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Using well-known concepts from semiclassical dynamics, we simulate spectra of a hydrogen Rydberg
electron under the influence of parallel electric and magnetic fields. The spectra show peaks characteris-
tic of recurring orbits as well as periodic orbits, which we have identified. The results agree qualitatively

with experiments.
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I. INTRODUCTION

In the past decade the attention of many atomic physi-
cists and nonlinear dynamicists has been focused on elec-
tron dynamics and spectroscopy in highly excited Ryd-
berg atoms placed in external fields [1]. This intense in-
terest stems from two principal reasons: These atoms can
be prepared and manipulated in the laboratory [2] and
they are amenable to theoretical treatments, often with
astonishing accuracy [3,4]. The corresponding Hamil-
tonians possess seemingly simple nonlinearities which can
lead to chaotic classical dynamics. The very high excita-
tions involved imply that the detailed quantum-
mechanical treatment can be very tedious; on the other
hand, the same excitations usually place the electron into
a regime where reasonable accuracy can be expected of
the correspondence principle. Thus Rydberg atoms in
external fields constitute atomic laboratories in which the
quantum mechanics of classically chaotic systems can be
investigated [5,6].

The quadratic Zeeman effect (QZE) [3-7] is among the
most often investigated atomic scenarios: Here the exter-
nal magnetic field is strong enough to contribute a
significant diamagnetic term to the atomic Hamiltonian
(in contrast, the Stark effect in Rydberg atoms has not re-
ceived the same intense attention because its Hamiltonian
is separable and does not develop chaos). When the effect
of the external field becomes comparable with the
Coulomb field the QZE Hamiltonian leads to chaotic
behavior. In the same regime, the excitation spectrum
has been observed to show sinusoidal modulation of the
spectral intensity [7], and unraveling these oscillations by
relating advanced quantum-mechanical ideas such as the
Gutzwiller level density formula [8] to the periodic orbits
of the corresponding classical system have yielded valu-
able insights into the quantum mechanics of classically
chaotic systems. Briefly, it turns out that the excitation
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cross section can be approximated classically as a “pha-
sor sum” over recurring classical orbits, which include
among them periodic orbits of the system. This result is
intuitively reasonable once the photoabsorption spectrum
is expressed as the Fourier transform of the autocorrela-
tion function [9-13]. Its oscillations are determined by
the overlap of an initial distribution with itself at different
times. Indeed, this approach to the origin of quasi-
Landau modulation has been illustrated beautifully by
Reinhardt [11,12] using wave-packet propagation.
Currently, theoretical and experimental interest in elec-
tronic wave packets is continuing [13,14].

One of the great advantages of QZE Hamiltonians is
that they scale with magnetic field strength [3,4]. By
suitably tying all relevant quantities to the magnetic field
(i.e., by using classical magnetic units [15]), one can en-
sure that periodic orbits need not be reanalyzed every
time the field is changed. Indeed, when working with the
scaled Hamiltonian, the total energy becomes the only
adjustable parameter in the analysis. It has now become
desirable, however, to find other paradigmatic and exper-
imentally realizable systems which have all the desirable
properties of the QZE, but contain additional simple per-
turbations. One such system can be produced by adding
an electric field to the strong magnetic field. Increasing-
ly, the resulting Stark—quadratic Zeeman effect (SQZE) is
attracting the interest of theorists [1,16—18] and experi-
mentalists [19-22]. Among possible relative orientation
of the fields, the parallel alignment alone ensures the sur-
vival of the magnetic quantum number as a good quan-
tum number throughout the chaotic regime and therefore
reduces the phase space of the problem to manageable
size (namely, the same as the QZE). Various aspects of
parallel-field SQZE, including supersymmetry [23] and
the use of extended Lissajous action-angle variables for
high-order perturbation theory [24], have been investigat-
ed in the recent literature.
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As argued before, the presence of experimentally ad-
justable parameters in the parallel-field SQZE opens up
the possibility of researching the evolution of the well-
known QZE properties under the influence of a perturba-
tion. Precisely such an experiment was performed by
Konig et al. [20], who, with the help of high-resolution
laser spectroscopy, studied the oscillator strength distri-
bution of barium in the vicinity of the zero-field threshold
[25]. In their spectra, they observed a transition from
quasi-Landau resonances to electric-field-induced oscilla-
tions [26] as they increased the strength of the electric
field and were able to relate many spectral features of the
intermediate cases to the periodic orbits of the evolving
system. These experiments constitute seminal probes
into the structure of the SQZE phase space in general and
the evolution and bifurcations of various periodic orbits
in particular. On the other hand, they are rather difficult
to simulate in detail because of the nonhydrogenic nature
of barium, as well as the high excitations and extensive
initial state mixing, to name just a few of the difficulties.

Our purpose in this article is to map the evolution of
the hydrogen Rydberg spectrum as it changes from the
magnetic-field-dominated to the electric-field-dominated
regime. Because of the many technical difficulties in-
volved in simulating the experiment, we will perform the
analysis only semiquantitatively and after a number of
approximations. For our investigation, we use a method
which has successfully uncovered the order under the
spectra of a number of classically chaotic atomic and
molecular systems, namely, classical autocorrelation
functions [9,10,27-31,39]. The initial excitation is as-
sumed to be in the form of a wave packet [9,10,27] and its
evolution is followed by means of quasiclassical trajec-
tories [27]. While these classical constructs obviously do
not have all feature of quantal evolution, they are known
to give useful results in the correspondence principle re-
gime. We simulate spectra by calculation of a classical
low-resolution autocorrelation function [9,10,27,32,33],
which shows very clearly which recurring trajectories
and/or periodic orbits should be expected to contribute
to the spectrum as the system evolves. This procedure is
particularly well suited for identifying new periodic or-
bits, especially in systems with nontrivial symmetries.
While experimental and calculated spectra differ in their
details, there is remarkable qualitative agreement given
the highly approximate nature of our treatment.

This article is organized as follows. First, the scaled
Hamiltonian for the parallel-field SQZE is derived. Then
we discuss the details of constructing an initial wave
packet and calculating the autocorrelation function. For
each electric field (including the QZE), we examine
significant spectral features and trace their origins to
recurring motions in the system. We find that the ap-
pearance of the spectra changes drastically for a number
of critical electric-field strengths. We conclude with a
discussion of possible extensions.

II. HAMILTONIAN

Here we construct the scaled Hamiltonian for a hydro-
gen atom in a high Rydberg state in the presence of

2735

parallel electric and magnetic fields along the lines of the
work of Edmonds and Pullen [15]. A few well-founded
assumptions simplify the Hamiltonian greatly. We as-
sume that the magnetic field is large enough to cause a
level splitting which is much greater than the spin-orbit
splitting; thus we can ignore the spin of the electron. We
also specialize our treatment to the m =0 state without
loss of generality (the extension to nonzero m is straight-
forward [24]).

With the assumptions mentioned above, the Hamil-
tonian consists of the kinetic energy, magnetic field B,
electric field F, and the Coulombic term. The Hamiltoni-
an is first converted to a rotating Larmor frame whose
frequency is half the cyclotron frequency, which is

o, = le|B , i
uc
where p is the reduced mass of the electron and e is the
electronic charge. In cylindrical coordinates, the result-
ing Hamiltonian is

2 2 2 2.2
[0} 2
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2“ 2,llp 2'u 8 (p2+22)1/2
(2)
Using classical magnetic units [15]
p=/(electron reduced mass) , (3)
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for mass, length, time, and energy, respectively, the Ham-
iltonian is considerably simplified to
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Our earlier assumption of m =0 reduces the Hamiltonian
further to
P A VR ©)
2 2 2 ( P2+ 22)1/2 8
Instead of having to solve a new Hamiltonian for every
contribution of electric and magnetic fields, we can solve
Eq. (9) for one A and adapt the results to various magnet-
ic field strengths through the B dependence of the units:
for instance, the value of # is now magnetic-field depen-
dent. This aspect becomes important in considering the
width of the initial wave packet discussed later in this pa-
per. The Coulomb singularity may be removed by work-
ing in semiparabolic coordinates [15,34],

p=ul—v?, z=2uv where r=(p*>+z2)!"? (10)
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and changing the time scale by [35]
dt/dt=4r (‘“regularization”) . n

Let E=H be the energy of the electron in the (p,z)
frame,

Ezil
2

2 2

E

dt

z_l )\.Z
r 4

dp

dr (12)

E, in the new coordinates, becomes
2E=z‘;(p3+p3>+(u2—u2)2—<u2+v2)—‘+%uv, (13)

where p, =du /dt and p,=dv /dr. The Hamiltonian in
the (u,v) frame can be obtained by multiplying by 2r.
This yields the pseudo-Hamiltonian

K=2=Llpl+p2)—4E (u*+v?)
+2ul+ o) ul—v) v (ui+0?) . (14)

Thus electron energy becomes a parameter in the
pseudo-Hamiltonian which determines the frequency of
the two-dimensional isotropic oscillator portion.

III. CORRELATION AND SELECTION
OF PARAMETERS

Our method is based on semiclassical computation of
the survival probability for the electron. The classical
analog of the survival probability is the autocorrelation
function for the classical distribution of initial conditions
[9,10,27].

We can define the survival probability as the square
magnitude of the Fourier transform of the intensity dis-
tribution I (E) [9,10]:

. 2
C,(0=|[dEe~E1E)| . (15)

This probability can also be expressed as [10]

C,()=Trp(0)p(¢) , (16)
where
£(0)=k (k| a7

is the density operator for the initial state |k ) and
plty=e H/A| ) (k| (18)

The classical analog of this quantum correlation func-
tion is a density-density autocorrelation function [10,27]:

C.(n= [ dpdqp(p(0),q(0))p(p(1),q(1) . (19)

The initial distribution p(0) must be made to correspond
with the distribution inherent in the initial wave-packet
by a Wigner or Husimi transform [32,36]. We take the
initial distribution in the electronic wave packet to be
\/_(; —a2/2q;—q*? igp*/
¢,(0)=]] 1/4] e ITUTY TR (20)
;o
J

where (p*,q/") is the center of the packet.
The Wigner transform [36] is defined as
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W(p,q)=h ¥ [dxe®*"3(q—x/2)d(q+x/2) . (1)
For our distribution, this definition yields

W(p,q)=p(p,q)

2 %2 %22 )
aj(qj qj)e (pj pj)/ﬁaj

=h " "] e (22)
J
We will calculate C,(¢) by the Monte Carlo method
%4 M
Javrm=—73 rx), (23)
M =

where the points x; are uniform randomly distributed
over the volume V.

With the uniform distribution of points the p(0) term
becomes a weighting factor. We have incorporated this
weighting in the selection of sample points. We thus use
a random Gaussian distribution of initial conditions of
width 1/a;. The correlation function is now

1

where (py,q; ) is the random Gaussian distribution of ini-
tial conditions centered about (p*,q*).

A set of parameters a; has been used to set the scale
for the distribution of initial conditions, the width of the
Gaussian distributions (Fig. 1). We have chosen all of the

a; to be identical and equal to
a;=Vw/#, (25)

where w =5 and #=0.015. The set of initial conditions
is then obtained by creating a pseudorandom Gaussian
distribution for u, v, p,, and p,, whose width is unity.
The position coordinates are then divided by a; and the
momentum coordinates are multiplied by #ia;. These are
then added to the u, v, p,, and p, values for the center of
the packet.

With our initial wave packet, the parameter E is calcu-
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FIG. 1. The location and size, in classical magnetic units (see
text), of the simulated wave packet, for A=0.0 and E=—0.3,
within the curve which bounds the motion in the (u,v) frame.
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FIG. 2. The energy distribution for a simulated wave packet.
This is a Gaussian distribution centered approximately at
E = —0.3 (in classical magnetic units, see text).

lated to satisfy the Hamiltonian for each point in the
packet; see Fig. 2. Each of the initial points is then pro-
pagated by means of a fourth-order Runge-Kutta routine.
The fixed time steps make the autocorrelation calculation
for the packet much simpler. Both the autocorrelation of
each trajectory and the contribution of each trajectory to
the autocorrelation for the packet are calculated.

IV. RESULTS

We will give a basic analysis of a simulated wave pack-
et started at ¥ =0.6, v =p,=0.0, with p, chosen so that
E = —0.3 at the center of the packet. Figure 1 shows the
initial wave packet and the curve which bounds the
motion at E=—0.3. We have selected this energy be-
cause Harada and Hasegawa [37] found that the chaotic
fraction of phase space in QZE begins to increase
significantly at £E=—0.35. At this energy we find that
most of our trajectories are chaotic in the SQZE problem.
The correlation plots for scaled electric field A between
zero and nine can be found in Fig. 3. The spectra change
their appearance noticeably (qualitatively) at A=2.2 and
5.6. We determine which classical orbits contribute the
most to the correlation, by observing the frequency with
which a given periodic orbit appears in the packet. Then
plots are made of the most significant contributors for a
given field value. An example of this can be found in Fig.
4, for A=0.0. For the periodic orbits we use the nomen-
clature of Wintgen and Friedrich [7], who also shows the
appearance of the periodic orbits for zero electric field.
Their properties are summarized in Ref. [11], Table I
An alternative naming convention for some periodic or-
bits appears in Mao and Delos [38].

A. A=0.0(QZE)

At A=0.0, the quasi-Landau oscillations in the QZE
define the spectrum [see Fig. 3(a)]. These are dominated
by the in-line orbit I, Fig. 4(a). Yet there is a large
variety of orbits which contribute to the correlation. All
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FIG. 3. Autocorrelation plots for the simulated wave packet
for constant magnetic field and electric fields (a) A=0.0, (b)
A=1.0, (c) A=2.2, (d) A=3.2, (e) A=5.6, and (f) A=8.6. The
wave packet was started at ¥ =0.6, v =0.0, p,=0.0, and p, (in
classical magnetic units, see text) chosen such that E=—0.3 at
the center of the packet (see Figs. 1 and 2).

of these orbits have a tendency to oscillate horizontally,
along the I, path. These orbits include III, [Fig. 4(b)]
and IIb, [Fig. 4(c)], as well as many previously unnamed
orbits. Some of the orbits approach but do not pass
through the origin and therefore are unimportant in the
photoionization process. The width of the peaks in-
creases with time. This is due to trajectories which are
not perfectly periodic, as well as the appearance of trajec-
tories with very long periods which give very small con-
tributions.

B. A=1.0

At A=1.0 the electric field starts to distort the spec-
trum [compare Figs. 3(a) and 3(b)]. The I, orbit is now
much more weakly represented. The dominant orbit be-
comes IIb, [Fig. 5(a)], as can be seen by the relative
height of the second peak, where IIb, has its largest
effect. We also have significant effects from the III; orbit
[Fig. 5(b)]. III; is responsible for the splitting of the
peaks after 1 =7.0. At A=1.0 several higher-order orbits
appear and these help to account for the increased
amount of structure at long times.
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units (see text). Below the orbit is a graph of the correlation function for that orbit.
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FIG. 6. Plots of important recurring orbits
contained within the bounding curve for the
motion for A=2.2, in classical magnetic units
(see text). Below the orbit is a graph of the
correlation function for that orbit.
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C. A=2.2

At A=2.2 [Fig. 3(c)] the first peak of A=1.0 [Fig. 3(b)]
has disappeared. This field strength is large enough to
cause considerable ionization and thus only the most
stable orbits will contribute. The peak that was previous-
ly associated with the I, orbit, at r=2.0, has now
effectively vanished. The IIb, orbit [Fig. 6(a)] still gives
the strongest contribution. The effect of the IIb, orbit is
seen in the first and third peaks in the correlation. The
IIT; orbit [Fig. 6(b)], also makes a strong appearance at
the second and fifth peaks. The fourth peak is dominated
by the orbits in Figs. 6(c) and 6(d). At A=2.2, Fig. 6(b)
and higher-order members of its family all contribute, yet
we do not see the lower-order forms of Fig. 6(d) until the
electric field increases further. The correlation still ex-
hibits oscillations similar to those seen in the QZE.

As the electric field is increased further, the number of
points whose trajectories quickly lead to ionization be-
comes large around A=2.5. This, of course, is expected
[see Figs. 7(a) and 7(b)], but does lead us to put one condi-
tion on the contributions to the correlation function. We
do not consider the contribution to the correlation of tra-
jectories which ionize for relatively short times. The
reason for this is twofold. First, the contribution of such
trajectories only consists of a spike starting at ¢=0.0,

0.8 .
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FIG. 7. Potential-energy profiles for (a) A=1.0 and (b)
A=28.6, in classical magnetic units (see text). The figures show
cuts through the diagonal u = —v. The very shallow well at the
top of the A=8.6 case can only keep a few stable orbits—most
orbits lead to ionization, thus reducing the sample size.

M. A. IKEN, F. BORONDO, R. M. BENITO, AND T. UZER 49

which dies off as the electron propagates from the initial
packet. But, they do not return, so the remainder of its
contribution is negligible. Second, the inclusion of such
orbits simply scales down the autocorrelation for the
packets, because of the rescaling by the number of trajec-
tories. This reduction in scale only serves to make
analysis of the data more difficult.

D. A=3.2

By A=3.2 [Fig. 3(d)] the electric field starts to dom-
inate the system. No hint of the quasi-Landau oscilla-
tions is left. The overall magnitude of the correlation is
significantly depleted. Only one family of orbits contrib-
utes significantly at this field strength; see Figs. 8(a) —
8(c). Each of these related orbits corresponds to different
peaks in the correlation. Figure 8(a) gives rise to the
peaks at t =6.5 and 13.0, while Fig. 8(b) corresponds to
the peak at t=9.0, and Fig. 8(c) at t =11.0.

E. A=5.6

At A=5.6 [Fig. 3(e)] some structure reappears due to
the I, orbit [Fig. 9(a)]. The orbit which dominated the
A=3.2 [Fig. 9(a)] correlation still contributes noticeably;
see Fig. 9(b). The peaks at t =4, 8, 12, and 16 are due to
the I, orbit. The peaks at t =6 and 12 are caused by the
orbit in Fig. 9(b). Now a very small number of points in
the wave packet survive for any length of time. This can
be seen from the very small correlation values
(~7X1073%). We also no longer see orbits with long
periods in the correlation.

F. A=8.6

Here [Fig. 3(f)] the I, orbit [Fig. 10(a)] becomes more
stable than in the previous case, thus giving substantial
contributions at later times. The peaks at t=3.8, 7.5,
11.0, and 14.4 are mainly due to this orbit. The peak at
t=5.8 is due to the orbit in Fig. 10(b); this orbit also con-
tributes to the peak at 1 =11.0. The very small peak at
t=9.5 is from the orbit in Fig. 10(c). We again see an
unambiguous periodic structure to the correlation, even
though the electric field is very strong.

V. EVOLUTION OF PERIODIC ORBITS,
PHASE SPACE, AND SPECTRA

Transitions that occur with changing electric field at
constant magnetic field and energy can be viewed in two
different ways: One can analyze the evolution of specific
periodic orbits for properties such as bifurcations [20,38].
Alternatively, one can focus on a given area in phase
space and analyze how various periodic orbits populate
that region as conditions are changed. This latter pro-
cedure is more appropriate for us because the initial loca-
tion of our wave packet (which in the Franck-Condon ap-
proximation corresponds to the extent of the ground
state) determines the subsequent evolution of the spec-
trum. Changes in the orbits occurring in a fixed region of
space (such as at a fixed angle from an axis) arise from the
changes in the potential in that region and give informa-
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contained within the bounding curve for the
motion for A=5.6, in classical magnetic units
(see text). Below the orbit is a graph of the
correlation function for that orbit.
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FIG. 10. Plots of important recurring orbits contained within the bounding curve for the motion for A=38.6, in classical magnetic
units (see text). Below the orbit is a graph of the correlation function for that orbit.

tion on dominant periodic orbits at a given electric-field
strength.

For zero electric field, the designation I, was given to
the orbit in Fig. 11. We will use this orbit as a demon-
stration. As was mentioned by Konig er al. [20], the
electric field breaks the symmetry of the diagonal axes in
the (u,v) frame. This creates a significant difference be-
tween orbits that follow the trough along the u =v axis
and those perpendicular to this axis. It should be noted
that both of these axes in the (u,v) frame are parallel to
the field, one along the positive axis, the other the nega-
tive axis. This transition is concerned with the I, orbit
about the negative field axis; see Fig. 11(a). As the
electric-field parameter A is increased from zero to seven,
the orbits in the (u,v) frame simply compress along the
field without significant changes in shape. However, in
the (p,z) frame the shape of the orbit changes dramatical-
ly, see Fig. 11(b). The starting angle for the stable trajec-
tories changes from 59° at zero field to 106° at A=7.0.
The final shape is identical to the IIb, orbit, except it is
rotated by 90°.

When we start a wave packet at a particular location
with a specific momentum, we determine the behavior of
the spectra. Orbits which recur in this region will be the
important contributors to the spectrum because the ma-
jority of the points in the wave packet will move through
this region at approximately the same momentum as the
packet’s center. By searching a small region of the (u,v)
plane for periodic orbits at a given electric field, we can
predict which orbits will be most important at various

field strengths. The plots in Fig. 12 are for the case
shown in Fig. 1 (with uy=v,=p, =0 initially). We know
that the zero-electric-field spectra have a large contribu-
tion from the I, orbit, which is the orbit obtained with
these initial conditions for the A=0 case. By analyzing
which orbits are obtained for these same initial condi-
tions as A is increased, we can anticipate which orbits will
dominate this spectrum at higher electric-field strengths
without having to actually calculate the entire spectrum
for each field strength.

As the electric field is increased, the shape of the po-
tential changes dramatically [see Figs. 7(a) and 7(b)] and
different classical orbits become dominant at various field
strengths and at different initial positions for the packet.
In Fig. 3, we display the correlation plots for E=—0.3,
v=p,=0.0, and ¥ =0.6 (i.e., for a wave packet that
starts out on the u axis; see Fig. 1). This region, with the
periodic orbits it contains, will tend to dominate the spec-
tra as the electric field is increased. At A=0.0 the spec-
trum contains contributions from the I, IIb,, and III, or-
bits (see Sec. IV A). In this case, the most prominent or-
bit I, as would be expected on the basis of its geometry,
i.e., because it is along the u axis. We can then compare
the correlation plots to the transition of the 6§=0.0° re-
gion (Fig. 12). These plots indicate that the dominant or-
bit in the A=1.0 case will be the IIb, orbit. In the corre-
lation plot for A=1.0 [Fig. 3(b)], we see that peak 1 has
shrunk significantly, but peak 2 is approximately the
same size. We no longer see the I, orbit at peak 1; in-
stead we see a large number of orbits which follow along
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FIG. 11. The evolution of the I, orbit with
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cal magnetic units (see text), are shown.
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the direction of the axes, such as Fig. 5(a) (IIb,) and Fig.
5(b) (II1,). Peak 2 is strongly dominated by the IIb, or-
bit, with additional contributions by some higher-order
orbits.

At A=2.0, Fig. 12(c) predicts the dominance of the
III; orbit. The correlation plot for A=2.2 [Fig. 3(c)]
shows the disappearance of the peak at t =2.0. Peak 1 is
due to the IIb, orbit, but these orbits are now much less
stable. Peak 2 is due to the III; orbit. Peak 3 has contri-
butions from the IIb, orbit. The Fig. 6(c) orbit appears at
peak 4 with another ten-lobed orbit with identical struc-
ture, but symmetric with respect to the field [see Fig.
6(d)]. Peak 1 for A=3.2 [Fig. 3(d)] is dominated by the
orbit in Fig. 8(a). This orbit also appears as the dominant
one in the region along 6=0 when the electric field is
A=2.74; see Fig. 12(d). Figures 8(b) and 8(c) orbits con-
stitute peaks 2 and 3, respectively.

We see from Fig. 9(a) that the I, orbit determines peak
1 for the A=5.6 correlation. Peak 2 is due to the orbit in
Fig. 9(b). Peak 3 is also due to the I, orbit. From exam-
ining dominant periodic orbits in the 6=0 region, we
found that I, is prominent only when A =3.6.

The apparent contradiction between this observation
and the prominence of the I, at A=5.6 [evident by Fig.
9(a)] can be explained by realizing that in our wave-
packet calculation the energies for the points in the pack-
et are all different. In fact, they form a Gaussian distri-
bution in the energy (see Fig. 2). Orbits with higher ener-
gy are more prominent in the spectrum. This becomes
more dramatic as the electric-field strength increases. To
accurately predict the spectra for various A, we must
change the energy at which we propagate the 6=0° tra-
jectory. For the I, orbit, the energy of surviving trajec-
tories is = —0.63. When we focus on this energy, we find
I, at A=5.7 (see Fig. 13), which is where we get the larg-
est contribution from I, according to Fig. 9(a).

Of course, this approximate calculation does not simu-
late all of the structure of the spectra. However, it does
allow us to see quickly which orbits will contribute at any
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FIG. 13. The I, orbit at A=5.72 and E = —0.63, in classical
magnetic units (see text).

electric field. Many orbits will be found, and these will
give a good indication of how the system is evolving.

Calculating wave-packet correlations yield many recur-
ring orbits in addition to those that pass identically
through the origin. Some of these orbits are shown in
Fig. 14.

VI. DISCUSSION

In this paper, electronic spectra, the most quantal of all
phenomena, are simulated classically. Not only that, but
the inherent advantages of classical mechanics are ex-
ploited to the maximum to tell us which of the infinity of
periodic orbits contribute and to which parts of the spec-
trum. The fundamental reasons for performing many of
the state-of-the-art experiments on Rydberg states is to
address the issue of the relationship between classical and
quantum mechanics, i.e., the correspondence principle.
Many experimentalists would ideally like to perform ex-
periments on the hydrogen atom but often cannot for
technical reasons. Nevertheless, the hydrogen atom is
the prototypical Rydberg atom and is, fortunately, easier
to deal with computationally than say Ba. The important
experiments of Konig et al. [20] on Ba reveal many in-
teresting features but are difficult to simulate in detail be-
cause of the non-pure-hydrogenic nature of the Ba Ryd-
berg states and experimental uncertainties as to the precise
nature of the initial state. While our simulation approxi-
mates the experimental conditions only roughly, a com-
parison of the results with those of Konig et al. [20]
shows qualitative agreement on a variety of points, in-
cluding the approximate locations at which the appear-
ance of the spectrum changes and the sequence in which
periodic orbits appear and disappear in the spectra. For
instance, the periodic orbit IIb is the first one to appear
(in addition to the quasi-Landau oscillations I;) when a
small electric field is added to the magnetic field. Also, as
the electric field is increased, the spectra are increasingly
dominated by I,. For very large electric fields, periodic
orbits along the electric field direction [26] (denoted as z;
by Konig et al. [20]) mix with the orbits familiar from
the magnetic field case. The disagreements that we see
are that in our large electric-field cases, first we do not see
many harmonics of the same periodic-orbit contributing
and second the orbit IIb; has never appeared in our spec-
tra. In conclusion, we summarize the main points re-
vealed by our study.

(i) The hydrogen-atom system in parallel electric and
magnetic fields is of great theoretical and potential exper-
imental importance. The classical mechanical simula-
tions were performed on a fixed pseudoenergy manifold
for which the actual energy occurred as a parameter.
This stands in marked contrast to previous calculations
where the Hamiltonian and the physical energy are the
same. Extraction of the autocorrelation function in coor-
dinates constructed to remove the Coulomb singularity is
delicate, but represents a practical route to the computa-
tion of electron survival probabilities semiclassically, as
we demonstrated and stress again here that this is an ap-
proach free of troublesome numerical problems associat-
ed with the Coulomb term in the potential energy.
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FIG. 14. Some of the orbits which do not pass through the origin. These were all found by propagating simulated wave packets.

(ii) The transition from the QZE to the Stark regime
was mapped out and the associated changes in the spec-
tra computed and related to particular periodic or recur-
ring orbits. This established the classical origins of vari-
ous spectral features. One wants to separate what are
essentially classical effects from other details. Thus the
coincidence between the general observation of Konig
et al. for Ba and the theoretical results for H point to the
robustness of correspondence principle arguments and
classical simulations of electronic spectra. This should
serve to stimulate experiments for H and future calcula-
tions on the Ba atom. The striking relationship between
spectral features and periodic orbits only adds to the
growing evidence and database that suggests that classi-
cal simulations of electronic spectra will be eminently
useful even when it is difficult to find periodic orbits ex-
plicitly. We also note that extraction of periodic orbits
cannot be done using some “black box” algorithm but re-
lies partly on computational experiments. Our approach
is unique in that in constructing the correlation function
for the ensemble we also carried along the correlation for
the individual members of the ensemble of trajectories.
This allowed us to identify and pick out the individual
trajectories that are dominant.

(i) The parallel-electric- and magnetic-field problem
allows one to monitor spectral changes as one goes from
one symmetry limit to another and thus provides an im-
portant test of the classical simulation of electronic spec-

tra for chaotic multidimensional problems. Thus we find
that spectra are often dominated by periodic orbits even
when the system contains nontrivial symmetries. There-
fore, classical simulations may be extremely useful when
one cannot or does not care to find periodic orbits. Such
is the case in more than two degrees of freedom where
the classical approach developed here will present a basis
for future work. Such work is currently in progress.

Note added. The oscillations in the absorption spec-
trum of barium in parallel fields has recently been ana-
lyzed in terms of periodic orbits by Mao et al. [40]. A
method different from that used in our work has also
proven powerful in locating stable periodic orbits in
chaotic systems [41].
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