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Theoretical investigation of phenomena in the closed Raman-driven four-level symmetrical model
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We construct a solution to the linear complex absorption coefficient for the closed Raman-driven
four-level symmetrical model. We derive, from this solution, asymptotic expressions for the spectra
around and away from the two-photon resonance in the absence as well as in the presence of the Doppler
broadening. They are used for the derivations of analytical conditions and the discussion of the physical
origins of various phenomena that do not appear in the traditional two-level system.

PACS number(s): 42.50.Gy, 42.50.Hz, 42.65.An

I. INTRODUCTION

Recent study in the area of quantum optics indicates
that the population inversion is not a necessary condition
for producing laser light [1—8]. Lasing without popula-
tion inversion has been proven to be possible if one of two
lasing transition levels (either high or lower) is a doublet
with a sufficient coherence. The coherence between the
doublet can be established by different schemes: their re-
laxation to the same continuum [3]; coherent excitation
or microwave interaction [4]; their interaction with an
auxiliary level via Raman field [5,6] or double Raman
fields [7,8]. The phenomenon of lasing without popula-
tion inversion is governed by the imaginary part of the
complex polarization. Study of both the imaginary and
the real parts of the complex polarization in the same
medium reveals unusual dispersion-absorption relation-
ships in the sense that they can depart from the
Kramers-Kronig rule. Harris and co-workers [9,10] have
pointed out that in a three-level model the index of re-
fraction can be zero but have a large slope where absorp-
tion vanishes via a strong electromagnetic field.
Fleischhauer et al [11] have . proven theoretically that
the largest index of refraction without absorption is pos-
sible in virtually every lasing without a population-
inversion model.

In this paper, we focus our study on the closed
Raman-driven four-level model, which was originally
proposed by Narducci et al. [5] for the purpose of
demonstrating lasing without inversion. Figure 1 is its
schematics. The ground state consists of two closely
spaced levels labeled 1 and 2. The frequency ~ of the
weak probe is set to be close to the atomic transition fre-
quencies between the ground levels and the upper level 3.
The auxiliary level 4 is coupled to the ground levels
through dipole transitions 4-2 and 4-1 by a strong Raman
field of frequency co„. Several papers [5,6, 12] have at-
tempted to explore its physical origin of lasing without
inversion. Shu et al. [13] and Scully et al. [14] have
developed a laser theory for this model. Fleischhauer
et al. [11]have proven that it is possible to have the larg-
est index of refraction without absorption, and has im-
plied, in the same paper, the possibility of electromagnet-
ically induced transparency. Doppler effects have also

been briefly discussed in Refs. [11]and [15].
This paper, compared with other work, has several im-

portant features. First, we have organized the solution to
the linear complex absorption coefficient of the symmetri-
cal model in such a way that the conditions for various
phenomena can be derived analytically. Second, besides
the role of the lower-level coherence, we identify the role
that the upper-level coherence plays in leading to efficient
lasing without inversion, that is, by very small pumping
rate, and other phenomena. To illustrate this point, we
indicate that a ground doublet creates various indis-
tinguishabilities among different pathways. Specifically,
when a photon of frequency co is emitted or absorbed, one
cannot tell whether it is caused by 3-1 or 3-2 single-
photon transitions, or whether it is caused by 3-1-4 or 3-
2-4 two-photon transitions. The former type of indis-
tinguishability is due to the lower-level coherence, while
the latter is mainly due to the upper-level coherence. Un-
der suitable conditions, these pathways will interfere, re-
sulting in an efficient lasing without inversion and other
phenomena. Third, we point out that the population
difference that is present in the complex linear-absorption
coefficient in the traditional two-level system is now re-
placed by a complex number that contains not only the
diagonal but also off-diagonal density matrix elements.
The real part of this complex number produces the tradi-
tional Lorentzian type of absorption-dispersion relation,
while the imaginary part of this complex number pro-
duces the absorptionlike dispersion and dispersionlike ab-
sorption. For convenience, in this paper we call the latter
absorption-dispersion relation Rayleigh wing type. We

FIG. 1. Schematics of the Raman-driven four-level model.
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attribute the absorption-dispersion relations such as the
largest index refraction without absorption to the inter-
play between the Lorentzian-type and Rayleigh-wing-
type spectra.

The paper is organized as follows. In Sec. II, we con-
struct a simple analytical solution to the linear complex
absorption coefficient for the symmetrical Raman-driven
four-level model. We generate, from this solution,
asymptotic expressions for the spectra with and without
Doppler broadening. In Sec. III, we apply the theories
developed in Sec. II to derive analytical criteria that lead
to different phenomena, and provide physical interpreta-
tions to their origins as well. Section IV summaries the
major results.

II. THEORY

A. Homogeneously broadened medium

We take the usual approach to find the polarization of
the Raman-driven model subject to the two plane waves

where c. is the permittivity of the host medium, and the
complex absorption (gain) coefficient is defined as

CX =E. kp P
(2.2)

4cA E
The evolution of the atomic variables is governed by

the density-matrix equation. This equation, in the in-

teraction picture, takes the form

[H—',p']+ Ap', (2.3)

where p' stands for the density-matrix operator in the in-

teraction picture, and Ap describes the irreversible con-
tributions due to spontaneous decays, other possible line-

broadening mechanisms, and the incoherent pump to lev-

el 3. By expanding Eq. (2.3) in terms of newly defined
matrix density elements
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where F and FR are the slowly varying functions of time t
and distance z, k and kR are the wave vectors, and sub-

script R stands for the Raman field. In the rotational-
wave approximation, we can express the nonzero Hamil-
tonian elements H in the interaction picture as
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we can easily write the component equations of motion as
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where 0; stands for the atomic transition frequency
from level i to j,h (equal to co —032) and hR (equal to
roR

—042) represents the detunings of the probe and the
Raman field with respect to level 2, respectively, and A is
the Planck constant. In reaching Eq. (2.1), we have intro-
duced the Rabi equivalent field amplitudes

PF I R R
R

where we have already assumed that 3~2 and 3~1 tran-
sitions have the same dipole moment of p, and 4~2 and
4= =1 transitions have the same dipole moment of pR.
This interaction induces a polarization oscillating at the
frequency of the weak probe of the similar form

P (z, t) = ,'Pe '"+'"'+c.c. ,—

where P is a slowly varying function. The connection be-
tween the field and the polarization is closed through the
Maxwell's wave equations. For the slowly varying ampli-
tudes and in the steady state, the Maxwell's wave equa-
tions are reduced to the coupled wave equations. In par-
ticular, the equation for the amplitude of the weak signal
becomes
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I' =&V(P32+P»» (2 5)

where N is the atomic density. By substituting P in Eq.
(2.2) with Eq. (2.5), we find that

. (P32+P» }a= —i E
(2.6)

where a is the complex absorption coefficient a scaled to

where W;- stands for the population decay rate from level

i to level j, I; the incoherent pumping rate from level i
to j, and y,. - the dephasing rate of the off-diagonal ele-

ment between levels i and j. The slowly varying polariza-
tion is expressed by

4eA/(Nkp2) .The linear response of a to the weak probe
can be derived by taking advantage of the intensity
difference between the Raman field and weak probe.
Here we follow the method in [16] to obtain a solution
correct to all orders of Raman field, but linear order of
weak probe. This solution under arbitrary parameters
has a very complex form and, therefore, is not suitable
for analytical study. For this reason, we leave it in Ap-
pendix A. For simplicity, here we restrict our study only
to the symmetrical model based on the assumptions
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taking advantages of various symmetries implied in these
assumptions, we are able to find a solution in the form of

( y+—i b, )[ —y —i(Q2, —b, ) ]—

[
—y —i(Q2, —b, )]S,+( —y+ib, )S2

—2y+i(2b, —Q2, )

r34 &(~— ~R }
I~

(2.7)

where
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and I~ =E~E~.
The zeroth-order solutions appearing in S, and S2 are

summarized as

2I~ 021 2' y21~=rR+
F21+21 Y21+21

(2.12)

Equation (2.7) indicates that a is a coherent superposition
of 3-1-4 and 3-2-4 pathways, which are represented by S,
and S2, respectively. The polarization of each pathway is
made up of three source terms: single photon, lower-level
coherence, and upper-level coherence. To understand the
contribution from the upper-level coherence, let us ex-
press p34 1n terms of zeroth-order solutions, as(1)
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(1) . P24 P 14 . ~ p32

r34 (~ ~R } r34 ) (~ ~R }

I W34
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are the equilibrium populations of ground levels, level 3,
and level 4 in the absence of any coherent perturbations;
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is a unitless number; and finally
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(
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Each term in Eq. (2.13) makes a very different contribu-
tion to the linear polarization. The first term becomes
one of the source terms defined as %(34', signifying that it
originates from upper-level coherence, the second and
third terms cause an ac-Stark shift [the denominator of
Eq. (2.7)] and a coupling between p(31' and p(32'. One of the
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IR {r21+Q21)
2721

as well as to obtain the solutions under this limit,

(2.14)

1+rz1/WR 101 1+yz1/WR

nice features of Eq. (2.9) is that the effect of the Raman
field has been electively dressed into the two variables A,

and 5 [Eq. (2.12)]. Such an organization enables us to
easily identify the high-intensity limit

Note that although Eqs. (2.18), (2.20), and (2.21) are de-
rived under the condition that 6 »4z, they apply to any
probe frequency if the two lower levels are degenerate.

B. Doppler-broadened medium

When an atom moving with velocity v interacts with
the fields, both the field frequency ~o and the Raman fre-

quency mzo, in the perspective of the atoms, are Doppler
shifted to new values ~ and ~z given by

n 4+ ng y z1/W

1+yz,d/W„

jq(0)( ~ )
—

y [p(0~1( ~ ) (0)( )]

(2.15)

COpU
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—
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c
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where c is the speed of light in vacuums. The distribution
of atoms over velocity is a well known Gaussian function.
By expressing the velocity in terms of probe frequency,
we can transform the distribution over velocity into the
distribution over frequency as

2,y+ b, R Im(pI21 )
(x=2

25R+y [1+2IR /(yy34)]

where

(2.16)

where ~ stands for high Raman intensity limit.
We now derive from Eq. (2.7) two special forms of

complex absorption coefficients. One is derived under the
condition that the probe frequency is tuned in the neigh-
borhood of two-photon resonance, that is, A=hz. The
other is complementary to the first one in the sense that
the probe frequency is away from the two-photon reso-
nance, that is, 6 »Az. We find the first one by replacing
b in Eq. (2.7) with b, R, as

(b, —bo)
P(b, ) = exp

}/m 5co
(2.23)

where b,0=COO —
CO3z and 5CO, proportional to the Doppler

width, measures the degree of Doppler broadening. We
note because the frequency of the Raman field seen by the
atoms varies, we cannot discuss this problem from the
symmetrical model, where AR is fixed at Qz1/2. There-
fore, without special assumptions, the complex absorp-
tion coefficient in the presence of Doppler broadening,
a(60 ARO 5co), has to be calculated numerically by the in-
tegral

~1=~z+&34'/y34
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and the second one by ignoring bR and Qz, in Eq. (2.7),
as (2.24)
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cally from Eq. (A 1). We note that ER is not an indepen-
dent variable. It should be replaced by

@34' i
—32R

gR d
~ gL ~2 &

do =+2IR —[(r34
—r }/21'

F34+X
(2.19)

of course, under the condition that IR )0. 125{y34—y) .
Equation (2.18) can be further separated into absorption
and dispersion spectra as
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which is obtained via the two relations in Eq. (2.22).
In the following, we derive two analytical solutions un-

der special conditions. Before defining the assumptions
unique to each solution, we present two assumptions that
are common to both solutions. First, we require that the
Gaussian distribution function in Eq. (2.24) be replaced
with the Lorentzian function

gRR +gi (b —do) gRR +gL(5+do)—
Im(a) = +

(Q —do }2+R2 {++do)2+R2

(2.21)

The solutions obtained with the Gaussian function have
to be expressed in terms of complex error functions and,
thus, are not useful for analytical discussions. Second, as
usual, we assume that b Ro( =Qz1/2) is small. The special
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conditions to the first solution are that first, the probe fre-

quency is tuned to the frequency regime of two-photon
resonance, and second, the Doppler broadening of the
Raman field in the zeroth-order solution is ignored. Our
argument regarding the second assumption is that the
two-photon process, that is, 1-4-2, should dominate the
single-photon process when a strong Raman field in-

teracts with both 1-4 and 2-4 atomic transitions. Because
the transition frequencies of 1-4 and 2-4 are very close to
each other, the two-photon resonance condition, deter-
mined by the di8'erence between the two transition fre-
quencies, is insensitive to the Doppler broadening of the
Raman field. We now apply these assumptions to Eq.
(2.7), and transform it into

A ]y 34 + 1 5c'o fA 2
a(b„b,R ) =2

(yy34+2IR )+f(~ ~0) +]( Y34+yf)(~ &0)
(2.26)

where f =(1 COR0/Coo). We next replace a(h, bR ) and
the Gaussian distribution in Eq. (2.24) with Eqs. (2.26)
and (2.25), respectively, and solve it by the method of
contour integration. We finally obtain the first solution
in the form of

A, y34+f 50]A2
a(ao aRo 5~}

yy34+2IR +(y34+f y )5co+f 5''
(2.27)

The unique conditions for the second solution are that
first, the probe frequency is far from that of the two-
photon resonance regime, and second, the Raman fre-
quency is much smaller than the probe frequency, but
still much larger than 02, . Under these assumptions, the
Doppler broadening of the Raman field can be ignored
both in the zeroth-order and in the first-order solutions.
Thus, we replace a(L]]„ER ) and the Gaussian distribution
with Eq. (2.18) and Eq. (2.25), and solve it again by the
contour integration method. We are able to obtain three
equations identical to Eqs. (2.18},(2.20), and (2.21) except
that R now is replaced with R +50].

III. DISCUSSION

Sections III A —III C deal with the homogeneously
broadened medium, while Sec. IIID is devoted to the
Doppler-broadened medium.

A. Conditions for ef5cient lasing without inversion

A]y+b, RIm(p']2 ) &0, (3.1)

which, after first, A, is replaced with Eqs. (2.17) and
(2.18) and second, the ofF-diagonal density elements are
replaced with relations in Eq. (2.9), is transformed into

It is not difficult to see that the absorption curve is an
even function of 6—hz, and therefore reaches an ex-
treme when h=hz. Furthermore, computer simulation
indicates that the medium exhibits gain only when this
extreme becomes positive. For this reason, we derive the
lasing condition by setting Eq. (2.16) to be positive, that
1S,

y(25R 5—
y2] jL)+b R (y2]5+ 25R A, )

(
(0] (0])+2I y

(
(0) (0) & ()

Ay
Pgg P33

(y2]+02])(A, +5 )
Pgg P44 R

( ~2+ 52 }
Pgg P44 (3.2)

By replacing the diagonal elements in Eq. (3.2} with rela-
tions in Eq. (2.9), we can express Eq. (3.2) in terms of Ra-
man intensity as a quadratic inequality

Because cL &0, inequality (3.3) can be further decom-
posed into two simultaneous inequalities,

aL = —4y(1+y2]/WR )(ng n3)—
al. I++bi.I&+c &0,

where

(3.3)

and

+4y(1+y2, /y34)(n —n4) &0 (3.4)

aL = —4y(1+y2]/WR )(ng n3)—
+ y( +y21 Y34}( 4

2y[2yR Y21
—+2]~R )

+3 R(l 21++21) ~R l( 3 }

—2[ y(2~R ) 2]3 R )+~R(y2]+27 R }

YRY(y21++21)/y34)(n n4}

L y(~R +3 R )(y21++21)( g 3 }

IR &IR']~h =( bL+V bL' 4aLcL)/—(2aL) . (3.5)

The physical origin of the gain can be traced back to the
lower-level coherence represented by the second term in
Eq. (3.2), and the upper-level coherence represented by
the third term in Eq. (3.2}. The former becomes a gain
only if the Raman field is sufficiently high. By compar-
ison, the latter is always a gain no matter how weak the
Raman field. Note that the contribution due to the
upper-level coherence in the traditional upside-down
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which, after the zeroth-order populations are replaced
with Eq. (2.15), turns out to be the same as Eq. (3.4).

The threshold pumping rate can be derived from Eq.
(3.4) by replacing ng, n 3, and n4 with Eq. (2.10), and the
off diagonal decay rates with

y2, =
—,'(21 +2W)2), y34 (2W+2W~+ W34),

y= —,'(2W+I +W&2), yz =
—,'(2Wx+I + W&, ),

(3.7)

assuming the decays are purely radiative. These substitu-
tions turn Eq. (3.4) into

ar I +brI +cr + 0 (3.8)

where

a r =2( W + Wz ), cr = —
( 2 W + W34 )( W+ 0.5 W34 ) Wz, ,

br= 2W~+2Wx(W+W2~) —2W

+ W(2 W2, —3 W34 )
—

W34 .

From Eq. (3.8) we obtain a threshold pumping rate of

br +Qb r——4a rcr
2a r

(3.9)

Figure 2 shows I',h
' as a function of Wz for different

1 .0
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0.0
0.0 0.5 1 .5

FIG. 2. Threshold pumping rate for amplification, I,'h ', as a
function of Wz with different W» . The parameters are W = 1,

34 0.0001, and (a) W» =0. 1; (b) W» =0.01; (c) W» =0.001.

anti-Stokes model (the same as in Fig. 1 except that the
ground doublet is replaced with a singlet) consists of
terms associated with not only (pgg'

—p~' ) but also

(p33 psg ) and, therefore, becomes positive only under
certain conditions. In the current model, as a result of
the coherent superposition of 3-1-4 and 3-2-4 symmetri-
cal two-photon pathways, the terms attached to
(p33' —pgg') are canceled out, leaving the upper-level
coherence contribution an unconditional gain proportion-
al to (p' ' —p~~'). One can easily verify that Eq. (3.2), in
the high-intensity limit, becomes

—y[p' '( )
—p"'( )]+y[p"'( )

—p' '( )]

+y y» /y 34[pg'g'( ") p~'—( ") ] & o,
(3.6)

W2, . We note that although a lower pumping rate is re-
quired to produce a lasing effect as Wz increases and W2,
decreases (more coherent), only if W„exceeds a certain
threshold can I,'h' be dramatically reduced by employing
atomic systems of small W2 &, which is usually true be-
cause the 2~ 1 transition is dipole forbidden. We now
derive this threshold value for W„ from Eq. (3.8). It is
not difficult to see that I,'h ' can be approximated as

br+ lbrl 2arcr/lbr I

I h'-
2a r

because cz, proportional to W2, , is much smaller than

bL . Thus, I,'h ', depending on whether or not bL is less
than zero, can be

W,'+ W, W —W'

a~ W + W~

which is independent of W2 1, or

I-( 1)
W'

Wh b W + W W —W
21

which is linearly proportional to W2, . Here we have also
neglected W34 which is small for the same reason as W2, .
By solving bL & 0, that is, Wz + W+ W —W & 0, we can
obtain Wz', h

=0.61 8 W Here comes one of the important
results of this paper. The atomic system with

Wz & 0.618 W can result in an efficient lasing without
population inversion by the virtue of the lower-level
coherence.

Physically, we contribute this high efficiency to the
efficient trapping of ground-level atoms when y2, /W~ is

small. To illustrate this point, let us examine Eq. (2.15),
the zeroth-order solutions in the high intensity limit. As

yz, /Wx approaches zero, the populations remain same
as the ones without any coherent perturbations, while the
lower-level coherence becomes p2'&' = ng

=Q—
ng ng e

'

Thus the absorption due to the ground levels,
[pI", +pzz'+ 2

lpga

&'
l cos( n ) ], experiences a destructive in-

terference and approaches zero. If y 2 1
were only deter-

mined by W2 1, efficient lasing without inversion would
occur no matter how small Wz is as long as the ratio of
W2, to Wz is small. However, in the current closed sys-

tern, y z, is the sum of I and Wz„that is, pumping de-

grades the lower-level coherence. Furthermore, some
population must exist in level 3 to produce laser light.
That is why efficient lasing without inversion requires
that 8', exceeds a certain threshold value.

Although the threshold pumping condition is indepen-
dent of the Raman intensity, Raman intensity does have
to reach a certain threshold before any laser action takes
place. This threshold is determined by Eq. (3.5). Figure
3 displays the relationship between I„",h and the atomic
transition frequency Q2 &

of the lower energy levels for
different 8'z, when W~ =2 8'. To understand the
features in Fig. 3, we note that the scale of the high inten-
sity is measured by Eq. (2.14), not yz +b,R, the satura-
tion intensity in the traditional two-level system. That
explains why, erst, the lowest threshold appears when the
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FIG. 3. Threshold Raman intensity for amplification, Iz',h, as
a function of Q2&. The parameters are W = 1, Wz =2,
W» =0.01 W34 0.0001, and (a) I =0.005, or equivalently

V21 0.015; (b) I =0.01, or equivalently y» =0.02.
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two lower levels are degenerate, and second, Izth becomes
more sensitive to 02' as @2' decreases.

In summary, an eScient lasing without inversion con-
sists of three conditions: I & I,'h', Iz & Iz',h, and

~Z & ~Zth.(&)

-2

3

-20 -10
I

10 20

B. Conditions for electromagnetically induced transparency

g(1
R

2 40
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20

0 0.01 0.02

FIG. 4. Threshold Raxnan intensity for amplification, I&'th, as
a function of pumping rate I. The parameters are W=1,
Wg =2, W34 0.0001, and (a) W» =0.01; (b) W» =0.001.

To see that the electromagnetically induced tran-
sparency is possible in this model, let us make a plot of
Iz'th as a function of I ( & I",h') shown in Fig. 4. This
figure shows that when I is above but very close to I,'h',

I~,h becomes extremely large. Actually, I„",h becomes
infinity when I =I,'h', which implies that no matter how
large the Raman intensity, the absorption around 5=hz
can only approach zero. Thus, we conclude that the con-
dition for the electromagnetically induced transparency is
I'=I Ih'. As shown in Figs. 5(a) and 5(b), when I' is
operated at I,'h', the frequency regime between the two
absorption bands, separated by a frequency range of 2do
[Eq. (2.19}],becomes transparent. The transparent re-
gime continues to be widened as Raman intensity in-
creases.

FIG. 5. Curves (1) and (2) in (a) and (b) are the absorption
and dispersion spectra with Iz =20 and I& =60, respectively.
The rest parameters are W = W& =1, W» =0.01, W34 0.0001,
0» =0, and I =I,'h'=0. 00962468.

C. Absorption-dispersion relations:
Conditions for the largest index of refraction

without absorption

The linear complex absorption coef6cient is commonly
governed by

in
X +if

or equivalently

X
n +in

X2+y2 X2+y2

(3.10a)

(3.10b)

where x is the frequency detuning relative to the reso-
nance line, n is an x-independent variable, and y is the
transverse decay rate. In the traditional two-level sys-
tem, n is a real number proportional to the population
difference between the two levels. That is why the ab-
sorption spectrum has the real Lorentzian line shape
[first term of Eq. (3.10b}], which is an even function of
frequency shift (relative to the line center), while the
dispersion spectrum is governed by the imaginary
Lorentzian line shape [second term of Eq. (3.10b)], which
is antisymmetric. In such a medium, the largest absorp-
tion (or gain) always appears at zero dispersion. Howev-
er, n can be complex in the multilevel multiphoton in-
teraction due to the interferences among different path-
ways. The spectra of the absorption and dispersion in
such a medium become the mixture of the real and the
imaginary Lorentzian functions. More specifically, let us
assume n =nz+inl, then Eq. (3.10b}becomes
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X
nR nI

x +y x +y 0.8

+i nz +nl . (3.11)R x2+y2 I x2+y2

The terms associated with nR have the usual dispersion
and absorption relations (Lorentzian type), while the
terms associated with ni have a dispersionlike absorption
and an absorptionlike dispersion (Rayleigh-wing-type)
spectra. With proper values of n„and n~, it is not
difficult to see that the maximum dispersion can happen
at frequency detuning where absorption is zero. In par-
ticular, if n R

=0, the spectra are purely Rayleigh wing

type, and thus, the maximum dispersion always happens
at zero absorption. In the case of the Raman-driven
model, the spectra [Eqs. (2.18), (2.20), and (2.21)] are
made up of two line shapes located around 6=do and

—do. Each line shape has a similar form as Eq.
(3.11) with gz and gz playing the role of n„and nl. The
spectra are mainly of Lorentzian type if ~gR ~

&& ~gz ~; oth-

erwise, they are of Rayleigh wing type. Because in the
high-intensity limit both A, and A 2 become Raman-
intensity independent, gz, according to Eq. (2.19), is in-

versely proportional to the Raman field strength, while

gI (equal to A 2 ) is Raman-intensity independent. There-
fore, as the Raman intensity increases, the spectra change
from Rayleigh type to Lorentzian type.

We now proceed to derive the conditions for the larg-
est index of refraction without absorption. We first note
that the absorption is zero at

1 /2
A, y, 4( y y 34+2' )

A i r34 A2(r—34+ r )
(3.12)

Because of the lasing condition and the real value re-
quirement of b, in Eq. (3.12), A „A,y34 A2(r34+r ),
and 2A &r34 Ap( r34 +r) must all be positive. As a re-
sult, Eq. (3.13) can be satisfied only under the condition
that

which is derived by setting Eq. (2.20) zero, and that the
index of refraction is largest when B[Im(a)]/Bb, =0.
With these considerations, we are able to find a single im-

plicit equation for Iz (see Appendix B for the details),

(r34y+2I„)A 2[2A, y34 A2(r34+y)]

+ A lr34(r34+3 )[ All 34 A2(r34+ V) 1

(3.13)

0.6

0.4

0.2

0.0
0.5 1 .5

FIG. 6. Threshold Raman intensity: (a) Isth, (b) Iz,h(f 5'),
where f 5co= 10; (c) Iz',„'(f5'), where f 5am=40; (d) Iz",'„as a

function of I . The parameters are W = 1, 8' 12 =0.01,

W34 =0.0001, and Q2) =0.

D. Doppler-shift effect

In this section, we discuss the effect of Doppler
broadening on the lasing condition with the help of the

50

40

30

20

7 compare I,'h ' with I',h
' and I,'h ' with IR',h, respectively.

These figures clearly show that I,'h ', IR,h, and 8'R, h are
always larger than their counterparts. This is due to the
fact that A „compared with A 2, contains an additional
gain via upper-level coherence. Simultaneous considera-
tions of lasing condition and inequality (3.14) lead to the
conclusion that the largest index of refraction at zero ab-
sorption is possible only if I )I,'h ' and I„",„' & IR (IR t„,
which is the parameter regime between curves (d) and (a)
in Fig. 7. The exact values of I„and 6 at which the larg-
est index refraction occurs at zero absorption is deter-
mined by first solving Eq. (3.13) for I„,and then plugging
Iz into Eq. (3.12) for b, .

Finally, we point out that if I =I,'h ', A 2 approaches
zero for large Raman intensity. Under this condition, the
spectra are always near ideal Rayleigh wing type, and the
largest index refraction always occurs at near-zero ab-
sorption as long as the Raman intensity remains strong
enough, as shown in Figs. 8(a) and 8(b).

A2 (0 (3.14)
10

which can be similarly handled (see Appendix C) as the
lasing condition A

&
)0. Note that we have approximat-

ed the lasing condition [Eq. (3.1)] with A, )0 by drop-
ping the term b,„Im(p, z), which approaches zero at high
Raman intensity. The main results in Appendix C are
the three threshold values: I,'h' [Eq. (C5)], I th' [Eq. (C3)],
and W„'th' [Eq. (C6)]. Similarly, I',„' is proportional to
W3, only if 8'z & Wz, z. Curves (a) and (d) of Figs. 6 and

'

I

0
I

0.0 1 0.02

FIG. 7. Threshold pumping rate: (a) I',„"; (b) I',h '(f 5'),
where f 5co=5; (c) I',D'(f 5'), where f 5co=20; (d) I',h' as a
function of 8'& . The parameters are 8' = 1, 8'» =0.01,
6 34 0.0001, and 02& =0.
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(a)
curve (d}. Again, an eScient lasing without inversion is

possible when Wz exceeds a certain threshold. In the

Doppler limit, that is, 5' is much greater than any atom-
ic decay rates, the threshold values approach I,'h' and

Iz,h, which are independent of Doppler width. We can
understand this even without detailed calculations. Let
us replace A& in Eq. (3.15) with Eq. (2.17a} and change

Eq. (3.15) into

I

-20 -10
I

10
I'

20 (1+f5') A z+A34'ly34) 0 . (3.16)

+4
x10

+2

-2

(b)

Because %~34' is always positive, Eq. (3.16) is always

satisfied no matter what the value of Doppler width is as
long as A z & 0, which, of course, is the lasing condition in

the Doppler limit. The main reason that the efficient las-

ing without inversion is possible even in the presence of
Doppler effect is that the trapping is mainly due to 1-4-2
two-photon transition which is insensitive to the Doppler
shift as a result of close atomic transition frequencies be-
tween 1-4 and 2-4.

'I

-20
I

-10
I

0
I

10
I

20

FIG. 8. Curves (1) and (2) in (a) and (b) are the absorption
and dispersion spectra with I& and Iz =60, respective1y. The
rest parameters are W= W~ 1 $V12 ~ ~34
Q2)=0, and I =I,'h'=0. 095 1749.

equations in Sec. II B. Note that the formulas in Sec. II B
are derived under Lorentzian instead of Gaussian func-
tions. Therefore, the quantitative results in this section
only have qualitative meanings. However, we expect that
the general observations made in this section should
remain valid for the calculations involving Gaussian dis-
tribution function. We now derive the lasing condition

A)y34+f 5coAq &0,. (3.15)

by setting Eq. (2.27) to be larger than zero. We note that
under two conditions Eq. (3.15) degenerates into A, &0,
the lasing condition in the absence of Doppler broaden-
ing. The first condition, as we expected, is Sou =0, that is,
no Doppler broadening. The second condition is that

f =0, that is, coao=coo, which suggests that the two-

photon process involving Raman and probe fields

(coxo &coo) can partially cancel the effect of the Doppler
broadening on the threshold condition. The exact thresh-
old values for the pumping rate and the Raman intensity
can be easily derived by the same method that we used in
discussing Eq. (3.15). Appendix D contains the details.
Here, we summarize the results of Appendix D in Figs. 6
and 7. Curves (b) and (c) show the threshold pumping
value I'th'(f 5'} [Eq. (D5)] as a function of Wz with
different f5' and the threshold Raman intensity
Iz,h(f5') [Eq. (D3)] as a function of pumping rate with
different f5', respectively. They indicate that although,
in general, the threshold values with Doppler effect, as we
expected, are larger than those without Doppler efFect
curve (a), they are less than I'th' and Iz,h represented by

IV. SUMMARY

In this paper, we have constructed a solution to the
complex linear-absorption coefficient for the closed
Raman-driven four-level symmetrical model. We have
derived, from this solution, the spectra around and away
from two-photon resonance [Eqs. (2.16), (2.20), and
(2.21)] under reasonable assumptions. We found that the
center region exhibits gain if A

&
& 0, and its peak value

decreases with Raman intensity, and each side band (one
is at b, =do and the other is at b, = —do } is a mixture of
Lorentzian- and Rayleigh-type spectra. The peak value
of the Rayleigh type decreases with Raman field strength,
while the peak value of the Lorentzian type remains in-
dependent of Raman intensity. In the high-intensity re-
gime, the side band is predominated by the Lorentzian
type, which exhibits gain if A2 &0. We thus found two
sets of threshold values for the pumping rate and Raman
intensity; one is (I't„",Ix't'„) derived from A, &0, and the
other is (I",h', Ixt'„} derived from A2) 0. A2 consists of
the single-photon absorption and the lower-level coher-
ence. A, contains, besides all the terms in A2, a positive
term due to the upper-level coherence. For this reason,
each member in the second set is larger than its counter-
part in the first set. That also explains why the gain
emerges first from the center, and virtually the entire ab-
sorptive profile can turn into a gain profile when A2 &0.
In the following, we compare the pumping rate and the
Raman intensity with these two sets of threshold values,
and summarize the conditions for the various phenome-
na.

(1) Electromagnetically induced transparency appears
if I =I',h'. Under this condition, A ] approaches zero as
Raman intensity increases, while A2 is always negative
no matter how large the Raman intensity is. Thus, the
spectrum regime between the two side absorption bands
becomes transparent, and increases with Raman intensi-
ty.

(2) When 1 & I",„"and Iz",z & Iz & Iz',z, then A, &0 and
A2 &0. In this case, the gain is of Rayleigh wing type,
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while the absorption is of Lorentzian type. With proper
choice of the Raman intensity, the largest index of refrac-
tion can occur at the zero absorption.

(3) When I'=I Ih', A2 approaches zero for large Ra-
man intensity. The spectra are mainly of Rayleigh wing
type. The largest index of refraction always happens at
near zero absorption as long as Raman intensity is
sufficiently strong.

(4) If I & I Ih' and IR &IR,I„A2 &0. In this case, the
positive value in the absorption spectrum are contributed
by not only the Lorentzian but also the Rayleigh type of
spectra. Thus, it is possible that the gain expands to the
entire spectrum. Another feature in this case is that at
the high-intensity limit the gain at the side band becomes
mainly of the Lorentzian type and, therefore, its peak
value is independent of Raman intensity.

A very important feature of the closed Raman-driven
model is that I,'h' and I',h' become proportional to W2,
only if W~ is larger than W~, „' and W~,h, respectively.
Hence, all the above phenomena can be realized
efficiently. Two mechanisms are responsible for the small
value of I,'h", one is atomic trapping, and the other is the
two-photon gain. By comparison, atomic trapping is the
only reason for the small value of I',1,

'. For this reason,
Wt„" & W,'„". The requirement on the W„value stems
from the fact that the pumping, although it increases the
population on level 3, destroys the coherence of the
ground doublet and makes atomic trapping of the ground
doublet less efficient. Our calculation shows that Wz', h is
around 0.68 W, and Wz, h is around W. However, accord-
ing to the inherent frequency scaling of the spontaneous
decay rate, WR must be less than W (assuming it is purely
radiative) because the atomic transition frequency be-

tween level 4 and the ground doublet is smaller than that
between level 3 and the ground doublet. Therefore, one
has to be careful, in adopting this model, to generate
coherent light of higher frequencies because efficient las-
ing without inversion is unlikely to happen unless mecha-
nisms are introduced to efficiently depopulate the auxili-
ary level.

We also derived, under suitable assumptions, the spec-
tra in the presence of Doppler broadening. In particular,
we discussed how the lasing condition is affected by the
Doppler broadening. We found that lasing is possible if

I Ih'& I Ih'(f 5a)) & I'Ih' and IR,h &IR,h(f 5pl) &IR,11, The.

threshold values for the pumping rate and the Raman in-
tensity approach (I I„",IR', I, ) for small value of b,co and f,
and approach (I'I„',Iz,'„) for sufficiently large 5'. The
most important conclusion of this discussion is that
efficient lasing without inversion can be achieved in the
presence of Doppler broadening if WR & WR,„'(f5'),
where WR', h & WR,„'(f 5') & WR,h. The physical origin of
this conclusion can be traced to the atomic trapping
which is insensitive to the Doppler shift as a result of
close atomic transition frequencies between 1::~ and
2~ & v ~

APPENDIX A

Because we believe most of the readers are familiar
with the perturbative approach [16], we present not the
derivation steps but the main formulas that are useful in
the numerical implementation of the complex absorption
coefficient under arbitrary parameters. In short, the
complex absorption coefficient is

a(b„b,R ) = i—
( —r 32+i~) [—r» —1«» —~)]—

[—r3, —i(Q2, —b, )]S,+( —r32+ih)S 2

(r31+r32)+i(2~ +21)

r34 i (il, —6R—)

(Al)

where

(0)+ (O)
(0) (O) . (0) P24 P14

S, 1
= 1 (P22

—
P33 )+1P 12 ER—

34 l( R

(0)+ (O)
1 pl .

1 pl P24 P14
' (Pl 1 P33 )+1P21 ER .

)

(A2)

(A3)

C34 W32 + W3 1 + W34

C„=r„+W„+W„+W„,
C31 I 13+ W32+ W31+ W34

C,4= —
[ W32 W42+2I„Re( 224)],

C22= W2, +I 23+ W32+2I„[Re( 224)+I„Re(B24)],

C2, = —[ W, 2
—W32+ 2I„Re(B24 )],

The zeroth-order populations in Eqs. (A2) and (A3) are
determined by equations

34P44 + 32P22 + 31P11 32 W31 + W34
(0) (0) (0)—

C24P44 +C22P22 +C21P11 —W32
(O) (O) (0)

C14P44 +C12p22 +C11p11 —W31
(0) (O) (0)

C,4
= —[ —W31+ W4, +2I„Re(A, 4)],

C,2
= —[ W2, —W» +2IR Re(B14)],

C„=W»+r, 3+ W3, +2IR [Re(A „)+IRRe(B14)] .

Here,

r21+ (+21 ~R ) r21 ill'R
324=

D
314= D*

where
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and

D = (r42+i~R)[r41+i«21 ~R)]

(A3) are determined as follows:

P24 iER [ A 24(P22 P44 )+IR~24(P22 Pl 1 ]

I
+ .fl ( Y42+ Y41 1+21}

y2)+i02)

The zeroth-order off-diagonal elements in Eqs. (A2} and

P14 iER [ A 14(P11 P44 )+IR~14(P11 P22 ) l

~ (0) e (0)
RP24 ERP4i

P2i

APPENDIX B

We first reorganize Eqs. (2.20) and (2.21}so that both their numerators and denominators are written as the polyno-
mial of 4.

Re(a) =2

Im(a) =2

[ A 1 Y34 A 2 ( 3 34+ Y ) l + A 1 r 34( Y Y 34+2IR )

Y34+r 4IR—)+(y34Y+2IR }

A 2 +~[ A 1 y 34( 3 34+r }] A2—( Yr 34+ 2IR )

+6 (r34+r 4IR }+—( Y,4r+2I„)

(Bl)

(B2)

Zero absorption requires that Eq. (Bl) be zero, that is,

Q2
A iy34(yy34+2IR }

A 1 Y 34 A 2 ( y 34+r }
(B3)

The condition for the largest index of refraction is derived by setting the derivative of Eq. (B2}with respect to b zero.
With certain algebraic arrangement, we obtain

A25 +6 [ 3A1'Y34(y34+r)+A2(Y +Y34+3134Y+2IR)]

+b [—A, y34(y34+y)(y +y34 4IR )+—A2(y34y+2IR )(y +y34+3y34y+2IR )]
—[ —A iy34(y34+y)+ A2(y34y+2IR )](y34y+2IR ) =0 . (B4)

By replacing 5 in Eq. (B4) with Eq. (B3), we obtain

(2IR+yy34) A2[2A1 —A2(y34+y)]+2A1A2[A1 —A2(y34+y)](2IR+yy34)

+ A i[A, —A2(r34+y)] (Y34 y)=0,
which can be factored as

[(2IR+yy34 2 1[ 1 2 Y34 r)]]

(B5)

X j(r3 r+2IR)A2[2A1Y34 —A2(r34+Y}]+Aiy34(1 34+1 )[Ai Y34
—A2(Y34+r)]] =0 . (B6)

Because of the lasing condition and the positive value requirement on 6 in Eq. (B3), A 1 and A, y34
—A 2(y34+y) must

both be positive. Thus, the value inside the first curly bracket is always positive. Equation (B6) is satisfied only if the
value inside the second curly bracket is zero.

APPENDIX C

With the help of Eqs. (2.17b) and (2.9), we can trans-
form A2 &0 into

I

Inequality (Cl) can be decomposed into two simultaneous
inequalities,

IIIL 4y(1+y2, /WR )(n~ —n3)+4y(ng —n4) &0 (C2)

QILIR +ha IR +c~L &0,2

where

aiL = —4y(1+y2, /WR )(ng n3)+4Y(nit —n4)—,

bIL
—2r[2(rR Y21 +21~R )

(Cl)
and

IR +IRth ( bIL+ "v' bIL 4 ILAIL )/(2 IL } .(2) ~ J 2 (C3)

By using Eqs. (2.10) and (3.7), we can turn inequality (C2)
into

+yR ( y21+ 021)/WR ](n n3)—
—2[y(26R —

y21yR )+ER(y21+2YR )](n~ n4), —

cIL } (R +RY)(r21++21)(n n3}

a~qI +bqqI +cqq&0

where

(C4)
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air =2

blr =2( W„—W)+2( W, 2
—W34),

clr= —(2W+ W34) W12 .

Equation (D 1) can be further decomposed into two simul-
taneous inequalities

DL Y34( + Y21 WR ( g 3)

The threshold pumping rate is obtained from Eq. (C4) as
+4(Y34+Y2, )(n n—4) )0 (D2)

~z] brr+ v bir 4airclr2

2aIr

which is proportional to 8', z if bir & 0, that is,

(C5)

and

—
bDL+ "v bDI

—4aDL cDL
2

IR )IR th (f 5'�) = (D3)
2aDL,

w~ & e'~R",„—W . (C6) By using Eqs. (2.10) and Eq. (3.7), we can turn inequality
(D2) into

APPENDIX D

With the help of Eqs. (2.17b) and (2.9), we can trans-
form A, +f5' A 2 )0 into

aDrr'+ b,rr+ c„&0,
where

aDr=2( W+ WR+f 5ro)

(D4)

aDL Iz+b&I.I++cDL & 0,
where

QDL
= 4Y34(1+Y21/WR )(ng n3 )—

+ (3 34+ Y21 g 4)

bDL 2Y34[ 2(r21YR

(D 1) bDr= 2WR+2WR( W+ W12+f 5o))—2W

+ W(2W12 —3W34 2f 5'—)

W34 +2f 5'( W12
—

W34 )

cDr= —(2W+ W34)( W+0.5W34+f 5ro) W12 .

The threshold pumping rate is obtained from Eq. (D4) as

+rR(Y21+Q21)/WR ](n —n3)

—2[ Y3 (26R —
Y217R )

bDr + v bDr
—4aDr cDr

2

rID)(f 5~)=
2aar

(D5)

and

YR ( Y21++21 ) ](ng —n4»

cDL Y34(YR +~R )(Y21+~21)(n n3)

r'34= r34+f 5~ .

which is proportional to 8', z if bDr &0, that is,

WR ) WR,„'(f5n1)

D6
—( W+f 5~0)+&( W+f 5')(5Q+f 5')
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