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Simultaneous fourth-order squeezing of both quadrature components
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It is shown that a particular combination of so-called even coherent states, dubbed the orthogonal-even

coherent state, while exhibiting no "ordinary" or second-order squeezing, can furnish near-optimal

simultaneous-quadrature fourth-order squeezing [where the latter term is defined in the sense of Hong

and Mandel, Phys. Rev. Lett. 54, 323 (1985)]. The Wigner function of the particular quantum-

mechanical superposition of states is calculated and various plots compared to the Wigner function of a
simple statistical mixture of the same states. Rather uninteresting behavior is found in the latter case,
which illustrates that the higher-order squeezing effect is due to nonclassical, quantum-mechanical "in-

terference in phase space. "

PACS number{s): 42.50.Dv, 03.65.8z

I. INTRODUCTION

Some time ago Hong and Mandel [1] generalized the
standard concept of squeezing [2], which involves
second-order moments, to arbitrary (even) ¹h-order mo-
ments of the electromagnetic Geld. Their criterion for
higher-order squeezing of the quadrature Geld com-
ponents X&,X2 (to be defined below) is

((~;) &(((~;) &„„('=10 2),

i.e., the Nth-order fluctuation in the given state is less
than that which obtains in the coherent state (which, of
course, includes the important special case of the vacu-
um).

In a Comment [3] following publication of their pa-

pers, I was able to display a state infinitesimally diFerent
from the coherent state, in which, by Hong and Mandel's
criterion, both quadrature components are infinitesimally
squeezed in fourth order (N =4). Subsequently [4] I pro-
duced a state with granite simultaneous-quadrature
fourth-order squeezing.

For N =2 ("ordinary" squeezing) one is unable to con-
struct such simultaneous-quadrature component-
squeezed states, since, as is well known, in the coherent
state the uncertainty product Uz =—((~, ) &((b,X2) &

takes on its minimal value. However, such
simultaneous-quadrature component-squeezed states exist
in Hong and Mandel's higher-order squeezing scheme for
the simple reason that the coherent state is not the
minimum-uncertainty state for the Nth-order uncertainty
product U~:—((b Y, ) &((~2) &, when N&2. It is of
interest to inquire what the minimum values are for
U&, N&2, and this has been explored numerically in a
series of papers by myself and Mavromatis [5]. In the in-
terests of successfully pursuing this work the problem
was abstracted and moved onto a more or less purely
mathematical plane.

In the course of the research much has been learned
about such higher-order uncertainty products. However,
during these endeavors the original quantum-optics ori-

gins of the problem have become almost completely at-
tenuated. For example, these somewhat abstract numeri-
cal calculations involved a general superposition of num-
ber states, each of whose weighting in the overall trial
wave function was varied to achieve a numerical
minimum for simultaneous-quadrature squeezing. Hence
although this work originated with Hong and Mandel's
[1] generalization of "ordinary" optical squeezing, those
interested in optical problems might well question the
relevance to their field of the results [4,5] ultimately
found. Thus the motivation of the current research was
to discover whether a connection could be established be-
tween the abstract, variational states and states of com-
mon currency in quantum optics, viz. , the coherent states
[6]. The attempt was in fact successful, for it is found
that a certain superposition of coherent states also leads
to simultaneous-quadrature-component higher-order
squeezing. In the rest of this paper these states will be
described and some of their properties explored.

II. ORTHOGONAL-EVEN COHERENT STATES

The even coherent states [7] are defined by

ia»—:A'"[ a&+~ —a&]. (2)

Here the a & kets are eigenstates of the single-mode elec-
tromagnetic field operator a, the well-known coherent
states [6], whence the normalization constant A is easily
found to be

2[1+e-'i i']
(3)

These states have been utilized by Hillery [8] in the
study of a form of higher-order squeezing that differs
completely from the Hong-Mandel version, termed by
Hillery as amplitude-squared squeezing. For complete-
ness one might mention that a third flavor of higher-
order squeezing has been proposed by Braunstein and
McLachlan [9]. However, aside from mentioning these
two latter schemes, in this paper only the Hong-Mandel
form of higher-order squeezing will be considered.
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Buzek, Knight, and Barranco [10] have examined some
properties of the even coherent states in an excellent
semitutorial paper. For completeness we mention that
Gerry [11] (see also Zhu, Wang, and Li [12]) has studied
the nonclassical properties of these states, and their con-
sideration in the context of "Schrodinger cat states" is
found in a recent paper by Buick, Gantsog, and Kim
[13]. Finally, Schleich, Pernigo, and Le Kien [14] consid-
er a generalized form of the superposition in Eq. (2),
which reveals some highly interesting features of these
states.

In particular it is found [10,14] that the even coherent
states exhibit "ordinary" (N =2) squeezing. Further-
more it has been shown by Buick, Jex, and Quang [15]
that these states also display fourth-order squeezing. In
this paper we will examine the second- and fourth-order
squeezing properties of a particular superposition of even
coherent states

N(4)
+ + (-')'(:(~ )"-':

&1

+ + (N —1)!!(—,
'

) (7)

where N'"'= N(N——1) (N r+—1),:f(a,at): denotes
normal ordering of the a, a operators in the function f,
and ~,—:X, —(X, ).

IV. SECOND-ORDER SQUEEZING

For the case of second-order squeezing (N =2), Eq. (7)
becomes

with the resulting commutation relation [X&,Xz]=i
Calculations of the degree of higher-order squeezing are
facilitated by a formula due to Hong and Mandel [1],

N(2)((~ )N) (.(~ )N. ) + (
1 )2(.(~ )N

—2. )2

ly & ) —=~'"[la & &+ I
a & &], (4)

III. HIGHER-ORDER SQUEEZING CALCULATIONS

Given the field operator a and its Hermitian conjugate
at, satisfying [a,at]=1, the quadrature field components
are defined as [17]

a+at
X,-='+', (6a)

2

a —a
X2 =—

v'2i
(6b)

where it can be shown that the normalization constant 8
satisfies

coshlal'
(5)

2[ coshlal + coslal ]

In this paper the lg) ) states will be termed orthogonal
even coherent states. [The origin of this name is revealed
by the study of the defining Eq. (4). In the complex a
plane the vector representing I',a is rotated 90 degrees
from a, hence the even coherent state Iia ) ) is "orthogo-
nal" to the state Ia) ). Alternatively one might follow
the terminology of Jex and Buick [16], who in the con-
text of so-called multiphoton coherent states would term
these four photon s-tates. ]

In the coherent state the second term on the right-hand
side (rhs) of Eq. (8) vanishes. Second-order squeezing of
X, thus obtains whenever one has ((~, ) ) & —,'.

For the orthogonal-even coherent state one finds after
a short calculation that

« 41(~ )'l4 & &
= '+

I
I' "

coshlal'+ coslal'
'

The second term on the rhs of Eq. (9) is always positive,
hence X, is never squeezed in second order. One can ob-
tain the corresponding equation for X2 by rotating the
coordinate system by 90', i.e.,

atria

Since .Eq. (9) de-
pends only on I a I, the identical result is obtained for X2.
Thus one concludes that the orthogonal-even coherent
state does not exhibit any second-order squeezing. It will
be seen later when the %igner function plots of these
states are exhibited that this result can be traced to the
symmetry of the states in X& and X2.

V. FOURTH-ORDER SQUEEZING

After a long and tedious calculation one obtains the
following result for the fourth-order moment of X& in the
orthogonal-even coherent state:

I
~ 4I &

3 lal'(»nhlal' —»nial')+ lal'(«oshlal' —D coslal')
4 coshlal'+ coslal'

(10a)

Here

1 cos4$
2 3

(10b)

2 3
(10c)

where P = arg(a ). From Eq. (7) we conclude that
X& will exhibit fourth-order squeezing whenever
s=—&(yl(m, )'ly» &-,'.

If one differentiates Eq. (10a) with respect, to p and sets
the resulting expression equal to zero, it is found that a
necessary condition for S to be an extremum is that
sin4$=0, independent of Ial. For 0&/&@/2, numerical
calculations of S reveal that of the possible solutions of
the extremum condition, /=0, n/4, n/2, only P.=n./4
yields any fourth-order squeezing in X, This fourth-
order squeezing exists over a range of Ial, 0& Ial &0.79.
Minimal squeezing is found at Ial=0. 67, with value
S( min) =0.6999, or about 7% below the value obtaining
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FIG. 1. Phase-space plots of
the Wigner function W(a) vs

the scaled variables X~
=Re(a)/&2, Xz = Im(a)/&2,
where P is taken to have the
form P=ib+ib)iv'2 thus satis-

fying the necessary condition for
minimal simultaneous-

quadrature fourth-order squeez-

ing. (a) b =0, a degenerate case
where the orthogonal-even
coherent state goes over to the
vacuum; (b) b =0.671, found by
numerical calculations to pro-
duce minimal simultaneous-
quadrature fourth-order squeez-
ing. A slight "tucking in" of the
Wigner function along the

X&,X& axes is just noticeable; (c)
b =0.794. The "tucking in" is
more pronounced, but here one
is at the end of the range of
fourth-order squeezing; (d),(e)
b =1.0,2.0. The plots exhibit
complex features due to "in-
terference in phase space. "
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FIG. 1. (Continuedj.

(e

in the coherent state (0.75). It is surprising and quite
unexpected that this minimal value is quite close to the
best value found in numerical calculations [5],
S«m( min)=0. 6984, utilizing a more general superposi-
tion of number states in a variational calculation.

An interesting feature, which is the point of this paper,
is found upon using the prescription for obtaining the
corresponding result for X2, i.e., letting a~i a, or
P~P+n/2. Because P only appears in Eq. (10) as
cos4$, the resulting expression for ( (P ~

(~z ) ~ P ) ) is
identical to that obtained for X&, i.e., simultaneous-
quadrature fourth-order squeezing.

It is entirely possible that for N =6, 8, . . . , the
orthogonal-even coherent states might exhibit
simultaneous-quadrature higher-order squeezing similar
to that found in variational calculations [5]. This ques-
tion has not been pursued because already in fourth-order
the calculations are extremely laborious.

where

a„=i 'P, k =1,2, 3,4 .

The Wigner function then takes the form

4
W(a)= AB g wj(a;a;, a~ ), .

ij =1

where using Eq. (11) it can be shown that

(12b)

(13a)

P'(a)= fd ke za'+x'aTrIpew x'a]—
~2

Here the integration is taken over the entire complex A,

plane. For the orthogonal-even coherent state,
4

p=iy))((y(=~a y Ia, )(a, i, (12a)

VI. WIGNER FUNCWIONS

For a system with density operator p, the Wigner func-
tion 8 (a) is defined as [18]

(13b)

We now choose P to have the form P=(b+ib)l&2, so
that arg(P)=m/4, the necessary condition for minimal
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simultaneous-quadrature fourth-order squeezing. Figure
1 shows phase-space~lots of W(a) vs the (scalar) vari-
ables X&= Re(a)l&2, X2= Im(a)/&2. It is seen that
the plot with b =0 (a degenerate case for which the
orthogonal-even coherent state goes over to the vacuum)
can scarcely be distinguished from that belonging to the
value b =0.671, the case of minimal simultaneous-
quadrature fourth-order squeezing. There is perhaps a
hint of "tucking in" along the X„X2axes, which is much
more exaggerated and easily seen in the cases b =0.794,
1.0. (However, recall that the value b =0.794 marks the
upper end of the range of values for which such simul-
taneous squeezing is observed. ) For b =2.0 the plot of
the Wigner function takes on highly complex features.
Even if the very slight "tucking in" along X, and X2 can
only be conjectured to represent the source of
simultaneous-quadrature squeezing, it is clear from the
symmetry of these plots that no second-order squeezing
might be expected, as is found to be the case by calcula-
tion.

Finally, compare the Fig. 1 plots to those in Fig. 2,
which depict the Wigner function of a statistical mixture
of the ~ak ) states,

(14)

The lack of cross terms of the form ~a; ) (aj ~
in p~ elimi-

nates "interference in phase space" [10,14] and simply
yields a broad peak for b =0.671, which then goes over
to four separate peaks in the case b =2.0. This confirms
the central role of wave-function superposition in quan-
tum mechanics for obtaining such nonclassical effects
such as squeezing, in the "ordinary" (second) as well as
higher-order forms.

VII. SUMMARY AND CONCLUSIONS

It has been shown that a particular combination of
even coherent states, dubbed the orthogonal even -coherent
state, can furnish near-optimal simultaneous-quadrature

Wo.,

0.15

W

a)

FIG. 2. Repeat of phase-
space plots, with the same pa-
rametrization as Fig. 1, but that
of the Wigner function 8'(a) re-

sulting from the density matrix
given by Eq. (14), representing a
statistical mixture of the four
states ~al, ) entering into the
orthogonal-even coherent state.
(a) b =0.671; the lack of cross
terms in the density matrix
yields a simple broad peak, due
to the lack of "interference in

phase space"; (b) b =2.0. Corn-

pare the separate peaks obtained
in this statistical mixture to the
complex features of the corre-
sponding Fig. 1 plot.
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fourth-order squeezing. Yurke and Stoler [19] have
shown that even coherent states can be experimentally
produced via propagation of coherent light in an
amplitude-dispersive medium. Recently and more to the
point, Jex and Buzek [16]have briefly mentioned a mech-
anism for production of the orthogonal-even coherent
state itself, via a resonant two-photon Jaynes-Cummings
model with the cavity field initially in an even coherent
state. In view of the attraction these days towards non-
classical optical states it would be interesting to witness
experimental generation of the orthogonal-even coherent

states and subsequent study of their higher-order squeez-

ing properties.
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