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Energy loss of swift projectiles with n (n & 4) bound electrons
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Based on 6rst-order perturbation theory and the frozen-charge-state model, an analytical formula for
the electronic stopping power was derived for swift lithiumlike and berylliumlike ions. The bound elec-
trons attached to ions in the ground state were described by the Hartree-Fock-Slater determinant, in

which the orbital-screening parameter in the constituent eigenfunctions was determined by the variation-

al method. The stopping power —dE/dx for fast hydrogenlike to berylliumlike ions is found to be
scaled in terms of (—dE/dx)Z l where a ranges from 2.180 (H-like) to 2.355 (Be-like). The theoretical

stopping for Li-like ions agrees quite well with the recent data on —10 MeV/amu 0'+ ions.

PACS number(s): 34.50.Bw, 61.80.Mk

I. INTRODUCTION

In the penetration of swift charged particles through
matter, inelastic energy losses have been fundamental and
essential problems in the fields of atomic collisions in
solids and plasma-first-wall interactions. This is because
this quantity is directly related to energy deposition in a
material by impinging ions, to the range which they can
attain on average, and to the emission yields of secondary
electrons, ions, and atoms.

The electronic stopping power of materials for fast ion-
ized projectiles has been investigated intensively. From
the experimental viewpoint, many measurements have
provided stopping-power data for gases and solid media
[1,2]. Theoretical procedures, on the other hand, have
been based on the atomic model [3,4), the free-electron-
gas model [5—7], the kinetic model [8], a nonlinear calcu-
lation [9], the local-density model [10,11], and the wave-
packet model [12]. Recently, theoretical data tables for
the stopping power for a proton have also been presented
[13,14].

Early theoretical works were initiated by Bethe and
Bloch within the point-charge picture [3,4]. For a swift
point charge Z, e moving at velocity U in a material with
atomic number Z2, the inelastic energy loss per unit of
the primary path is given [3] by

S =(4sre /mv )NZ2Z, ln(2mv /I) .

In the above, m and e are the electron rest mass and the
elementary charge. N and I denote, respectively, the
number density and the mean excitation energy of the
target atoms. Later, this Bethe formula was extended to
include the higher-order terms, i.e., the Barkas term (or
Z, term) [15] and the Bloch term (Z, term) [4], together
with the shell correction [16], resulting in a standard for-
mula for the energy loss of fully stripped swift light ions.

The energy loss of partially stripped ions (PSI's) was,
for the first time, treated by Ferrell and Ritchie [17] for a
slow He+ ion moving in a degenerate eIectron gas. When
the number of bound electrons on a projectile is large
enough, a PSI may be mell described by a Thomas-Fermi
statistical model and its energy loss in the electron gas

S =(4sre /mu )NZzL(Z&, Z2, v),

L(Z&, Z2v)= (Z& N») ln(2mv —/I)
+(2Z&N&, N„)lnI u/(—Z, uo)]

+Z, Ni, —( —,", )N i, .

(1.2a)

(1.2b)

Here the Barkas term, the Bloch term, and the shell
correction are neglected. In Eq. (1.2b), N„denotes the
number of 1s electrons, so that we set Z, =Z& and
N&, = 1 for hydrogenlike projectiles, and Z, =Z, —

—,', and

N&, =2 for heliumlike ones. The quantity Z, is related to
the orbital screening parameter which will appear in the
next section. Quite recently, Ogawa et al. [25] also re-
ported the stopping power of carbon for the 169-MeV
lithiumlike 0 + ion for the first time.

In this paper we present analytical formulas for the
electronic energy loss of swift lithiumlike and beryllium-
like ions within the framework of the Born approxima-
tion. We assume that the charge state of the projectile

can be formulated [18,19] in a way similar to the treat-
ment of Ferrell and Ritchie. For PSI's we are concerned
with the question to what extent the bound electrons di-
minish the energy loss of the projectile. In order to
answer this, the concept of the effective charge Z,ff is
very useful [20]; it is defined as the square root of the
stopping power for a projectile relative to that for a pro-
ton moving in the same material at the same velocity. In
general there are two quantities of a projectile, i.e., the
spatial size and the average number of bound electrons,
contributing to the effective charge.

In recent experiments, it has become possible to mea-
sure directly the energy loss of frozen-charge-state PSI's
[21—23]. In particular, with the use of a very-high-
resolution analyzer, Ogawa et al. [22,23] directly mea-
sured the energy loss of fast hydrogenlike (He+, 0 +,
C +

) and heliumlike (0 +,C +
) ions passing through thin

carbon foils with kinetic energy 10.6 MeV/amu and with
charge equal to the incident-ion charge. An analytical
stopping-power formula for those fast ions was derived in
the following form [24]:
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remains frozen during its passage. Section II is devoted
to a description of the present approach. First, the spa-
tial distribution of the bound electrons on a projectile is
determined by minimizing the total energy, using a varia-
tional method. Secondly, analytical results for the stop-
ping power are derived and the degree of screening per
bound electron is discussed. Finally, comparison of the
theoretical results is made with recent experimental data.
Throughout this paper, I, e, ao, Uo, and R denote the
electron rest mass, the elementary charge, the Bohr ra-
dius (0.529X10 cm), the Bohr velocity (2. 19X10'
cm/s), and the Planck constant divided by 2m, respective-
ly.

II. THEORY

d „=in(1/P,q)/(ol», N) .

As an example, the value of d „for 10.6-MeV/amu C~+

(q =4, 5) ions penetrating a carbon foil is at least more
than 50 pg/cm [25]. In order to compare with the
present theory, measurements should be performed using
foils of thickness less than d „.

(2.1)

A. Description of bound electrons

Here we focus on the electron distribution p(r) in a
ground-state projectile under the frozen charge state.
For convenience, we consider a berylliumlike projectile
having 4 electrons in the 1s 2s singlet configuration. As
we shall see later, a lithiumlike projectile can be treated
in a similar manner. It is very reasonable to assume that

Here we consider the case where the velocity v of a
projectile is higher than both the statistical average veloc-
ity Zz Uo of the target electrons and the velocity Z, Uo of
the bound electrons on the projectile. Our procedure is
based on first-order perturbation treatment, so that the
formulas derived later for swift PSI's correspond to the
Bethe expression (1.1) in the sense of having the same
theoretical base. Other correction terms are all neglect-
ed.

First of all, we discuss the validity of the present
theory, developed under the pre-equilibrium charge-state
condition. In the velocity range of U )Z, vo, the electron
loss process is much more dominant than the electron
capture process, as the velocity-stripping criterion sug-
gests [26]. In a very thin region, the charge fraction P; of
particles penetrating to depth d with charge i equal to the
incident charge decreases as exp( —d /k; ). With increas-

ing d, due to electron capture, ((); deviates from a simple

exponential function. After enough penetration, it finally

reaches the equilibrium fraction P';q, depending on veloci-

ty but no longer on d. The attenuation length A, , is given

by the sum of charge-changing cross sections o; from
charge state i toj (Ai), such that A, , =1/(g. 1&;1No; J ).
N is the number of target atoms per unit volume. At
high velocities, P;q is very small (e.g., 10 for a 10-

MeV/amu He+ ion [22]} and X, is approximately given

by I/(lrl, »N), where al,» (=o;,+, ) is the one-electron-
loss cross section. Therefore, the pre-equilibrium
charge-state depth d„„is approximately characterized by

H=gH;+ —,
' g V, (2.2a)

H;=( —lri /2m)b, , Z, e —/r, ,

V;, =e lr; —r, l
.

(2.2b)

(2.2c)

The wave function 4 is described by a Hartree-Fock-
Slater determinant:

41.(r2)&
(41)

—1/2

41 (rl)i 4 (rl)+ P2 (rl))

Wl (r2)i 02 (r2)+ e2 (r2)1

Pl ( 3)l 42 ( 3)+ P2 ( 3)i

1 1 (r4)~ 42 (r4)+ P2 (r4)1

(2.3a)

where

g„(r)=(lrao/Z, )
' exp( Z, r/ao), —

(r)= (477) (2a /Z )

(2.3b)

X (2—Z, r /ao)exp( Z, r /—2all ), (2.3c)

and the spin wave functions for the up-spin and down-

spin state are denoted respectively by a and P. The nor-
malized wave functions g„(r) and $2, (r) are proved to
be orthogonal to each other [27]. The constant Z, in

(2.3b) and (2.3c) denotes the orbital-screening parameter,
which depends both on the number of bound electrons
and on the atomic number Z& of a projectile. Using Eqs.
(2.3a)—(2.3c), the expectation value (H ) of H is calculat-
ed as

(H }= 2E„+2E2,+ V„„+4V„
+ ~ps —ps 2 A ]s —ps

where

(2.4a)

E„=Pi Z, /(2mall) —Z, e Z, /ao, (2.4b)

&p, =(4)&), , (2.4c)

V„„=ef dr fdr'lp„(r)l l1(t„(r')l /lr —r'l

=5e Z, /(8ao}, (2.4d)

vl, 2, =e'f «f «'ly2, (r)l'lq„(r')I'/lr r'I—
= 17e Z, /(8 1 a 0), (2.4e)

V2, 2, =e fdr f dr'i/2, (r)l i/2, (r')l /lr —r'l

=77e ,Z(/152 a)o, (2.4f)

p(r) is spherically symmetric unless any directional elec-
tric field is acting on the projectile. Then only the s-type
wave functions are considered. They consist of hydro-
genic ls and 2s wave functions including an adequate
screening parameter. In order to determine this reason-
ably, the total energy of the system is first calculated in a
quantum-mechanical manner. The Hamiltonian of our
system is written as
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A „2,=fdr f dr'g„(r)'$2, (r')'(e /~r —r'~ )

Xf„(r')li)2, (r)

= 16e Z, /( 729(2o ) . (2.4g)

eral expression for the electronic stopping power in this
case is given in the Born approximation as follows
[28,29]:

S =N g (E E—)f™~
( dq /q )8'( e /&u )

qmin

(2.5)

in units of e /ao. This energy takes the minimum value

(,H )B,= —( —,')ZB, (e'/(2u)

at Z, =Zz„where

ZBG =Zi —586 373/933 120=ZI —0.6284 .

(2.6)

(2.7)

In the same manner, we can obtain the expression for
the total energy (H)L; for the lithiumlike (ls 2s) elec-
tron system as follows:

(H)L; —2Ei, +E2, + Vi, i, +2Vi, 2,
—A i,

= ( —', )(Z, —2Z, Z i ) + ( 5965/5832) Z, , (2.8)

In the abo~e equations, V„„,V„», and V»» are
the direct Coulomb integrals and A „» the exchange
integral between electrons with parallel spin. After sim-
ple algebra, the total energy for the berylliumlike ( ls22s )

system is represented as

(H )B,=(—,
' )(Z, —2Z, Zi )+(586 373/373 248)Z,

F('e( —q)=z, —(4 X exp(+iq r;) q'

l

(2.14)

F„'e(q) (e Xex=p( —iq r. ) D

J

(2.15)

The term (%~/, exp(+iq r, )~%).on the left-hand side of
Eq. (2.14) [hereafter denoted by p(q) ] denotes the Fourier
transform of the spatial electron distribution
p(r)=(qp~ g; 5(r—r, )~%). We have for lithiumlike and
bery11iumlike projectiles

x [Fg( —q) I'IF.'o(q}I' .

In the above, E„and Eo denote the eigenenergies of the
target states n and 0, respectively. N is the number of
target atoms per unit volume. The momentum fiq
transferred to the target electrons ranges from
A'qm;„=(E„Eo)/—u to iriq, „=2mu. The form factor of
the projectile, F00( —q}, and the inelastic scattering am-

plitude of the target atom, F„'0(q},are written as

(H &„=—( 8
)ZL;(e'/uo)

at Z, =ZL;, where

(2.9)

in units of e /ao. The minimum value of (2.8) can easily
be found to be

p(q}=2pi, (q}+N2 p2 (q»

p„(q)= [1+(qao/2Z, ) ]

[2(qao/Z, ) —1][(qao/Z, )2 —1]

[1+(qao/Z, ) ]

(2.16a)

(2.16b)

(2.16c)

ZL; =Zi —5965/13 122=ZI —0.454 58 . (2.10)

Thus the spatial distribution of bound electrons is com-
pletely determined by the variational method. Let us in-
voke the total energy of the heliumlike ( ls ) electron sys-
tem in the following:

(H )H, =2E„+Vi, i, =Z, —2ZiZ, +(—', )Z,

=(Z, —ZH, ) —Z„, . (2.11)

with

ZHe Z1 (2.12)

B. Stopping-power formula

This section is devoted to derivation of the analytical
formulas for the electronic stopping power of a target
material. As explained in the introduction, we treat the
berylliumlike and lithiumlike projectiles in such a manner
that the charge state of bound electrons is fixed and not
subjected to excitation inside the target material. A gen-

Because there is no pair of electrons with parallel spin,
the exchange term should not appear. Thus (H )H, takes
the minimum value (Z, —

—,', ) (e /(20) at Z, =ZH, . It is

interesting to compare ZL; and ZB, with ZH, . From
(2.7), (2.10), and (2.12), one sees that ZB, & ZL; & ZH, for
the same Z& value, namely, the greater the number of
bound electrons, the less the orbital-screening parameter.

Here N» is the number of 2s electrons on the projectile.
Then we take Z, =ZL; and N» =1 for lithiumlike projec-
tiles, and Z, =ZB, and N» =2 for berylliumlike ones.

It is convenient to divide the integration region

[q;„,q,„] into two sections, i.e., A =[q;„,qo] and
8 = [qo,q,„],where qz is an appropriate parameter such
that the dipole approximation can be applied to F„'0(q).
Physically speaking, this means the separation of close
and distant collisions. Hereby we have
exp( —iq.r )=1 iq r and t—he contribution of the dis-
tant collision (section A), Sz, is then reduced to

S„=Ng (E„—Eo)8n(e /iriu) ~d„z~

x f (dq/q) IFIIO(
—q) ~' . (2.18)

Here one can interchange the order of the summation
over n and the integration over q since both q,„and qo
are independent of the eigenstate ~n ). Thus we are able
to employ the sum rule [27,30]

x f '
(dq/q)IF@( —q)l', (2.17)

&min

where d„o is the dipole-transition matrix element. On the
other hand, the contribution of the close collision (section
B), SB, is expressed as

SB= N(iil /2m)Z28q). (e2/A'u)2
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g (E„—E, ) IF„',(q) l'=(e'q'/2m)Z, . (2.19)

Fortunately, the definite integrals in S~ and S~ are
straightforwardly estimated if one used the following re-
sult:

2 I (dq/q) IF~00( —q) I'

B,=5N 2„B6= —8N ~„B7= (36/7)N2, ,

CO =4[Z1 —1 —(209/81)N2, 1,
C, = —16(Z, —I )+(80/9)N~, ,

C~=32, C3=256/3 .

= 2A ln(qao/Z, )+f((qao/Z, ) +1)

+g((qao/Z, ) +4}+integral constant,

where f (x) and g (x) are given by
7

f (x)=Boln(x)+ g B /xj,
j=l

3

g(x)=Coin(x)+ g C /xj .
j=1

(2.20)

(2.21)

(2.22) g (E„—Eo) ~d„o~ =(fi /2m)Z~, (2.24)

We note that the factor 3 is the square of the net charge
of the projectile. At this point, we remember that the
high- (but nonrelativistic) velocity case is now considered.
Then, it is reasonable to assume that the conditions
(ao/Z, ) q;„«1, i.e., E„Eo«—ZL;Av lao (or

Za, h'u/az) and (az/Z, ) q,„&)4, i.e., u)&ZL'uo (or

Za, uo) are valid in the energy region considered. There-
fore, using the sum rule [27,30],

In Eqs. (2.20) —(2.22), A, B; (i =1—7), and C; (i =1—3)
are the following constants:

and the approximations [y =(azq;„/Z, ) ]

A =(Z, N2, —2—)

Bo=2Z, N~, + (512/81)N~, N2, ,
—

B, = —2Z|N~, +(704/27)N2, +N2, ,

B~ =Z, N~, —(160/9)Nq, +( I/2)Nq, ,

B3= —4Z, N~, +(128/9)N2, + ( I/3)N~, ,

B4= —(3/4)N~, ,

(2.23)

7 7

f(y+1)= g B,+B.
D
—g iB; y+0(y ),

3

g (y +4) = Cv ln4+ g C, /4'
i=1

3

+ Co/4 —g iC, I4'+' y+0(y ),

we get

(2.25)

(2.26)

S„=(2me lmu )NZ2 2A ln(qoao/Z, )+f((qoao/Z, ) +1)+g((qoao/Z, ) +4}

7 3—2A In(Iao/Z, fiu) gB;—C—oln4 —g C;/4'

7 3

Bo—g iB;+Co/4 —g iC, l4'+' (2m/i Zz)G (3az fIivZ, )
—0(G~(ao/AvZ, ) ) . (2.27)

Here I denotes the mean excitation energy of the target,
defined by

lnI =(I/Z2)(2m/fi ) g (E„Eo)~d„o~ ln(E„—Eo), —

I

It is easily seen that the first moment 6, leads to the
well-known sum rule (2.24).

Next let us estimate S~. If we use the following ap-
proximations [y =(aoq, „/Z, ) ]:

(2.28) f (y + 1)=Boln(y)+(Bo+B, )(1/y)+0(y ), (2.30)

G =g(E„Eo} Id„ol (m =—3, 5) . (2.29)

and 6 denotes the mth excitation-energy moment of the
dipole transition probability, such that

and

g(y+4)=Coin(y)+(4CO+C, )(1/y)+0(y ), (2.31)

we finally have

Sz =(2vre Imu )NZ2[ 2(A +Bo+Co)ln(2muao/fiZ, )
—2A ln(qoao/Z, ) —f((qoao/Z, )2+1}

—g((qoao IZ, ) +4)+(Bo+B,+4Co+C& )( —,
' )(A'Z, /muao)2+0((2muao/A'Z, ) 4)] . (2.32)

As we evaluated separately the contributions of distant and close collisions, the sum of Sz and S yields the total elec-
tronic stopping power
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S =(4n.e lmv )NZ2L (Z&,Zz, v),

with

(2.33a}

L(Z&,Z2, u)=(Z& N—2,
—2) ln(2mu /I)+t2Z&Nz, +(512/81)Nz, N—2, Iln(2v/Z, uo)

+4IZ, —1 —(209/81)Nz, Iln(v/Z, vo)+2Z, +(5/2}Z, N~, —(334/27)N2, —11/3 —(271/168)Nz, ,

(2.33b)

where Z, =ZL; and N2, =1 for lithiumlike projectiles,
and Z, =Zz, and N2, =2 for berylliumlike ones. Here
we note that the terms of the order of v and those of
the order of v in the square brackets in Eqs. (2.27) and
(2.32) are both dropped in Eq. (2.33). The former plays
the role of the leading correction to L (Z„Z2, u) as fol-
laws:

tail, let us get back to Eq. (2.20). One realizes that the
logarithmic term ln(I) originates from the integration of
1/q over q. In other words, a pure Coulomb interaction
between collision partners plays an essential role. In the
cases of neutral-atom projectiles, the net charge vanishes
so that the interaction becomes short range rather than a
pure Coulomb interaction. Consequently, the term ln(I)
vanishes in (2.35).

bL = —[(7/4)(Z) N2, )N2—, —(133/27)N2, +Z( —2]

X(2m63/fi Zz)/(mvvuZ, ) (2.34)
C. KS'ective charge and the degree
of screening by projectile electrons

Let us return to the leading expression (2.33). We re-
mark here that the target is characterized by three quan-
tities (I, Z2, and N), and that the separation parameter

qo cancels out in the final expression (2.33). It is of in-

terest that the first term of (2.33b) is interpreted as
Bethe's original form for a net charge (Z, N2, —2—).
This comes from the logarithmic term in (2.20). There
the spatial size of the projectile is completely neglected.
The other terms might be regarded as correction terms to
such a crude description. However this is not correct,
since these terms actually contribute comparably with
the first term. This fact will be seen in the next section
on the effective charge.

As an application of Eq. (2.33), a brief comment is
given on the stopping power for swift neutral-atom pro-
jectiles. The quantity L of Eq. (2.33b) for hydrogen, heli-

um, lithium, and beryllium atom respectively reduces to

LH =ln(u/vo)+ —,', , (2.35a)

LH, =4 ln(16v/27uo)+ —,', (2.35b)

Lt; = 9 ln(13 122u/33 401vo)

+(917/81)ln2 —6275/1512, (2.35c)

LB,= 161n(933 120v/3 146107uo)

+(1996/81)ln2 —2593/378 . (2.35d)

We remark that the above expressions do not contain the
characteristic parameter I, and depend only on the mac-
roscopic parameters N and Z2, as for a target. Hence the
stopping cross section for these atoms in the charge-state
pre-equilibrium region is merely proportional to the tar-
get atomic number Z2. To see the cancellation ofI in de-

In this section we discuss the effective charge Z,& of
the projectile and estimate the screening charge per
bound electron by subtracting the Z,z value for an ion in

charge state q from the Z,z in charge state q
—1. In or-

der to comprehend and compile the stopping-power data,
the concept of the effective charge is useful. This idea is
based on the proportionality of the Bethe formula to the
square of the incident charge. The effective charge is
defined as the square root of the ratio of the stopping
power S to the proton stopping power S at the same ve-

locity:

Z (g/g )1/2 (2.36)

The idea of the effective charge is to condense various
effects on the electronic excitation, e.g., the spatial size
and charge-changing effects, into only one parameter
Z,~. Using the definition of Z,z, the quantity
L (Z„Z2, v) of Eq. (2.33b) is written as
(Z,s) ln(2mu /I).

In general, the effective charge has two aspects. One is
the charge-exchange effect and the other is the spatial
size effect. The former is represented by stripping bound
electrons more and more to become a bare nucleus with
increasing velocity. On the other hand, the spatial size
effect enlarges the contribution of close collisions, where
the target electrons are scattered by a projectile with
effective charge greater than its net charge. This is due to
incomplete screening of the nuclear charge by bound
electrons. In the case of frozen-charge-state ions, the
electron distribution is assumed to be fixed during pas-
sage even at high velocities. In this sense, the effective
charge of frozen-charge-state ions contains only the size
effect.

Let us find an explicit representation for Z,& of ions in
a frozen charge state. From Eq. (2.33b) and the definition
of Z,&, we easily find
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Z, tr=(Z, —N~, —2) +[in(2mu /I)] '[[2Z&N2, +(512/81)Nz, —Nz, ]ln(2v/Z, Uo)

+4[Z, —1 —(209/81)Nz, ]in(v/Z, uo)+2Z, +(5/2)Z, Nz,

—(334/27)N~, —11/3 —(271/168)N~, ] . (2.37)

In the high-velocity limit, i.e. , when v »Z, vo and v » (I/2m )'~, Z, tr in Eq. (2.37) approaches the asymptotic value

Z,tr= —,'[(Z, N2—, —2) +Z, J, (2.38)

which is independent of velocity.
In order to compare with other cases, we write the expression for Z,~ for hydrogenlike and heliumlike projectiles:

Z, )r =(Z, N„—) + [in(2mv /I)] '[(2Z, N), N„—)ln(U/Z, uo)+Z)N), —(12/1 1 )N), ] . (2.39)

At high velocities, Eq. (2.39) also reduces to the velocity-
independent value

Z, =
—,'[(Z, —N), ) +Z, ] . (2.40)

Zsc(q, q
—1)=Z,s(q) —Z,)r(q

—1) . (2.41)

Later, we concentrate on screening by 1s and 2s elec-
trons. This quantity will be found to show the shell
effect.

III. NUMERICAL RESULTS, COMPARISON,
AND DISCUSSION

Equations (2.38) and (2.40) mean that in the high-velocity
limit the square of the effective charge is the arithmetic
average of the square of the nuclear charge of a projectile
and the square of the net charge [31]. This relation
means there are equal contributions from two extreme
cases, i.e., complete neglect of bound electrons and com-
plete screening of the nucleus.

Once the effective charge Z,{r(q) of an ion in charge
state q (=Z, —N„N2, ) is ob—tained from Eq. (2.37) or
(2.39), we can estimate the magnitude of screening by a
bound electron. Here we define the screening charge
Zsc(q q 1) by

circumstances, the adopted wave functions are reason-
able.

Figure 1 shows the calculated stopping power of car-
bon for O~+ (q =4—8) ions with velocity from v =7v{) to
v =60vp together with a recent experimental result of
Ogawa et al. [25] at v =20.6uo under the frozen-charge-
state condition. The mean excitation energy I of carbon
is taken to be I =77.3 eV=2.842 a.u. [1]. The stopping
cross section for 0 + and 0 + ions is calculated on the
basis of formula (2.33) while for 0 +, 0 +, and 0 + ions
we use formula (1.2). Experimental energy-loss data for a
lithiumlike 0 + ion were obtained recently [25]. Agree-
ment between the calculated result and the experimental
data is quite good, except that the experimental data tend
to be slightly larger in every charge state. In general, as
the Z& value increases, the average radius of the bound
electron becomes shorter since, roughly speaking, it is in-
versely proportional to Z, ~ Then the screening of the
projectile's nuclear charge by the bound electrons is so
complete that the net-charge approximation becomes val-
id for heavier (or larger-Z) ) ions. The formula (2.33)
clearly indicates this fact, showing that the first term
plays a dominant role for large Z&. In other words, the
ion can be regarded as a point charge. This picture leads

First we discuss the validity of the choice of wave func-
tion. It is rather reasonable [32] to describe the ground-
state berylliumlike ( ls 2s singlet) projectiles by s-type
wave functions. The total energy of the system calculat-
ed here in this way should be compared with any avail-
able detailed results. To our regret, however, we do not
find good examples, so a comparison was made for a neu-
tral beryllium atom. According to (2.6) and (2.7), the to-
tal energy of the neutral Be atom is E = —386.501 eV.
However, Clementi and Roetti [32] obtained

EcR = —396.386 eV, so that the difference
hE =E —EcR =9.886 eV. This is due to a rather crude
description of the one-electron wave function adopted.
Nevertheless, the ratio hE/ECR amounts to only 2.5%%uo.

Moreover, the orbital exponent for the 1s state is 3.3716
in our case and 3.47116 in Clementi and Roetti's. Then,
we think the trial wave function in the present variational
method is not bad. In addition, the ground state is in
most cases described by only s-type wave functions [32]
as long as a spherically symmetric scalar potential of the
nucleus is imposed on the electrons. Judging from these
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FIG. 1. Stopping power of carbon (I =77.3 eV) for Oq+

(q =4—8) ions as a function of velocity. The theoretical results

[Eqs. {2.33) and {1.2) are drawn for q =8, for q =7 ——,
for q =6 ———,for q =5 —.—.—-, and for q =4 ———.
The experimental data {Ref. [25]) are plotted for q =8: {~ ), for

q =7: {~ ), for q =6; { ), and for q =5: {0)
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to another conclusion: that the effective stopping-power
charge Z,z reduces to the net charge. Thus, the effective
charge depends on not only Z& but also the ion velocity.
We comment that in the comparison between the theoret-
ical and experimental results the higher-order terms (Z,
and Z, terms) are negligibly small.

Figure 2 shows the effective charge Z,z calculated for
Oq+ (q =4—7) ions in collisions with carbon targets at
velocities from U =7uo to U =60uo, and for C~+ (q =4, 5)
ions from v =5vo to v =60vo, together with recent exper-
imental data. From the figure, one can see that the
effective charge of a particularly stripped ion increases
with velocity in any charge state. At very high velocities,
the effective charge is at least saturated, to be the con-
stant given by Eq. (2.37) or (2.39). Agreement of the cal-
culated values with the experimental data is quite good.
The figure shows that the effect of bound electrons at-
tached to a projectile is important even at high velocities.

In order to estimate the screening charge in the stop-
ping power per bound electron, we calculate Zsc(q, q

—1)
in Eq. (2.41). Figure 3 shows the curves of Zsz(q, q

—1)
as a function of velocity U calculated for 0»+ (q =4—8)
and C~+ (q =4—6) ions passing through a carbon target.
The values derived from recent experimental data are
also plotted. At a glance one can find two remarkable
features. First, the six curves drawn can be classified into
two groups, namely, four curves with 1s-state screening
and the rest with 2s-state screening. Second, the velocity
dependence of Zsc(q, q

—1) for ls-state screening is
different from that for 2s-state screening. At v =7vo the
1s electron can screen the projectile's nuclear charge by
0.9e. This amount decreases slightly and monotonically
with increasing velocity and at last saturates and becomes
constant. On the other hand, the screening charge by the
2s electron is nearly constant (0.4e) over the velocity
range considered. At high velocities, in fact, the effective
charge can be described by Eqs. (2.37) and (2.39). Except
for Zsc(5, 4) for the carbon-ion case, the screening
charges [Zsc(8 7)~ Zsc(7~6), and Zsc(6~5) for the
oxygen-ion case and Zsc(6, 5) for the carbon-ion case] de-
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FIG. 3. Screening charge Zsc(q, q
—1) per ls or 2s electron

on oxygen and carbon ions. Theoretical results are for oxygen
ions (q =8, q=7, ——;q=6, . ~; and q=5
—- —~ —.) and for carbon ions (q=6, ———;and q=5,———) and the experimental data are for oxygen ions (from
Ref [25]) ~, (q =8; A, q =7; $, q =6) and for carbon ions
(from Ref [23] (Cl, q =6; and 6, q

=5).

rived from experiment support the theoretical results.
The discrepancy between theoretical and experimental
values in Zsz(5, 4) for the carbon-ion case is due to the
fact that, as was shown in Fig. 2, the measured stopping
power of carbon (or the effective charge) for 126.4-MeV
C + ions is slightly larger than the theoretical value, in
contrast with that for a C + ion.

In order to have a universal feature, a scaling of the ex-
isting stopping power would be useful. In fact, we can
scale the stopping-power curves for four types of projec-
tiles with relatively high accuracy by seeking a best-fit
value a of the scaling factor Z&. First, we plotted the
calculated stopping-power values of the H-like projectiles
with Z& =2, 3, 4, 5, 6, 10, and 20 at v =20vo, and found a
value of az0=2. 180 which best reproduces the Z& depen-
dence of the stopping power. Following the same pro-
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FIG. 2. Effective charge of 0 (q =4—7) ions and
0~ (q =4,5) ions passing through carbon foils as a function of
velocity, the theoretical results (, 0 +; ——,0 +;
—- —- —., 0; - ., 0 ———C and ——— C )

5+. 4+. 5+. 4+
7

and the experimental data ( ~, Q7+; 4, Q6+; $, Q'+; Q, C5+;
and 0, C +

) obtained from Refs. [23] and [25].

FIG. 4. Scaled stopping cross section SZ, ." vs ion velocity
u for hydrogenlike ions penetrating carbon foils. The theoreti-
cal curves are drawn for Z, =2, 3, 6, 10, 20, and 30, respective-
ly, in the velocity range Zlvo~v ~100vo. The experimental
data are plotted for Q +, A (Ref. [25]); C +, o (Ref. [23]); and
He+, + (Ref. [22]).
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FIG. 7. Scaled stopping cross section SZ, ""vs ion velocity
v for berylliumlike ions penetrating carbon foils. The theoreti-
cal curves are drawn for Z, =5, 6, 10, 20, and 30, respectively,
in the velocity range Z&vp v 100vo.
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FIG. 6. Scaled stopping cross section SZ, vs ion velocity
v for 1ithiumlike ions penetrating carbon foils. The theoretical
curves are drawn for Z, =4, 5, 6, 10, 20, and 30, respectively, in
the velocity range Z, vo ~ v & 100vo. The experimental data are
plotted for 0 +, (Ref. [25]).

cedure, we also found a,o
=2.207 at v = 10vo and

cx3o 2. 160 at U = 30U o. One sees the relative difference

(ufo —a;)/u2o=+0 01(i =. 10,30). For other types of
projectiles we obtained the values of a as well. Thus, at
high velocities, scaling is available with relatively high
accuracy. The relative difference in a is very small, so we
use the values of a at v =20vo as representative for vari-
ous projectiles. Figures 4—7 display the stopping-power
cross-section curves of a carbon target for Z, =2, 3, 4, 5,
6, 10, 20, and 30 and for velocities in the range
Z&vo U 100UO. The ordinate indicates the stopping
cross section multiplied by the scaling factors Z,Z, Z &,and Z

&
obtained at u =20UO for the

hydrogenlike, heliumlike, lithiumlike, and berylliumlike
ions, respectively, while the abscissa denotes the velocity
in units of the Bohr velocity vo (=2.19X10 cm/s). The
value of a in the scaling factor becomes slightly larger as
the number of bound electrons increases. Here the rela-
tivistic effect is not considered. It might seem curious

that the value of a in the scaling factor is larger than 2.
Since the bound electrons screen the nuclear charge of a
projectile, one might expect the Z& dependence of the
stopping for the present projectiles to be weaker than
that for a point charge, which is proportional to Z, [3].
However, this is not correct. The screening effect works
more strongly at low Z, than at high Z, . Consequently,
the stopping values for light (low-Z, ) ions are
suppressed, while those for heavy (high-Z, ) ions are al-

most unchanged from the bare values.
Finally we discuss the contribution of the projectile's

excited states. In principle, inclusion of those excited
states is possible [28,31]. However, we do not need to
take into account these contributions for the following
reasons. If a projectile were excited in a foil, electrons in
excited states could easily be ionized in the subsequent
collisions with much higher probability than those in the
ground state. According to the Born approximation, the
cross section for the electron loss process is inversely pro-
portional to the binding energy of an ionized electron
[33,34]. In a hydrogenic model, the electron-loss cross
section 0.&„,„ for an excited state with principal quantum
number n is given by n times the cross section cr&„, for

nd state. H~~~e, d „„~~d~c~s to (

Thus the mean free path of the ion in the excited state be-
comes shorter and its attenuation occurs much more rap-
idly with respect to the foil thickness. Judging from
these considerations, we think the contribution of the ex-
cited states of a projectile is negligibly small, especially
for light ions. For heavier ions, on the other hand, the
excited states will be expected to play a nonnegligible role
in the stopping on account of the large binding energy.
As a matter of fact, the excited states are related to the
projectile x-ray emission. From this viewpoint, we have
started an evaluation of the energy loss of excited projec-
tiles, and work on two-electron metastable ( ls2s) ions has
been published [35].

In conclusion, an analytical expression for the electron-
ic stopping power for lithiumlike and berylliumlike pro-
jectiles in a frozen charge state has been presented on the
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basis of first-order perturbation theory and the Hartree-
Fock-Slater method. The leading correction term
BL(Z&,Z2, v) at high velocity was also derived. The
effective stopping-power charge of frozen-charge-state
projectiles and the screening charge per either the 1s the
2s electron were presented. Scaling laws were found in
the electronic stopping power of carbon for swift hydro-
genlike, heliumlike, lithiumlike, and berylliumlike ions.
Good agreement was obtained between the theoretical re-

suits and recent experimental data. The scaling relations
can be found for other target materials.
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