magnetic field. Plate 1 produces the loss
anisotropy used in the case of only one stable eigenstate, and

plate 2 produces the phase anisotropy used in the case of two
stable eigenstates.

The experimental scheme is displayed in Fig. 7. The
cavity is 54.5 cm long. In order to choose between loss
anisotropies (t, At ) and phase anisotropies b4, two
silica plates are introduced inside the cavity. Plate 1 can
be tilted to produce a loss anisotropy, and plate 2 can be
stressed to produce a phase anisotropy (in this section, we
do not use the phase anisotropy: b,4„~=0). The
discharge tube is 18 cm long, with a 4 rnm inner diame-
ter. It is filled with a 7:1 He- Ne mixture at a total
pressure of 1.1 Torr. Mirror I, has a radius of curva-
ture of 60 cm and transmits 36% of the incident light.
Mirror Mz has a radius of curvature of 6 m, transmits
5% of the incident light, and is mounted on a piezoelec-

tric transducer. The laser oscillates at k=3.39 pm on
the usual J=1~J=2 line. The weak atomic coupling of
this line permits both cr components to oscillate simul-
taneously, and then to produce a linear polarization. The
cavity is longitudinally monomode, and an aperture
selects the TEMOO fundamental mode. Because of the ex-
treme sensitivity of this device, great care has been taken
to protect the laser from mechanical vibrations: The en-
tire experiment is mounted on a 10-ton concrete table,
resting on tire tubes. To avoid spurious reflections, the
windows closing the discharge tube are tilted at calculat-
ed skew angles (2.4') to inake the residual anisotropies as
weak as possible, taking the interferences between the
successive reflections that occur inside the window for
our given Gaussian beam into account [27]. Both mirror
rests are linked with quartz rods to reduce residual drifts
of the cavity length. The effects of the Earth's magnetic
field have been eliminated by orienting our laser along the
east-west direction [11]. The residual magnetic fields
have been compensated by applying an opposite magnetic
field on the discharge tube. ac and dc magnetic fields are
applied with a HP 3314 wave generator, whose output is
sent to a homemade amplifier, which allows us to reach
an amplitude of the ac magnetic field as high as 10 G.
This amplifier has a quasiQat gain in the range 0-600
kHz. The signal can be sampled with a homemade
sample/hold module, triggered by the output of the gen-
erator at frequency co„/2n.. In the following, when ex-
perimental results are compared with theoretical results
or simulations, all the parameters used will be obtained
from measurements, except the values of the anisotropies
which are adjusted.

l. ac magnetic geld alone

(a) Weak ac magnetic geld alone. The response of the
polarization to the weak ac magnetic field alone is studied
by monitoring the ac component of the intensity
transmitted through a polarizer oriented at 8 =45'
versus the frequency of the ac magnetic field. The
theoretical curve (full line of Fig. 2) is computed from (5),
with t„/t —1=0.65X 10, and the dots are the experi-
mental points. The weak amplitude of the ac magnetic
field is B„=0.1 G. Thus the measured cutoff frequency
is co„/2m=57 kHz. This is a first-order response, de-

pending on the strength of the loss anisotropies, and this
result is valid only for weak amplitudes of the ac magnet-
ic field.

(b) Strong ac magnetic geld alone If the a.c field is
strong enough, the polarization can leave the potential
well. The motion is generally 2m/~„periodical, either
around 00=0 or m. /2, depending on the amplitude of the
ac field, as discussed in case (b) of Sec. III A 1. But, for
particular values of co„,a hesitation between these two
values occurs (see Fig. 8). These hesitations correspond
to the predicted flips of the mean position of the polariza-
tion, and the corresponding values of
co„/2m=yB„/ir (p+ —,') (see case (b) of Sec. III A 1) are
calculated for different values of p, with 8„=5.5 G and

y =562 000 rad s '. We monitor this dynamical behavior
by sampling the signal at co„/2m, then a line is obtained
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FIG. 8. Experimental signal sampled at m„/2m for several
values ofp. Between the T„-periodical zones where 80 is stable,
some nonperiodical zones exist, where the system hesitates be-
tween 80=0 and m. /2.

for the 2n/to„-periodical signal predicted in Eqs. (11)
and (12}of the preceding section, and a scrambled zone is
obtained for a hesitation, in agreement with the predic-
tions of case (b) of Sec. III A 1. This hesitation is a com-
mutation scrambled by the residual technical noise, in
spite of the great care taken to protect the experiment.

2. Superimposed ac and dc magnetic jields

The same experimental setup is used except that an ex-
tra longitudinal dc magnetic field Bd, =0.86 6 is applied
to the discharge tube. Figure 9 displays the theoretical
locking tongues [Fig. 9(a)] and the experimental ones
[Fig. 9(b)]. The unlocked regions between the tongues
are hatched. Figure 9(a) is obtained by simulating Eqs.
(1) with t„/t —1=0.8X10, I'o=1.14X10
rad s 6 y K~ 1 10 14X 10 s y Ky 1 10 61'X 10
s ', D0=240X10 s ', and L =0.545 m. This confirms
the validity of the analytical calculation leading to Eqs.
(23} (see Fig. 6). Moreover, the experimental locking
tongues in Fig. 9(b) fit very well the theoretical ones.
Only the locking tongues co„=cue,/n with n ~3 are
represented, but other tongues also exist for very low cu„
(large values of n) When coo, /. n and co„arelocked to-
gether, the period of the signal is T„=2~/co„.But
when they are unlocked, the signal is no longer periodic.
This is the so-called "quasiperiodic regime, " although
there are only the variable 0 and the forcing to be in-
volved in the dynamics. Indeed, the dc magnetic field
makes 8 evolve monotonically, and since we observe the
laser output through a polarizer, we get the frequency

0
~ ~~(~4YwW~

50 100

1

150 (0„/2'
(kHz)

toe, /2m. Its combination with the frequency co„/2m can
then produce quasiperiodicity. The locking zones can be
directly displayed by keeping B„constant and sweeping
co„.Then, the sampling (at frequency to„/2n.) of the sig-
nal gives a well-defined line in the locked regions, and
widely scattered points in the unlocked regions, as shown
in Fig. 10 on the typical "bifurcation diagrams" obtained
for 8„=0.3 G. Figure 10(a) corresponds to Hs =0 and
Fig. 10(b) to 8 =45'. This shows that rotating the polar-
izer is equivalent to shifting the instant of sampling.
Studying the spectrum in locked and unlocked regions
tells us which frequencies are present in the signal, as
shown in Fig. 11, for 8„=0.3 G. Figures 11(a)—11(c)
are experimental, and Figs. 11(d)—11(f} are the corre-
sponding theoretical spectra, calculated using the model
[Eqs. (1)] with the parameters obtained from measure-
ments except t„/t~—1, adjusted at 0.8X10 . Figure
11(a}is measured in the locking tongue —,

' at co„/2m.=60
kHz. Only co„/2nand its harmo. nics are present. Figure
11(b) corresponds to the quasiperiodic regime, where
co„/2m.=75 kHz, co~, /2m. = 130 kHz, and the linear com-
binations of their harmonics are present. In the locking
tongue —', , Fig. 11(c) shows co„/2m.= 130 kHz and its har-
monics.

With a one-stable-eigenstate laser, a typical dynamics
with 1/n lockings is observed. Although lockings be-
tween rotational and vibrational motions also occur with
a compass needle, no chaos is observed in our case, be-
cause of the adiabatic elimination of one variable, name-

FIG. 9. Theoretical (a) and experimental (b) locking tongues
in the plane (co„/2m.,8„)for one stable eigenstate. Theoretical
locking tongues (a) are obtained by simulating Eqs. (1). The
hatched domains correspond to a motion with unlocked fre-
quencies (quasiperiodicity). Dots show the location of the spec-
tra in Fig. 11.



COTTEVERTE, BRETENAKER, Le FLOCH, AND GLORIEUX

50 150 m„/2z
(kHz)

namely, the existence of lockings between rotational and
vibrational motions, and of one stable equilibrium posi-
tion and one unstable equilibrium position. But, unlike in
the case of the compass needle, the superposition of these
two motions does not lead to chaos in the case of the po-
larization of the laser. This is due to the fact that the
forced vectorial laser does not possess three dynamic
variables, as does the compass needle.

IV. MAGNETIC FORCING
OF THE TWO-STABLE-EIGENSTATE LASER

ly, the intensity, which reduces the number of dynamic
variables. However, a typical cutoff frequency is intro-
duced for a weak ac magnetic field alone. For a large ac
magnetic field alone, the motion of the polarization is
shown to occur about the stable (8=0) or the unstable
(8=m. /2) position, depending on the value of 2yB„/ro„.
With the simultaneous action of an ac and a dc magnetic
field, the 1/n lockings occur inside typical twisted Arnold
tongues. Good agreement is observed between theory and
experiment, the locking phenomena are well understood,
and the twisted Arnold tongues have been obtained for
many narrowings.

Consequently, we have shown the existence of similari-
ties between our vectorial laser and the compass needle,

Expt.
2
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F&G. 11. Experimental (a)—(c) and theoretical (d) —(f) spectra
of the signal at three different points in the plane (co„/2~,B„)
of Fig. 8. B„=0.3 G. (a),(d) co„/2m=60 kHz; (b),(e)
~„/2~=75kHz; (c),{f) cg„/2+=130kHz.

'f,.]
t'ai

50 150 co„/2z
(kHz)

FIG. 10. Experimental bifurcation diagrams for one stable
eigenstate, and for two different positions of the polarizer: (a)
Op=0; (b) Op=45'. 8„=0.3 G.

We now ask the question as to whether the ellipticity
introduced by a phase anisotropy can play the role of a
third dynamic variable.

When a laser contains a pure phase anisotropy in its
cavity [vertical axis of Fig. 1(b)], both eigenstates are
stable, either in a bistability regime, or in a simultaneity
regime. In our case, they will be bistable, because the
considered phase anisotropies are relatively weak, allow-
ing the polarization to rotate thanks to the Faraday rota-
tion.

A. Theoretical predictions

Since the loss anisotropy has been removed, the inten-
sity is independent of the polarization and remains con-
stant. But the phase anisotropy produces a phase shift
between the two axes of the plate, and then makes the po-
larization elliptical. To describe the time evolution of the
orientation angle and ellipticity of the polarization, we
use Van Haeringen's equations [28], in which forcing
terms have been added:

d8 c
kd ——bg„„cos(28)g+ y(Bd, +B„cosro„t),

dt " L

dg c
b,g„~sin(28)—ay,

dE 2L

(26a)

(26b)

where y=arctan(E /E~) is the ellipticity of the polar-
ization. Notice that the evolution of 8 and y has been de-
scribed in other works [29]. Here, E and Ear are the
electric field amplitudes along the minor and major axes,
respectively. The coefficients kd and a depend on the to-
tal angular momenta of the laser line and on the excita-
tion. Their expressions can be obtained from the Lamb
coefficients describing the competition between the o.+

and o components of the laser light [28]. b,4„is the
phase shift between the x and y polarizations for one pass
in the cavity. The eigenstates, now both stable, are still
located at 0=0 and m/2. Under certain approximations,
Eqs. (26) can be studied analytically but, in the general
case, we will have to perform simulations.

1. ac rnagneticgeld alone

We now study analytically the case of the laser submit-
ted to a weak ac magnetic field alone. Let us linearize
Eqs. (26) around 8=0. We obtain
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d8 c
k&

——hP„y+yB„costo„t,
dt

(27a)

dg c=—6$„8—ay . (27b}

In the case where the laser is tuned at line center, k& =0
and Eqs. (27) yield (this assumption does not affect the
generality of the result)

d8 d8 c
2

+a + —bp„8dt' dt
50 100 " 150 200 250 ~ g~

G2 (kHz)

where

tang=
COac

=yB„"{/a+co„cos(to„t+f), (28)

(29}

FIG. 12. Response of the polarization to an ac magnetic field

in the case of two stable eigenstates. J&(282), proportional to
the modulation of the intensity observed through the polarizer,
is represented versus the frequency of the ac magnetic field (full

line: theory; dots: experiment).

e,
C

2

2+COac

The amplitude of the solution of (28}is then
' 1/2'2

(30)

As already stated, the atomic parameter a (tens of
MHz} is large compared to the typical frequencies (hun-
dreds of kHz) of our system. Thus, in (26b}, g will
respond almost instantaneously to a variation of 8. We
can then state that j'=0, leading to

[(c/2L )b,P„»] kq8=- sin(48)+ 5{{)„sin(28)
a a 21.

As in our experiment co„verifies u„(&a and
to„«(c/L)hP„,(30) leads to

where

SCB

+tocz+ toac

[(c/L )hP„» ]

(31)

(32)

is the I/v 2 cutoff frequency of the polarization in the
case of phase anisotropy. The damping coeScient

2(c/L )hP„»
(33)

2. Superimposed ac and dc magnetic fields

In this case, the addition of a vibrational motion and a
rotational motion will again produce some lockings. But
as both eigenstates are stable, new nonlinearities will be
involved, leading to the existence of new locking tongues.
As far as possible, these tongues will be analytically stud-
ied, using some approximations. In every case, a numeri-
cal simulation of Eqs. (26}leads to the rigorous result.

is strong (5e & 1) because a is large compared to
(c/L)44„» [28]. Thus the dynamics is almost first order
as verified theoretically in the full line in Fig. 12, as in the
case of one stable eigenstate. But, in addition, the vibra-
tions induced by the ac magnetic field alone can take
place around any of the two stable eigenstates, depending
on the initial conditions.

+y[B~,+B„cos(to„t)] . (34)

B. Experimental verification

The same laser is used as previously, except that plate
1 is employed only to compensate the residual loss aniso-
tropies. Plate 2 is carefully stressed, in order to produce
the desired phase anisotropy.

l. ac magnetic fiel alone

The experiment is performed in the same way as for
one stable eigenstate. The amplitude of the response of
the polarization is displayed experimentally by the dots in
Fig. 12, for a motion around 8=0, one of the stable
eigenstates. The theoretical curve is in full line and

If the laser is tuned to line center, kz =0 [28]. Thus (34)
becomes similar to (3), except that sin(28) is replaced by
sin(48) in the first locking term, because there are two
times more wells in the potential. The arguments used to
understand the lockings in Sec. III can then be used, but
with two stable eigenstates instead of only one. Thus the
locking will follow the law co„=2to~,/n But, whe. n the
laser is not tuned to line center, k&%0, and the term with
sin(28) will play a significant role. It leads to the ex-
istence of locking tongues following the law to„=tos,/n.
The combination of these two laws will then produce
some small lockings like

5 7 . . These sma11 1ockings
follow the Farey hierarchy [4]. Once again, although the
dynamics is more complicated than in the case of a loss
anisotropy (only one stable eigenstate), no chaos can be
expected, because g is also adiabatically eliminated, like
the atomic variables.
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comes from (30), with b,@„=0.5'. It leads to
co,2/2m-=122 kHz. This curve is only valid for weak ac
magnetic field. This behavior shows the importance of
considering the response of the polarization to an ac
magnetic field, as with one stable eigenstate. But, in ad-
dition, one must notice that for two stable eigenstates,
this behavior could also occur around 0=m. /2, because
this position correspond to a stable eigenstate too.

2. Superimposed ac and dc magnetic Jtelds

100 1g0 m„/2z
(kHz)

With an extra dc magnetic field Bd, =1.1 G, which
produces cod, /2m. =126 kHz, some new lockings occur, as
shown in Fig. 13(a) [theoretical tongues obtained by
simulating Eqs. (26)] and Fig. 13(b) (experiment). The
Faraday rotation coefficient is y =443 000 rad s '. The
phase anisotropy is Lek@

y 0 61 The other parameters
used for the simulation are a =3 X 10 s ' and L =0.545

The locking tongues with winding numbers 2/n are
clearly seen. Since the detuning of the cavity from line
center is Av= —10 MHz, leading to kd = —10 s ', other
tongues appear. Moreover, the main tongues, following
the ratio 2/n, are different from those of Sec. III, because
of the term containing sin(28) in Eq. (34), which prevents
the arguments of Sec. III from being exact. Nevertheless,
the width of the tongues varies almost periodically with8„.The new tongues following the Farey hierarchy can
be studied more precisely thanks to the bifurcation dia-
grams of Fig. 14 with 8„=5.57 G. Figure 14(a) is
theoretical, and Fig. 14(b) is experimental. A p/q tongue

B„(G)
")& 3 1

10

140 180 I„/27'
(kHZ)

FIG. 14. Theoretical (a) and experimental (b) bifurcation dia-
grams for two stable eigenstates, between 3 and —', tongues. (a)
is adjusted at B„=5.3 G. (b) is measured with B„=5.57 G.

(pcod, locks with qco„)is characterized by p lines. We no-
tice the following series: two lines, many points, three
lines, many points, four lines, etc. This corresponds to 3,
quasiperiodicity, —,', quasiperiodicity, —', , etc., correspond-
ing to the horizontal line of Fig. 13. In Figs. 15(a)-15(d),
the same tongues are analyzed by measuring the spec-
trum of the signal in particular regions, with 8„=5.57
G. The spectrum in Fig. 15(a), with to„/2~=145 kHz,
corresponds to the tongue —'„and has a peak at
(co„/2n )/2. In Fig. 15(b), co„/2m.= 148 kHz, and the re-
gime is quasiperiodic. In Fig. 15(c), to„/2n =151.5 kHz,
and the tongue —', gives a peak at (co„/2m)/3. In Fig.
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FIG. 13. Theoretical (a) and experimental (b) locking tongues
in the plane (co„/2m.,B„)for two stable eigenstates. The
hatched domains correspond to a motion with unlocked fre-
quencies (quasiperiodicity). The line shows the location of the
bifurcation diagrams of Fig. 14.

FIG. 15. Experimental spectra for two stable eigenstates at
four different points in the plane (~„/2m,B„)in Fig. 13(b).
B„=5.57 G. {a) co„/2m =145 kHz; (b) co„/2+=148kHz; (c)
co„/2m.=151.5 kHz; (d} co„/2~=162kHz. These spectra corre-
spond to the bifurcation diagram of Fig. 14(b).
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FIG. 16. Theoretical spectra corresponding to Fig. 15. These
spectra correspond to the bifurcation diagram of Fig. 14(a).

15(d), co„/2n =162 kHz, and the regime is quasiperiodic,
with many peaks. The corresponding theoretical spectra
are given in Figs. 16(a)—16(d}.

In the case of two stable eigenstates, new quasitwisted
Arnold tongues are encountered. The first ones corre
spond to the fact that there are two times more eigen-
states. Thus the lockings follow the law co„=2cod,/n, in-

stead of co„=cos,/n. Moreover, other small tongues ap-

pear, which follow the Farey hierarchy, but no chaos
occurs, even if the laser is detuned. Good agreement is
observed between theory and experiment, and the lock-
ings are also physica11y understood.

V. CONCLUSION

In conclusion, we have shown the influence of the
number of stable eigenstates of a vectorial laser on the
nonlinear dynamic behavior of the polarization of such a
laser subjected either to a longitudinal ac magnetic field
at frequency co„orto the simultaneous action of longitu-
dinal ac and dc magnetic fields. First, the concept of
response time of the polarization to a weak sinusoidal
forcing has been put into evidence. This leads to the ex-
istence of a cutofF frequency, experimentally isolated, for
the amplitude of the response of the laser, due to cavity
efFects. But, in spite of this cutoff frequency, these cavity
effects permit us to enhance appreciably the amplitude of
the vibration of the polarization, compared with a
single-pass experiment. Second, we have exhaustively
studied the lockings between the rotational and vibration-
al motions of the polarization created by a dc and an ac
magnetic field, respectively. In particular, we have
shown the existence of the turisted Arnold tongues (one
stable eigenstate) and the quasitwisted Arnold tongues
(two stable eigenstates}, also previously predicted in the
theoretical studies on the dissipative standardlike map
[30], and the possible ratios of the locked frequencies, de-
pending on the number of stable eigenstates. We have

shown that such inertialess systems as laser polarization
vectors constitute an ideal tool for the observation of
twisted Arnold tongues to high-order narrowings. The
rotational angular frequency cod, has been shown to lock
with neo„ in the case of one stable eigenstate and with
(n/2)co„ in the case of two stable eigenstates. These re-
sults have been physically interpreted. Moreover, no
chaos is observed in these systems, due to the adiabatic
elimination of one of the variables (intensity in one case,
ellipticity in the other), but the observed dynamics
remains typical of each case. This absence of chaos is
also explained by the noncoalescence of our twisted Ar-
nold tongues, but nevertheless, is not due to the existence
of a cutoff frequency, which is associated with an extra
nonlinearity. In every case, good agreement is obtained
between experiment and theory. Besides, we have experi-
mentally checked that the laser exhibits the same kind of
behaviors in the case of a nonweak atomic coupling
J=1—+J=1 transition. In particular, it does not exhibit
vectorial chaos either. However, in numerical simula-
tion, the model for the case of two stable eigenstates
could exhibit chaos, but only for unrealistic values of the
parameters which forbid adiabatic elimination of the el-
lipticity. One can thus meaningfully compare our system
to such mechanical vectorial systems as a compass needle
up to a certain point. Indeed, neither the intensity nor
the ellipticity of our system can play the role of the iner-
tia of mechanical systems. This feature is particularly in-
teresting in the case of the laser magnetometer [13].
Indeed, this device which transforms a weak dc longitudi-
nal magnetic field into a frequency cannot have an erratic
behavior. Moreover, since it exhibits a small locking re-
gion due to residual anisotropies, this locking region
must consequently be circumvented thanks to an ac mag-
netic Geld. Our work provides the clues necessary for the
choice of the dithering parameters, adapted to each typi-
cal locking regime (1/n or 2/n). Moreover, this shows
that vectorial bistable laser systems used for optical logic,
which are two-stable-eigenstate devices [31], cannot ex-
hibit vectorial chaos, under usual conditions. This study
could also throw light on the physical understanding of
systems governed by a forced Adler equation, for exam-
ple, a laser gyro.
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