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Energy-loss effects in multiple-scattering angular distributions of ions in matter
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The standard theory of multiple scattering of ions traversing matter assumes that the energy loss of a

particle, during transit through a medium, is very small compared with its initial energy. Here we con-

sider the effect of finite-energy losses on the multiple-scattering angular distributions, by taking into ac-

count the variation of the energy-dependent scattering cross section as a function of the depth penetrat-

ed into the material. The theory is generalized to account for a continuous slowing down of the beam

particles. We study in particular, for the case of slow ions, the increased spread of the angular distribu-

tions due to the energy-loss effect.

PACS number{s): 34.50.Bw, 61.80.Jh

I. INTRODUCTIGN

The multiple scattering of swift ions traversing both
gaseous and condensed media is one of the basic process-
es of interest for studies on the interaction of ion beams
with matter. The basic theory of this phenomenon was
developed many years ago by Goudsmit and Saunderson
[1],Moliere [2], and Snyder and Scott [3]. A complete re-
view of the earlier developments was given by Scott [4].

One of the main effects of the multiple scattering is the
observed angular spread of an initially well-collimated
ion beam after passing through a medium [5—9]. The
studies of this process provide an experimental test of the
theoretical models on the multiple scattering of swift ions
in solids. In particular, the calculations based in the
small-angle approximation [10,11] permit us to obtain
useful scaling laws in terms of reduced variables; the ta-
bulations of the multiple-scattering function are widely
used in ion-penetration studies and applications. A good
agreement with experiments has been reported, both for
gaseous and amorphous solid targets [5—8, 12].

One of the simplifying assumptions usually made in the
treatment of the multiple-scattering process is to neglect
the energy loss of the ions during transit through the tar-
get. Although in many experiments this assumption is
satisfied, it is necessary to have a better knowledge of the
corrections that arise if the energy loss of the particles is
not negligible, as for instance in ion-beam transmission
through thick targets or in ion implantation studies. The
energy-loss effect in the multiple scattering of ions was re-
cently discussed by Sigmund [9].

In particular, in recent experiments using thick polyes-
ter targets the inAuence of energy loss on the multiple-
scattering angular distributions has been determined [13].
The increased values of the angular spreads with respect
to the theoretical predictions have been explained by tak-
ing into account the lower values of the average energy of
the ions, due to their slowing down in the foil.

The purpose of this paper is to consider the effect of
the energy loss on the multiple-scattering process, and to

evaluate the spread of the angular distributions. The pa-
per is organized as follows: in Sec. II the basic multiple-
scattering equations are summarized; the energy-loss
effect is introduced in Sec. III, and Sec. IV contains the
results of calculations using the cross sections derived
from the universal-potential model. An application to
the case of slow ions in solids is considered. Section V
summarizes the conclusions of this work.

II. BASIC MULTIPLE-SCATTERING EQUATIONS

Following the usual notation [11,14], the differential
scattering cross section der, for incident ions with mass

M, and atomic number Z„ in a target characterized by
the atomic number Z2 and mass M2, can be cast in the
form

t ' =e sin(8/2), (2)

in terms of the center-of-mass scattering angle 8, and re-
duced energy

EaMz

Z, Z~e (M, +M2)
(3)

Here E is the ion energy in the laboratory system, and a
is the sereemng parameter.

The scattering function f (t '~
) in Eq. (1) can be deter-

mined (e.g., by numerical integration) from the appropri-
ate interatomic potential [14].

In the small-angle approximation, the angular distribu-
tion of ions, F(x,a), after traversing a foil of thickness x,
can be written as [10,11]

F(x,a)dQ= f dk kJO(ka)e
277 0

(4)

Q
dg = t ~~f(t ~ )dt

2

where t is the reduced energy-angle variable, usually writ-
ten as
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with

ao(k)= f do[1 —Jo(kg)] . (5)

exp[ —Nxcro(k)] =exp[ —X(k,x)]

—=exp —N x'o 0,E x', 12
0

Here a is the total deflection angle, dQ is the solid-angle
element around a, P is the single-collision laboratory
scattering angle, and Jo(x) denotes the zero-order Bessel
function.

To make use of the scaling properties of the scattering
equations, it is convenient to introduce the reduced thick-
ness ~ and the reduced angle a, defined by

oo(k, E(x'))=ma b,(z'), (13)

where the variation of the scattering cross section with
the instantaneous ion energy E(x') is shown explicitly.

The function oo(k, E(x')) is calculated from Eqs. (1)
and (5), with a variable energy E(x'). This yields

~=n.a Xx,
a=pa, (6b) exp[ —r]=exp —f dr'b, (z'}

0

and, therefore, Eq. (12) can be cast in the form
6a

(14)

Ea
2Z)Z2e

Then, Eq. (4) can cast in the simple form

(7)

where X is the number of target atoms per unit volume,
and p represents the ion energy in appropriate units, viz. ,

with

h(z') =f,f(s )[1—Jo(z's) ],
k

p(r') '

(15)

(16)

F(x,a)dQ=adafi(r, a) . (8)
and

The function f i ( r, a ) is a universal multiple-scattering
function given by [10,11]

f, (r,a)= f dzzJO(az)e (9)
0

The relation between the integration variables in Eqs. (4)
and (9) is z=k!p, while the scattering function b, (z) in
Eq. (9) can be calculated from

&(z)= f dP f(P)/(pP)[1 —Jo(zg)], (10)

by integrating over the reduced laboratory scattering an-
gle P, defined by

The important scaling parameter in this formulation is
the reduced energy p (here a constant value) of Eq. (7).

III. INCLUSION OF ENERGY-LOSS EFFECTS

The standard multiple-scattering theory, as summa-
rized in the preceding section, is based on the assumption
that the energy loss of the ions during their transit
through the target is very small with respect to the initial
energy. In cases where this condition is not satisfied one
must take into account the variation of the differential
scattering cross section do, and of the function oo(k) in
Eqs. (4) and (5), with ion energy E. If the ion energy loss
is described as a continuous process, one should integrate
the effects over a range of ion energies E0 &E &E&. In
the following, E0 and E, will denote the mean energies of
the incident and transmitted ion-beam particles.

For random media, each single-scattering process can
be considered independent of the previous scattering
events, as well as from the accumulated effects of the
multiple scattering. Then, the continuous variation of
the ion energy E(x') with penetration depth x' can be
included in the calculation of the multiple-scattering dis-
tribution, Eq. (4), by the simple substitution [11]

p( g)
E(x )

(2Z, Z2e /a)
(17)

In order to calculate the value of X in Eq. (14), we in-
troduce now the assumption that the dependence of the
stopping power S=dE/dx on ion energy E can be
represented by a simple power law. In terms of the re-
duced energy p, and penetration distance r:

S(P}= = —Ap" . (18)

This assumption is particularly suitable for slow ions in
solids. In particular, existing theories predict a propor-
tionality of S with ion velocity (n= —,) [14-17] in fair
agreement with experiments in the low-energy range
[18—20]. Another possible choice could be to consider
effective n values that approximate in a phenomenologi-
cal way the dependence of the stopping power on ion en-
ergy, within a restricted energy range. %ith this ap-
proach the following derivation can be applied to inter-
mediate and higher energies as well.

We now calculate the value of X in Eq. (14) as follows:

and using Eq. (18}we obtain

[G(zi ) —G(zo)], (20)

where

cEG(z)= f 2
6(z'} . (21}

Here po and p, are defined as in Eq. (17},in terms of the
mean energies E0 and E& of the ions before and after
traversing the foil, while zo =k/po and z, =k/p, are the
corresponding z values.

On the other hand, integrating the energy loss from
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Eq. (18) we get

(22)

and using this in Eq. (20) we finally obtain

G(z, )
—G(zo)

X=rh(zo, z, )=r(1 n—)zo
p

(23)

where the parameter p =pl /pc=El /Eo is the ratio be-
tween the emerging and the incident ion energies (lu & 1),
and hence (1—lu) is the energy-loss fraction.

In the limit, p~l, from Eqs. (21) and (23) we get
b(zo, zl )~b(z) (with z=zo=z, ), so that we retrieve the
well-known multiple-scattering formulation, Eqs.
(8)—(10), as derived by previous authors [10,11].

IV. CALCULATIONS

The following calculations have been made using the
approximation formulas obtained by Kang, Kawatoh,
and Shimizu [21], to the scattering function f (t), for the
so-called universal potential proposed by Ziegler, Bier-
sack, and Littmark [22].

We will discuss first the results obtained without con-
sidering the effects of finite-energy losses.

In Fig. I we compare the values of the scattering func-
tion f(t' ) in Eq. (1), for the universal potential (UP),
the Thomas-Fermi (TF), and the Lenz-Jensen (LJ) poten-
tials. As usual, the major discrepancies arise for small ar-
guments; here the UP can be expected to provide a more
adequate description [21,22].

We show in Fig. 2 the corresponding multiple-
scattering function at zero angle, f, (r, 0), in Eqs. (8) and
(9), for each potential. The results from the UP fall be-
tween those from the TF and LJ potentials, as expected
from the behavior of the scattering functions in Fig. 1.

In Figs. 3(a) and 3(b) we show the angular distributions

f, (r, a), for two values of reduced thickness: (a) r =0. 1

and (b) r= l. As in the previous figures, the differences
between the UP, TF, and LJ potential become negligible

10-& 101

FIG. 2. Zero-angle multiple-scattering function f, (r, 0), as
calculated from Eqs. (9) and (10), using the values for the
scattering function f(t' ') for the three model potentials illus-
trated in Fig. 1.
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for larger values of r (r & 1).
Finally, the half-widths, at half maxima u&&2 of the

multiple-scattering distributions are shown in Fig. 4, for
the three cases of interest.
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FIG. 1. Scattering function f(t'~ ) in Eq. (1), calculated us-
ing the Thomas-Fermi, Lenz-Jensen, and the universal poten-
tials.

FIG. 3 Angular distribution function fl(r, a), Eq. (9), for
the three model potentials (Thomas-Fermi, Lenz-Jensen, and
universal potential), as a function of reduced angle a and for re-
duced thicknesses ~=0. 1 (a) and ~= 1 (b).
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FIG. 4. Reduced half-width at half maxima 5&/2 of the
multiple-scattering distributions vs reduced thickness ~, evalu-

ated for the three model potentials (Thomas-Fermi, Lenz-
Jensen, and universal potential).

FIG. 5. Function G(z), Eq. (27), for the calculation of
multiple-scattering distributions with finite-energy losses in the
medium. The present calculation corresponds to the case of a
velocity-proportional stopping power (n =

2 ).

dt g i(r, rf, ij, ), (24)

where we have defined a new multiple-scattering function
g&(r, @,p), which depends also on the energy ratio

p =E
&
/Eo. In Eq. (24) we have set

z =—zo=k/po,

z, =k/p, =z/p,

pov'

(25a)

(25b)

(25c)

We will consider in the following the case of a velocity-
proportional stopping power [i.e., n =

—,
' in Eqs.

(18)—(23)], a case that is of general interest for the multi-
ple scattering of slow ions. Then, the b function in Eq.
(24), for n =

—,
' becomes

Let us consider now the effects of finite-energy losses in
the foil. From the derivation in the preceding section,
and using the angle y to denote the total multiple-
scattering angle (previously called a}when energy loss is
included, we can write

I'(x, y)dQ=ydq J dzzJO(z@)e
0

as well the distribution for p= 1 (solid line), i.e., ignoring
the energy loss in the medium. The enhancement of the
angular spread of the distributions produced by the de-
crease of the ion energy in the target is illustrated in the
inset of Fig. 7, which shows the normalized distributions.

From these distributions we can determine the half-
widths (at half maxima) of the angular distributions. We
will denote by o, &z and by y, &z, respectively, the half-
widths of the distributions calculated according to the
earlier (constant energy) formulas, Eqs. (8)—(10), and us-

ing the present variable-energy approach, Eqs. (24)—(27).
The results of various calculations are compared in Fig.
8.

It has been proposed previously that one way to simu-
late the energy-loss e8'ect on the multiple-scattering dis-
tributions would be to calculate the distributions from
the standard theory (i.e., neglecting energy loss) but using

400

300-

]yp G(z/p) G(z)5 Z~z p =2Z ij2I —p
with

(26)
N 800

(27}
100

where p=P, /Pc and b, (z') is given by Eq. (15).
The function G(z), calculated from the universal po-

tential, is plotted in Fig. 5. The function b, (z,z/p), with
@=0.5, 0.8, and 1.0, is shown in Fig. 6. The curve for
p= 1 is identical to the function b, (z) of Eq. (15).

The effect of finite-energy loss on the angular-
distribution function, g, (r, qr, p), from Eq. (24), is illus-

trated in Fig. 7, for the case ~=0.5. Energy losses of
20% (p, =0.8) and 50%%uo (p =0.5) are shown in the figure,

5-108
z

so'

FI(s. 6, Function 5(z,z/p), Eq. (26), for the calculation of
multiple-scattering distributions with finite-energy losses in the
medium. The curves for p =0.8 and 0.5 correspond to 20% and

50%%uo of energy loss in the target, while the curve for p = 1 shows

the results neglecting energy loss. The calculations correspond
to the case of velocity-proportional stopping power (n =

2 ).
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some average value for the energy of the ions during their
transit through the target [5,7,8,13]. One can test this

approach using the present description of the energy-loss

efFects.
In the range of low energies, using Eq. (18) with n =

—,
'

for the stopping power, it can be shown that a convenient

definition of the mean energy in the medium is the follow-

ing [18,20]:

p &p (1+pl/2)2 (28)

which corresponds to a straight average of the ion veloci-

ties before and after the interaction with the medium [po
and p) =(ttpo are the initial and final energies in the units

of Eq. (7)].

FIG. 7. Angular distribution function g&(~, y, p), Eq. (24), vs

reduced scattering angle y, for ~=0.5 and for the three values

of the energy-loss parameter p shown in Fig. 6. The inset shows

the same distributions after normalization. The solid line

(p= 1) corresponds to the case of negligible energy losses.

p —ip (1+ + 1/2)

P 3=-,'Po(1+@),

p
—3p (1 ps/2)/'(1 3/2)

(29a)

(29b)

(29c)

To test also these values in the low-energy range we
performed similar calculations. We show in Fig. 9 the ra-
tios a, &2/y, &2, the a&&2 values were calculated without
energy loss, and for each of the p values in Eqs. (28) and
(29). From this comparison we find that the average en-
ergy defined in Eq. (28) gives the best representation of
the energy-loss effect of the angular half-widths for the
case of slow ions. The agreement is better than 5% for
1 —p =0.7 (i.e., 70% of energy loss).

In Fig. 8 we show the ratios a&&2/q»2, for values of
the energy-loss parameter (1—ltt) ranging from 0 to 0.7.
The values of o.,&2 have been calculated neglecting the en-

ergy loss and for three mean energy values: P Pp (in-

cident beam energy), p=p, (emerging beam energy), and

p=p, [average of Eq. (28)], whereas the values of y, /2

were computed with full account of the energy-loss effect.
The curves start from a, &2/g, &z

—= 1 at small energy losses

(p,~l) and deviate for increasing 1 —p, to values below
or above 1 depending on the p value. If the calculation is
performed using the initial beam energy po, the angular
distribution becomes too narrow (by more than 40% at
the largest energy loss in the figure), while the opposite
behavior is observed if the final beam energy p, is con-
sidered (up to 90% larger than the exact result). The re-
sults using the mean energy p, of Eq. (28) compare
surprisingly well, on a wide range of energy losses, to the
integrations that incorporate the gradual beam-energy
variation.

We finally note that other average values of the beam
energy have been proposed [18,23], such as, in particular,
the following:

2.0

w = 0.1

1.00

0.95-

0.90-

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 85

0.0 0.1 0.2 0.5 0.6 0.7

FIG. 8. Ratio of half-width at half maxima calculated
without (a I&2) and with (y»2) inclusion of the energy-loss
e8'ect, for ~=0. 1 and as a function of the energy-loss parameter
(1—p). The curves for different P values correspond to approx-
imations where the energy of the beam is assumed constant,
equal to the initial (po), final (p, ), or to the average [p „Eq.
(28)] beam energy.

FIG. 9. Ratio of half-width at half maxima calculated
without (a&&2) and with (y, ~2) inclusion of the energy-loss
effect, for ~=0.1 and as a function of the energy-loss parameter
(1—IM). The curves for different g values illustrate various ap-
proximate descriptions of the energy-loss e6'ect assuming con-
stant (mean) energy values according to Eqs. (28) and (29).
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V. SUMMARY AND CONCLUSIONS

We have considered the incorporation of energy-loss
effects in the multiple-scattering formulation. As de-
scribed in Sec. III, these effects can be taken into account
in a way that maintains the general scaling properties and
the reduced variables from the standard multiple-
scattering theory.

The new expression for the angular distribution

g, (r, p, p, ), Eq. (24), contains, in addition to the reduced
thickness and angle variables, a parameter p that
represents the energy-loss fraction (1—p) of the ion beam
after its passage through the target. The effect of the
continuous energy variation is parametrized in the new
scattering function b, (z,z/p) in Eq. (23). The present cal-
culations show the increased spreads of the angular dis-
tributions due to the energy-loss effect.

Special consideration has been given to the case of slow
ions in solids, in the range where the stopping power can
be approximated by a simple velocity-proportional
dependence. Such a dependence is predicted by various
theoretical models [14—17) for ion velocities in the range
U 4 VpZi

The half-widths at half maxima of the distributions are
compared with those calculated using the standard
multiple-scattering theory. For the cases illustrated here,

we find that a simple account of the energy-loss effect on
the angular distribution can be made by inserting in the
earlier formulations [10,11] a mean ion energy inside the
target which corresponds to the linear average of the in-
cident and emerging ion velocities, as in Eq. (28).

We should note, however, that this particular value of
the average energy is based on the low-velocity stopping-
power approximation. Therefore, it should be expected
that in other energy ranges somewhat different expres-
sions for a "best" mean energy would apply [13]. A
quantitative determination of the best average-energy ex-
pressions for various ranges of ion energies is a problem
of practical interest, since it will allow us to estimate the
energy-loss effect on the multiple-scattering distributions
using the standard (fixed-energy) theory. A more exten-
sive study of this problem can be made from the present
formulation, but it lies beyond the scope of this work.
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