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Resonance collisions between three-level systems in an intense laser field
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Theory relevant to the treatment of resonance collisions between two-level dressed atoms has been ex-

tended to the three-level case in a self-contained calculation of field-dependent collision rates. With the
laser field tuned close to the ~e, )~~ez ) transition, dressing of the upper two-level system is achieved.
We solve coupled equations of motion for two-atom states that describe one atom in the ground state
and the other in one of two dressed states. Dressed-state collision rates are calculated within the impact
approximation using S-matrix theory. The coupled equations of motion are simplified in the limit of in-

tense field. We have applied the theory to describe approximately collisions between Ne atoms in fields

intense enough to dress the collision complex.

PACS number(s): 34.50.Rk, 32.70.—n, 32.80.—t

I. INTRODUCTION

Considerable theoretical research has been carried out
into the effect of strong laser radiation on atomic col-
lisions [l]. In particular, the modification of collision dy-
namics by a strong laser field [2,3] has been of much in-
terest. The theory used to describe this must consider the
coupling of the atom with the field for the case where the
effect of the field is too large to be treated using perturba-
tion theory. The "dressed-atom" approach [4,5] treats
the atom in the field to all orders of perturbation and pro-
vides the most appropriate description of strong-field sys-
tems. In this paper we shall use this approach to calcu-
late field-dependent collision rates for the particular case
of two neon atoms undergoing pure resonance collisions.
The neon atom provides a three-level system. Collisions
couple the 2 'So ground state of one atom with the 3 'P,
"first excited" (resonance) state of the other atom and a
strong laser field couples the latter with the 3 Sp second
excited" state in each atom. This three-level atom is to
relate to an experimental system in which the ~g )~~e, )
transition is in the vacuum ultraviolet and, for rare gases,
beyond the scope of available tunable lasers. The laser
field is tuned close to the

~ e, )~ ~
e z ) transition. Such a

scheme helps us to avoid the effects of stimulated Raman
scattering that occur when a ground state is coupled in

by a strong field. The field therefore dresses the upper
two level system. We solve coupled equations of motion
for two-atom states that describe one atom in the ground
state and the other in one of two dressed states. The
treatment is simplified by using the binary collision [6—8]
and secular [9] approximations. Calculation within the
impact approximation means that the S-matrix theory
can be used to find the dressed state collision rates. The
coupled equations of motion are simplified in the limit of
intense field.

emission during a collision is ignored and we neglect the
effect of degenerate substates.

We are interested in an atom consisting of a ground
state, ~g ) and two, nondegenerate excited states, ~e, )
and ~e2) which correspond to the three coupled states
shown in Fig. 1.

The (neutral) atoms interact via the dipole-dipole reso-
nance interaction between the ground state of one atom
and the first excited state of the other. The leading term
in the long-range analytical form of this interatomic po-
tential is

(d, r)(db r)
8tt (a, b) =—d d„—3

r r

Strong F

) 2p'sp

2p 3s

t P
'P,
'P,
s P

where a and b denote the atoms with electric dipole mo-
ments d, and db, respectively, and internuclear vector r.
To consider the interaction of two dressed atoms it is
convenient to use two-atom states. An undressed two-
atom wave function ~4(t) ) can be expanded in a basis of
single-atom product eigenstates:

II. THE THREE-LEVEL ATOM-LASER FIELD
COMPOUND SYSTEM

ance Transition

The atoms are assumed to follow classical rectilinear
paths and undergo only binary collisions. Spontaneous FIG. 1. Lower-energy levels of neon.

2p'
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I4(t) ) =ci(t)lgg ) +cz(t) Igei ) +c3(t)lgez )

+c4(t)leig &+c5(t)le, e, &+c,(t}leiez &

+c7(t)lezg & +cs(t)leze~ & +c9(t}lezez

The two, free, three-level atom system has a Hamiltonian
Pp with the following energies:

E$ = (gglup Igg ) =2fiNg,

Ez=&ge, IPplge, &=&e,glPple, g& =iit'(co, +cos},

Ez
= (e, e i I &p I e, e i ) =2fico,

E4= (gez I+plgez ) = (ezg IPplezg & =&(co,, +cps)

E5=(eiezlPpleiez ) =(ezeilPplezei ) =Pi(co, +co, },
E6= & ezezl&plezez & =2~

The two-atom system can be dressed by adding these
basis states to the field states and allowing the atom-field
interaction Hamiltonian, P; to couple the two systems.
couples the upper two states in each atom whereas the
resonance interaction Hamiltonian, 8s couples the first
excited state of one atom with the ground state of the
other. Figure 2 illustrates the atom-atom and atom-field
interactions.

Not all of the states participate in the collision. Both
atoms in the ground state represent a "null" two-atom
state since it has no open channels; we need not be con-
cerned with Igg ). Similarly there are no matrix elements
for resonance interactions between Ie, z) and Iez, ) and
the effects of Pand P'ti cannot combine to leave both
atoms excited. We are able to neglect the Iei zei z)
states. The addition of the two atom "bare" states to the
laser field results in the system shown in Fig. 3.

The total Hamiltonian for the undressed system is

8p' =Op+8, ,

such that

m =Oi

J=o mi =

FIG. 2. Schematic of the individual three-level atoms show-

ing the coupling of the laser field and atomic interaction opera-
tors.

(gei, n+1IP plgei, n +1)=Ez+(n +1)fgpiz,

&gez n l&p lgez n & =E4+n ficoL

We can write the total Hamiltonian for the dressed two-
atom system (including atomic interaction) as

P =Pp+8, + f'+8„, (7)

where

f (t)= —d.E(t) .

8„ is defined by Eq. (1) in which r, varies with time
through the collision.

The time-dependent wave function I4(t) ) is now
represented on a basis of only four states and can be reex-
pressed as

l@(t))=a, (t)lge„n+1)+az(t)lgez, n )

+az(t) Ie, g, n+1) +a4(t) Iezg, n )

Substitution of the undressed wave function into the
time-dependent Schrodinger equation with Hamiltonian
defined by Eq. (7) followed by projection onto the un-
dressed basis yields four coupled equations of motion for
the amplitudes a (t). Using the rotating wave approxima-
tion these equations can be written in matrix form as

Q1 Ez+ (n + 1)iricpL

I

R(t) Q1

E4+n ficol

0

V

R(t)
0

Q2 Qg
iR—a«z (10)Ez+(n +1)iitcpg Q3

a4 0 V E4+n fuel Q4

where V and R (t) represent the matrix elements of the interaction operators P'and Ptt, respectively. It can be shown

that R is given by

e'fi
8~Ep ~~g y' pgel

Criven the form of the undressed wave function I@(t)) in Eq. (9), we can write down a 4 X 4 dressing transformation for
the two atom system, thus,

cos(8/2) sin(8/2) 0 0
—sin(8/2) cos(8/2) 0 0

0 0 cos(8/2) sin(8/2)
0 0 —sin(8/2) cos(8/2)

(12)
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where 0 is defined by

2Vtan8=
R(coo —coL )

f', transforms the Hamiltonian and the Schrodinger equation for the dressed two-atom system can be written as

d ]

(13)

' =rut
d3 ' ' d3

. a q(t)&
cd

d4 d4

Use of Eq. (10) and (12) then yields

Eq 0 0 0 0 0 R (t) 0
0 E» 0 0 0 0 0 0
0 0 E, 0 i R(t) 0 0 0

0 0 0 E 0 0 0 0

(14)

R (t)
20

0 0 5—0 —2V/A

0 0 2V/fi —0—fi

S n —2V/e 0 0
—2V/A' 0—5 0 0

(15)

where the dressed two-atom Hamiltonian has been
separated into three matrices and

E&=—(2co +co, +co, +(2n+1) co+LA),I 2 g el e (16)

E&&=—(2co +co, +co, +(2n+1)co& —Q),II 2 g e& e2

so that

(17)

~ge„n+ i)

~ge), n+2)

le,g, n + i)

~e)g, n + 2)

Ei —Eir =&

To distinguish between the four dressed states they are
denoted by ~I), ~II), ~III), and ~IV); the photon num-
ber, n, has been omitted for simplicity. The eigenvalues
E, and E&& show that the four dressed states form two
pairs of degenerate levels.

The states ~I) and ~II) both correspond to the "first"
atom being in the ground state and the "second" atom
being in one or other excited states. States ~III) and

~
IV) correspond to the second atom being in the ground

state. It is important to remember that this system in-
volves one excited (and hence dressed) atom and one
ground (undressed) atom at any instant.

The consequence of the off-diagonal submatrices in the
third matrix in Eq. (15) is that the dressed pair ~I) and
~II) are coupled to the dressed pair ~III) and ~IV) re-
sulting in eight possible transitions. These are shown in
Fig. 4 and have rates denoted by I; . We shall now use

Eq. (15) to calculate the transition rates between the
dressed states.

It is interesting to note that transitions
~
I)~~III) and

~II)~~IV) correspond to excitation transfer between
atoms with no net change in the energy of the two-atom
system. The transitions ~I)~~IV) and ~II~~III) corre-
spond to collisions in which the two-atom system changes
its thermal energy by +fiQ. Such collisions are a new
phenomenon in the two, three-level atom interaction and
are made possible by the intense laser field causing ac
Stark shifts of the atomic energy levels.

~geg, n)

jge„r~+i)

(e,g, n)

)e,g, n+ s)

[geg, n 1)—
ge„n)

~egg, n —1)

~e, g, n)

FIG. 3. The undressed states of two, three-level atom —laser
field compound system. Three manifolds are shown.

FIG. 4. Transitions induced between the dressed states with
rates I;,.
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le( )&= S(P, e, v, 5, V)le( — }), (19)

where the S matrix depends on the collision geometry

III. SOLUTION OF THK COUPLED EQUATIONS
OF MOTION

To study the effect of a collision on the state vector,
l%'(t)), we seek the probability that a system in initial

state li) is left in a final state lf ) after the collision.
This is given by the square modulus of the collision S-
matrix element, S;&, coupling the two states. The S rna-

trix is obtained by integrating the equations of motion

through the collision. The effect of a sing1e collision is

expressed, thus,

(impact parameter P, collision angle 8, and relative veloc-
ity v) and the laser field (detuning 5 and Rabi frequency

0, ). To obtain the field-dependent excitation transfer
rates I;i( V, 5) we average over all possible collisions and
find

I;t(V5)=JVf™~2nPdPlStl f vf(v)dv, (20)
~min mia

where JV is the number density. Note that for the two-
level system coupled by the linearly polarized laser we
can ignore the average over collision angles 8.

For an intense laser field V))5 so that Q~2V/A.
Equation (15) can then be rewritten as

E(
0

a En

R (t)/2 —R (t)/2
—R (t)/2 R (t)/2

—R (t)/2 R (t)/2

E( 0

0 Eu

R (t)/2 —R (t)/2

l
p(t)) . (21)

We further note that for large field strengths the difference E,—E&& =0 becomes large. It should therefore be valid

to treat the terms coupling the states with this separation using perturbation theory. To do this, however, we first have

to take the coupling between degenerate states to all orders. The coupling between the degenerate pairs is described by

lA' —l%,(t) & =u, le,(t) ), (22)

where

R (t)/2
Eu
0

R (t)/2

0 R (t)/2

0
(23)

0 R (t)/2 0

The two pairs of coupled equations of motion are easily solved to yield time-dependent amplitudes for states in a new

basis. This basis is defined by the eigenvectors of the Hamiltonian in Eq. (22) so that in this basis the Hamiltonian is di-

agonal. %e Gnd

(d, Ed')(t)=D, +(t)=D,+(0)exp ——f E,+R(t'}/2dt' (24)

l
(dikd4)(t)=D«~(t)=D«~(0)exp ——f E«+R (t')/2dt'

fi
(25)

The new basis vectors are denoted by lg„), where k =I+, II+, I—,II—.The unperturbed wave function is written as

I:0(t}&=Di+(t}lk+ &+Dii+(t}lk«+ &+Di-(t}lk- &+Dii-(t}lg«- &

=g Dk (0)exp ——f Ek ( t ')dt '

k
k k (26)

The transformation effected by diagonalizing the matrix in Eq. (22) can be written as

1 0 1 0
0 1 0 1

1 0 —1 0
0 1 0 —1

It is easy to verify that

(27}
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f',u, f",=

Ei+R (t)/2

E„+R(t)/2

E, —R (t)/2

E„R—(t)/2
Perturbation theory is now used to include the effect of the collision couplings initially neglected. The matrix elements

excluded from Eq. (22} constitute the perturbation matrix u . Use of f'2 transforms the perturbation into the basis of
14&:

0 0 0 —R (t)/2
0 0 —R (t)/2 0
0 —R (t)/2 0 0

—R (t)/2 0 0 0

0 —R (t)/2 0 0
—R (t)/2 0 0 0

0 0 0 R (t)/2
0 0 R (t)/2 0

(29)

The couplings represented by the elements of u' in each
basis are shown in Fig. 5.

Following Eq. (26}, the general solution of the per-
turbed Schrodinger equation,

(30)

can be written as

~:-(t) &=QDk(t)exp ——' f '
Ek(t')dt' ~gk & .

k

(31)

X exp —f Eb(t') E,(t')dt'—
b

(32)

From the form of the matrix u' we see that the matrix
element in Eq. (32) can take four values corresponding to
the collisional couplings in Fig. 5(b). The four time-
dependent amplitudes Db"'(t) are found by integrating

Eq. (32}over all time. We find that the energy difference
between ~g, & and ~gb & is always constant at +AQ as a
consequence of the perturbation and Eq. (18}. The
simplified transition amplitudes are given by

D',~(t)=+ f R (t)e'"'dt, (33)
00

D'„'~(t)=+ f R(t)e "'dt, (34)
oo

FIG. 5. Collisional coupling between Stark-shifted states.
For a large shift the couplings are weak and can be applied as a
perturbation. (a) Dressed-state basis ~i). (b) Stationary unper-
turbed basis ~g„).

The rate of change of the probability amplitude to first
order for a collisional transition from ~g, & to ~gb & is

given by

—D„"'(t)=——„'(g, (u'~g. &

iQt

~ (p2+ V 2t2)3/2

(+3 e IQt

(p2+ V 2t 2)3/2

(35)

(36)

The Fourier transform of the even function, R (t) was
taken to be twice the Fourier cosine transform of R (t).
The cosine transform was taken from Ref. [10] and the
S-matrix elements 5;& are found to contain modified
Bessel functions of first order:

2iC3
D&"(Q,P, V) =S;t=+ 0

K, (QP/v), (37)
v 2P

where k=I, II+. To obtain the collision rates I;& we

average ~S;t~ over all possible collisions according to Eq.
(20).

Shah et al. [11]have carried out a closely related cal-
culation for the resonance collision of two dressed mercu-
ry atoms where the intense field drives the resonance
transition. To establish the qualitative effect of laser radi-
ation on the resonance interaction the field-dependent ex-
citation transfer rates were calculated for the 6 Sp~6 P~
transition in mercury. To see if it was necessary to per-
form an average over relative velocity, Shah et al. com-
pared [11]

I

where the lower limit of the integral over t' has been
effectively set to zero since it will have no effect when the
square modulus of the amplitude is calculated. The S-
matrix elements are thus given by the Fourier transforms
of the dressed atomic interaction matrix elements. The
Fourier components of R (t) represent the frequencies of
(dressed state) transitions that can be induced by the col-
lision; the harder (i.e., shorter} the collision, the greater
the energy separation it can overcome.

We make the approximation of a straight-line classical
path in which the perturber moves past the radiating
atom on a classical trajectory. The atom is considered to
be perturbed during the collision only. r is a function of t
and, for impact parameter P and mean relative velocity v,

is given by r=(P +V t )' . Equation (11) shows that
R (t) is proportional to r with a constant, C3. Insert-
ing this into Eqs. (33) and (34) we find that the S-matrix
elements are given by the following Fourier transforms:



49 RESONANCE COLLISIONS BETWEEN THREE-LEVEL SYSTEMS. . . 2753

4C3z f12 P,„jE,(Qplu)j
I „(0)=2IrJV z, dP,

U min

(38)

where we have used Eq. (37}and C3 is given by Eq. (11).
Numerical Algorithms Group (NAG) Fortran routine

S18ADF was used to generate the modified Bessel function
as a function of 0 for given P and U. The function was
also generated as a function of P for 0.3 &P & 10 nm at a

U U Sf U

min

with ujS;rj over a range of temperatures from 100 to
1500 K. It was found that the two expressions were the
same to within 3% and U was used for a given tempera-
ture. It was also shown that the depopulation rate of a
dressed state was negligible for P & 10 nm thus setting

P,„. Furthermore, for P&0.3 nm rapid oscillations in
the depopulation rate suggested a strong collision
"cutoF' at this impact parameter. Contributions to the
rate from collisions for which P &0.3 nm were found to
be less than 0.25% of the final values.

Assuming a mean velocity wi11 work here we can
rewrite Eq. (20) as

given 0 and v to check continuity of the integrand in Eq.
(38}. NAG Fortran routine D01AHF was used to perform
the integration over the impact parameter at a mean rela-
tive velocity U. Our intention was to plot I k as a func-
tion of Q. The above analysis is valid in the limit that the
perturbation 8' is small, i.e., the Stark shift, t)IQ is large.
The minimum impact parameter for which the analysis
remains valid, P;„,was found by calculating the transi-
tion probability jS;rj as a function of p for various values
of Q and v=589 ms ' (—:75'C}. The dressed-state de-
population rate should oscillate rapidly for P&P;„.
However, in this simple treatment the rate simply ap-
proaches infinity asymptotically as the impact parameter
aPProaches zero (jS;rj ~ca as P~O). Clearly the Per-
turbation is breaking down at the impact parameter for
which jS;rj &1. We assumed that the rapid oscillations
in the transition probability between 0 and 1 would give a
mean probability of —,'. We were thus able to deduce the
value of the impact parameter, P,„, (for a given value of
0) for which jS;rj =

—,'. Values of 0 between 10 and 300
cm ' were taken with U =589 ms ' and the correspond-
ing transition probabilities yielded by the above analysis
are shown as a function of P in Fig. 6.
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The values of P;„yielded by Fig. 6 were then fed into
Eq. (38) to calculate the rates of excitation transfer be-
tween two neon atoms at 75'C for various values of the
generalized Rabi frequency.

I',f (rad, s-~)

107 .—

(39}

We have calculated r,+»z (:—I'„). To relate these to the
above rates we can return to the S-matrix elements and
project ~gk ) onto ~i ). We write

(40)

It then follows that

r» ~
I & II(,+ )st+It+ & ktt+ llv & I

+](ill(g, &S, „&g„(ll&['.

(41)

(42)

The scalar products each yield a factor of 11'v'2 and we
find that

(43)

The rates displayed in Fig. 7 are thus easily converted
into rates that could be observed experimentally in the
Auorescence intensities. The actual intensities in a

IV. RESULTS AND CONCLUSIONS

With JV taken as 10' cm ' and 4C3/fi calculated to
be 2.57X10 m s ' rad ' (fs, =0.162 for the A,-73.6-
nm transition} the excitation transfer rates for the states

~gt, ) are shown in Fig. 7.
How would the effect of such collisions be observed?

In an experiment we would first produce population in
the first excited resonance levels using a discharge. %e
would then turn on an intense filed and observe the
amount of collision-induced fiuorescence from the upper
level which would then be dressed. The amount of
fluorescence would be determined by the rate of collisions
that cause transitions between the dressed two sets of de-
generate states ~II), ~IV), and ~I), ~III). Collisional
transitions between ~I) and ~III) or ~II) and ~IV) will
have no efFect on the light intensity emitted (they do
broaden the lines but that is much more difficult to ob-
serve). In terms of observables, then, all we are interested
in is the field-dependent transition rate, I

&2 ( =I z, ). It is
clear that

yp6

105
100 200 300

I) (crn ')

FIG. 7. Excitation transfer rates for states
~ (k & as a function

of 0 at U =589 ms ' and JV'= 10' cm '.

specific experiment will also depend on details of the tem-
poral an spatial profiles of the laser pulse. The rates we
have calculated can be used in the modeling of an experi-
ment based on such specific knowledge.

The strong-field-dependent collision rates can now be
compared with the field-free rate, I . Measurements of
the pressure width of the A,-585.2-nm line in self-
broadened neon have been made by, for example, Stacey
and Thompson [12]. The lower level in this transition is
predominantly resonance broadened by the 73.6-nm tran-
sition down to the ground state. Stacey and Thompson
report a pressure width of 1.6X1.0 rad s ' at 1 Torr.
(N.B. natural width = 0.719X10 rad s '.) Even at the
lowest Rabi frequency considered by the calculation (10
cm ') the collision rate has fallen to just over 10 rad

—1s
This analysis has shown why and by how much the ex-

citation transfer rates decrease when the intensity of the
laser Geld reaches the regime of 0~, =1. Although we

have chosen the case of Neon the analysis given here can
be extended quite straightforwardly to other systems. At
present two-laser experiments are underway in mercury
that will exploit the advantages offered by the three level
scheme described here.
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