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Systematic method for deriving effective Hamiltonians
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A systematic procedure for deriving effective Hamiltonians to any order is presented, which is applica-
ble to any time-independent Hamiltonian. The method is based on a continued-fraction approach and

avoids the singularities which may occur with perturbation theory. It is illustrated by deriving the
effective Hamiltonian for the one-photon, dressed-state laser to second order.

PACS number(s): 42.50.—p, 02.90.+p, 03.65.—w, 32.80.—t
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be%
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Effective Hamiltonians find widespread use in theoreti-
cal physics. Within the fields of quantum and nonlinear
optics for example, their use is extensive, and they have
found a place in several textbooks [1]. In the literature,
they are obtained by a variety of ad hoc approximations
whose range of validity is often not apparent. A deriva-
tion of multiphoton effective Hamiltonians, based on per-
turbation theory, has been presented by Friedmann and
Wilson-Gordon [2].

Here we present a systematic derivation, based on the
continued-fraction method [3],which seems ideally suited
to deal with this problem. This approach makes it clear
that in principle the use of effective Hamiltonians is an
exact technique, although the usual motivation for intro-
ducing effective Hamiltonians is to produce tractable ap-
proximations to difficult problems. It avoids some of the
difficulties associated with perturbation theory, such as
divergence of the expressions at exact resonance.

A general expression for the effective Hamiltonian is
obtained, under the basic assumption that the original
Hamiltonian is time independent. The expressions
presented are valid even at exact resonance. The method
is systematic, in the sense that there is a clear procedure
for deriving the effective Hamiltonian to the next degree
of accuracy if the given form should be thought inade-
quate. The approach is illustrated by deriving the
effective Hamiltonian for the single-photon, dressed-state
laser.

II. MATHEMATICAL REVIEW

First we review the continued-fraction theory neces-
sary for the treatment of effective Hamiltonians. We con-
sider the following mathematical problem. Given the set
of N linear equations for the X unknowns x, ,

A, x.=B,, i,j Eset"S—:(1,2, . . . , X),
j=1

where the set S can be expressed as the sum of disjoint
sets W and U:S= U+ W (with the elements of W being
labeled by the symbols a, b, c, . . . and those of U by sym-
bols of the form a,p, y, . . . ) to obtain a reduced set of
equations of the form

w+& w~ + (4)

where the D functions are defined recursively through the
relations

D~ A g aP Pa + g aa aP Pb+A A + A A A

p~ U Dp p, yE U Dap

(5)

D 8" D 8'D W, a. D 8' D 8'D W, aD 8', a,Pap= a p ' apy = a p y

The asterisk on the summation signs means that none
of the variables summed over can be equal to each other,
nor can they take on any of the values in the superscripts
of the D functions. Thus in the second term of (3), we

have the restriction aA W ( W, of course, stands for the
set of all wanted variables), and in the third term we have

the restrictions aWW, pAW, a, in the double sum. [In
Eqs. (3)—(5) it is unnecessary to specify explicitly that

a,p E U as we have done, because this is implied by the
superscript W on the D functions. ] The conditions on the
sums become more restrictive as more terms are includ-
ed, so that finally the sutns terminate (if N is finite) and
our expressions are exact.

Note that the D functions with more than one sub-

script are defined as products of D functions with a single
subscript with increasing numbers of superscripts. The
latter impose increasing restrictions on the sums, which
in turn implies that the corresponding D functions con-
tain fewer and fewer terms.

in which the only explicit reference is to the "wanted"
variables a, b, etc.

We require explicit expressions for the reduced matrix
A,b and reduced vector Bb. It has been shown [3] that
the elimination of the "unwanted" set U can be per-
formed exactly. The result is

A A + A A Aaa ab + + aa aP Pb +
a~ U Da ap~ U Dap

(3)
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III. Kj'1'KCl IVE HAMILTONIANS

In mathematical terms, the derivation of an effective
Hamiltonian corresponds to the elimination of an
unwanted set of states from the time-independent
Schrodinger equation, which we assume to be of the form

H
aEU

+
' Hla&&alHfP&&PfH+

w
a,pE U D p

(15)

(H —},)~y, &=0 (7)

for the eigenvectors and eigenvalues of the Hamiltonian
H. We introduce a complete set of states

g [E &&i[=1
iES

and write the equation in the form

g(H, , —A5,, )&j~l(&=0, i~S,
jGS

(8)

(9)

where for convenience we have dropped the label 'T'
which distinguishes the particular eigensolutions of Eq.
(7).

Equation (9} is of the same form as (1) with 8;=0.
Proceeding as in the previous section, we divide the full
set of states S into the sum of disjoint "wanted" W and
"unwanted" U parts. The subset of equations which con-
tain unwanted states as labels are eliminated to leave the
reduced eigenvalue equation

[H, (I, )
—iN, ]&b~g&=0, aE8', (10}

where H(A, ) is the effective Hamiltonian, and is given ex-
plicitly from Eqs. (3}-(6)as

Hab(A, ) =Hab —g ~ + g ~ +
Da ap~ U Dap

where

Da =Haa —
A,

—g
peU Dp

+ + a —aP Pb +
H.H H

p, y6 U Dap
(12)

) W DWDWa DW DWDWaDWap' etcap= a p & apy= a p y' ',' eC. (13)

The eigenvalues can be determined by solving the deter-
minantal equation

~II.,(x)—xn„~ =o, (14)

and correspond with the eigenvalues of the original Harn-
iltonian. Note that the effective Hamiltonian is an impli-
cit function of the eigenvalue A, through the definition of
the D functions. For notational convenience, we hence-
forth write H(A, ) as H.

Alternatively, we may write Eq. (11) in operator form
as

it being understood that H acts only in the space spanned
by the vectors of the wanted set 8'.

Equations (11}—(15}are the main results of the paper,
and provide an exact procedure for calculating the
effective Hamiltonian.

In practice, one usually takes an approximate form for
H. For example, if we take only the first two terms in
Eqs. (11)and (12), we obtain the expression

H~aH( b
H, b =H, b

—g
agU aa

(16)

Ha&apHpb

.„,(H..—X"')(Hpp —X'") ' (17)

where i(,
™indicates the nth-order approximation to the

eigenvalue. We note that the presence of the term
+pa~U H pHp l(Hpp A,

' ') in the —denominator of the
second term of Eq. (17}represents the sum of an infinite
subset of terms from the perturbation-theory power
series.

The continued-fraction approach allows considerable
flexibility in the manner in which approximations are
introduced —an additional advantage over perturbation
theory. Thus at resonance, such factors as H —

A,
' ' in

Eq. (17), which arise from taking the zeroth-order ap-
proximation to the D functions, may become zero, lead-
ing to singularities. These singularities may be eliminat-
ed by replacing the zeroth-order approximation to the D
functions by the second-order approximation. A suitable
second-order effective Hamiltonian to avoid these singu-
larities is therefore

~' H..—X'"—y H.pH~y(Hpp j"')—
PEU

(18}

which is the second-order perturbation-theory expression
for the effective Hamiltonian, provided that A, is evalu-
ated to zeroth order. This expression is valid if the off-
diagonal elements H, are sufficiently small compared to
the diagonal terms H —

A, .
While to lowest order, the systematic continued frac-

tion approach we have presented here produces essential-
ly the second-order perturbation-theory result, we should
emphasize that in general it is a much more accurate pro-
cedure than perturbation theory. For example, a con-
sistent third-order expression for the effective Hamiltoni-
an obtained from Eqs. (11)and (12) is

H, ab
H, b =H, b

—g.«H..-~~'&- y H~H~i(Hpp j"~)-
PFU
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H=H0+ V (19)

a nonperturbative result.
In many cases of interest we can decompose the origi-

nal Hamiltonian into the sum of two terms:

mation has been used to eliminate the explicit time
dependence at the pump frequency.

A transformation is now made to the dressed-state pic-
ture for the two-level atom:

where

(Ho), =(Ho), =0 for all a and a,
V„=O; V =0 for all a and e .

That is, Ho does not connect the 8'and Uspaces, and V
has no diagonal matrix elements in either space. Then we
may write

w
aEU Dz

~+ ) =cosa[1 ) +sina ~0),

~

—) = —
sinai 1 )+cosa~0),

where a is defined by

sin2a =0/0' and 0' =(0 + b, f )'

The Hamiltonian becomes H =Ho+ V with

Ho= S3+b2a a+a G+G a; S3—:go'»,
2

V=at(G, +GtI)+(G, +G2)a,

(24)

(25)

(26)

(27)

VI & & I Vln& &n V+. . .
a,PE U D 8'

V pVpD w=—(H, )..—X —g
pcU p

+ + aa ap pb +
V V V

8
pr& U ~p

(22)

where

G =g C„g„/4, C„=g„(1+cos2a ) /4;

Ap =gs—1n2a/4;
P

(28)

IV. EXAMPLE: THK SINGLE-PHOTON
DRESSED-STATE LASER

H= ,' g [b, ,o»+Q—(a„+a„+)+g„o„+a

+g„cr„a +52a a] (23)

As a nontrivial example of the derivation of an
effective Harniltonian, we consider an ensemble of two-
level atoms placed in a cavity and interacting with a
transverse external pump whose Rabi frequency is 0,.
This system was considered in detail by Zakrewski,
Lewenstein, and Mossberg [4]. The Hatniltonian is

N,„—:a a+go„"o„
P

(29)

with eigenvalue M. These are of the form ~M —m;m )
where M —m is the number of photons in the cavity
mode and m is the number of two-level atoms in their ex-
cited state. The unwanted set is the set of vectors
[~M' —m', m") where m "Am' if M'=M). With these
definitions for 8'and U, Ho and V satisfy the conditions
(20).

Noting the matrix elements

Gz ——g B„os„, B„—:—g„(1—cos2a)/4 .
P

The wanted set of states is defined to be the set of
eigenfunctions of the "excitation number operator:"

where A, =co, —co~ and 62=co, —col with ~„co„and
coL being the atomic, the cavity, and the pump frequen-
cies, respectively. The o's are the usual Pauli matrices
used for describing two-level atoms and a is the creation
operator for a cavity mode. The rotating-wave approxi-

(Ho) =bz(M —m')+0'(m" —M/2)

for ~a) = ~M —m';m")

and

(30)

&M —m';m"
~
V~M —m;m ) =v'M —m +1(2m —M)5 ~,5 " g A„

P

+v'M —m + lm5, 5 " +10(M —m —1)QB„

+v M —m (2m —M)5, 5

+v'M —m (M —m)5, +,5 ",0(m —1)g B„,
P

(31)
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where 8(x ) is zero if x ~ 0 and takes the value unity oth-
erwise. We may evaluate the second-order contribution
to the effective Hamiltonian:

(32)

If we further assume that the atomic dipoles have ran-
dom phases, we recover the effective Hamiltonian derived

by Zakrewski, Lewenstein, and Mossberg [4]:

H=62a a+ —,'O'S3+G a+a G

as
+g ",(a ta + —,

' )a 3„. (35)

Am 0'
3 0'3 B B*

c7pcxp

62+0'

p, 2

(33)

By choosing different wanted and unwanted sets we
can derive the two-photon effective Hamiltonian also em-

ployed by these authors.
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