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Nonadiabatic formulation of the slow-atomic-collision problem in the finite electronic basis
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The resonating-group method developed for nuclear collisions is used to obtain equations describing
the collisions of slow atoms. On one hand, these equations correctly take into account the indistinguish-
ability of electrons and scattering boundary conditions and therefore are free from the drawbacks of con-
ventional equations in the adiabatic electronic basis. On the other hand, they retain the form of the
latter equations and therefore are in agreement with the generally accepted picture of heavy-particle
motion in the fields of adiabatic electronic potentials accompanied by nonadiabatic transitions. The gen-
eral theory is illustrated by considering the interaction of two ground-state hydrogen atoms in the
Heitler-London electronic basis.

PACS number(s): 34.10.+x, 34.40.+n

I. INTRODUCTION

Recently collisions of cold atoms (with kinetic energies
from —10 to —10 K) attracted great interest of inves-
tigators in the field of atomic physics in connection with
such problems as laser trapping of atoms [1—5], hydrogen
maser operation [6—9], and behavior of the spin-polarized
atoms [10—12].

It seems at first sight that at least for two H atoms the
problem of the theoretical treatment of slow collision is
purely numerical since the lowest singlet and triplet accu-
rate potential-energy curves are known for this system
[13—15]. But a more detailed study performed in [6]
showed that this is not so.

The hyperfine-induced spin-exchange collision frequen-
cy shift of hydrogen maser oscillations at temperatures
0.05-50 K were calculated in [6]. The s-wave contribu-
tion to the hyperfine-induced frequency shift cross sec-
tion showed a remarkable sensitivity to the reduced mass

p adopted for the description of the H-H collision. Re-
placing ju,

=
—,'M (M being the proton mass) by the very

close value —,'MH where MH =M+m, is the atomic mass
(ttt, being the electron mass) leads to changes up to 50%%uo

in this contribution.
In the case of singlet scattering, a deep potential well is

present. The relative motion of the H atoms within this
well is quasiclassical even at zero relative kinetic energy
c, and because of this there is nothing astonishing in the
above-noted large reduced-mass effect. Actually, on the
one hand for c, (10 K, only the s scattering is important
and the cross section is determined by the scattering
length a =limk o[

—(tan5o)/k] [16] where k is a relative
motion wave number and 50 is an s-scattering phase shift.
On the other hand, because of the quasiclassical nature of
the relative motion within the well the radial wave func-
tion oscillates rapidly and 50)) 1 for k ~0. Therefore
the scattering length is extremely sensitive to the varia-
tion of the parameters of the radial Schrodinger equation

including the reduced mass. This fact can be easily illus-
trated in the example of the square potential well.

It is to be noted that such a strong dependence on the
reduced mass may also take place for the very low ener-
gies in the case of inelastic collisions, which can be de-
scribed by the Landau-Zener-Stuekelberg model (see, e.g.,
[17]). At such energies only one (or a few) partial wave
contributes to the cross section and if regions of quasic-
lassical radial motion exist, the cross section will be
directly proportional to the cos 4s„where the Stueckel-
berg phase 4s, &&1. Again the cross section appears to
be very sensitive to small variations of the parameters of
the problem, including the reduced mass.

Generally it can be said that experiments involving col-
lisions of cold atoms belong to the class of high-
resolution experiments with intrinsically quasiclassical
systems. And it was argued many times (see, e.g. , [18,19])
that for such experiments the semiclassical picture of
molecular motion, based upon the Born-Oppenheimer ap-
proximation, may become inadequate.

The sensitivity of the cross sections to the difference
between nuclear and atomic masses noted above is a
strong indication of such a situation. In practice, at least
at large internuclear distances, since the atoms are collid-
ing but not the nuclei, the choice of p= —,'MH is made. In
[6] JM= —,'MH was taken for all internuclear distances. It is
to be noted here that in [20], trying to reproduce experi-
mental highly excited vibrational levels of H2 on the basis
of the best Kolos-%olniewicz potential for the X'X+
state, the authors had to fit an effective value for the re-
duced mass and obtained a value very near to —,'MH.

But such a choice is incompatible with the Born-
Oppenheimer picture where the nuclei are assumed to
move in the fields of adiabatic electronic potentials-
eigenenergies of the electronic Hamiltonian for clamped
nuclei to which the so-called adiabatic correction is add-
ed (see, e.g. , [13]). The reduced mass of the nuclei enters
the set of coupled equations corresponding to this picture
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in the molecular (adiabatic, perturbed-stationary states)
basis, governing the motion of heavy particles (see, e.g. ,
[17]).

It is obvious that this difficulty with the reduced mass
of heavy particles is similar to the difficulties facing col-
lision theorists due to the use of the molecular basis for
treating an atomic-collision problem (see, e.g. , [17]). The
aim of the present work is to show that they can be re-
moved in the finite electronic basis using the resonating-
group method (RGM) suggested in the works of Wheeler
[21] as early as in 1937. On the one hand the resulting
equations assume the familiar form they have in the usual
molecular basis formulation, but on the other hand they
are free from the difficulties met in the conventional use
of this basis. To make the derivation more clear we
present here the simplest formulation of the method for
the collision of two nonrelativistic H atoms with distin-
guishable structureless nuclei. Additionally, it is assumed
that the finite electronic basis includes only spherically
symmetric atomic s states. Collisions of one-electron
atoms with nonzero electronic angular momenta and
non-Coulomb cores with different masses as well as of
two many-electron atoms can also readily be treated by
the method presented here. Such a generalization will be
considered in a forthcoming paper.

The paper is organized as follows. In Sec. II the posi-
tion of the problem and the general ideas of the present
approach are briefly discussed. In Sec. III the general
form of the RGM equations for the scattering of two H
atoms is given. Section IV is devoted to the derivation of
the differential RGM scattering equations based on the
narrow kernel approximation. In Sec. V the molecular-
basis-coupled radial Schrodinger equations are derived
from the differential RGM equations. In Sec. VI the gen-
eral approach is illustrated considering the interaction
between two ground-state hydrogen atoms within the
basis including only ground-state hydrogen wave func-
tions. This approximation can be called the "nonadiabat-
ic Heitler-London approximation" (NAHLA). Sections
VII and VIII are devoted to the discussion and con-
clusions. Calculations of some integrals arising in
NAHLA are considered in the Appendix. Atomic units
with 6=m, =e =1 are used throughout the text unless
stated otherwise.

II. POSITION OF THE PROBI.EM

A. Di%culties of the conventional approach

The conventional formulation of the atomic collision
problem in the adiabatic basis suffers from the following
difficulties:

(1) spurious behavior of the nonadiabatic coupling ma-
trix elements at large internuclear distances R,2

—some
of them decrease as slowly as 1/R, 2 and some tend even
to constant values as R,2 ~~, and

(2) dependence of the nonadiabatic coupling on the
choice of the common origin for the electronic coordi-
nates.

These difficulties mere intensively studied and a large
number of papers on this subject appeared in the litera-

ture. A comprehensive discussion of the results obtained
can be found in the reviews [22—25], see also [17]. Most
important for the present development is a clear under-
standing of the fact that the above difficulties are not due
to the adiabatic approximation as such (see, e.g. , [17,26]).
The root of the difficulties is the indistinguishability of
electrons due to which collision of two atoms is, in fact,
always a rearrangement collision. Therefore it is impossi-
ble to introduce in a simple way a unique coordinate
characterizing the distances between the atomic centers
of mass in different arrangement channels. From this
principle point of view the situations in the cases of col-
lisions of neutrals and charge transfer, where there are
two arrangement channels corresponding to the binding
of an electron to two different cores, are analogous. As a
result, adiabatic basis wave functions do not obey correct
scattering boundary conditions. It is emphasized in

many papers (see, e.g., [27,28]) that these conditions can
be fulfilled in the adiabatic basis only if the complete set
of adiabatic states including the continuum is taken into
account.

The majority of concrete methods for treating the
difficulties connected with the use of the adiabatic basis
concern the charge-transfer problem, which is reduced to
the three-body problem: two heavy cores and one light
electron. Therefore almost all of them cannot be applied
to take into account the indistinguishability problem in
the case of collisions of neutrals where at least two mutu-
ally exchanging electrons are to be considered. To our
knowledge for the latter case the only well-developed
theory is due to Mittleman and Tai [29] (see also [17]) in
which the two above-mentioned problems with the nona-
diabatic couplings are removed. But, alongside the usual
adiabatic basis, it includes not uniquely defined switching
functions. To exclude the dependence of the results on
the choice of the switching functions, the calculations are
to be performed accounting for the complete adiabatic
basis set.

As for the reduced-mass problem, only attempts of a
semiempirical nature that introduce an effective reduced
mass especially suited for the bound-state calculations
can be mentioned [20,30,31].

Thus, in light of the above-emphasized principally high
sensitivity of the cold-atom collision characteristics to the
parameters entering scattering equations, the following
dilemma arises. On the one hand, it is, of course, desir-
able to use that large amount of information on adiabatic
electronic potentials that quantum chemistry provides
and an appealing concept of heavy-particle motion in the
fields of these potentials accompanied by nonadiabatic
transitions. On the other hand, the available coupled
scattering equations corresponding to this picture contain
principal drawbacks.

It seems to us that this dilemma originates from the
asymmetry of the commonly used molecular basis ap-
proach to the atomic collision problem. Scattering equa-
tions as mentioned above are such that contradictions do
not arise only if the complete set of the adiabatic elec-
tronic states is taken into account. But, quantum-
chemical calculations of adiabatic electronic terms and
wave functions which enter these equations are always
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performed in some finite basis of the square integrable
electronic functions.

B. Present approach to the problem

To overcome this asymmetry and get an equal state of
adiabatic and nonadiabatic parts of the atomic collision
problem, it seems natural to invert the standard formula-
tion. As a first step, take some finite electronic basis, for-
get about the small electronic mass and, accurately tak-
ing into account the indistinguishability of electrons,
derive a set of coupled scattering equations that corre-
spond to this basis and that is compat-
ible with the correct boundary conditions. As a second
step, try to see whether it is possible, using the small
value of the ratio rn, /M„(M„ is a characteristic nuclear
mass), to obtain simplified equations which possess the
desirable properties. Namely, these simplified equations
must be compatible with the correct scattering boundary
conditions and correspond to the familiar intuitive pic-
ture of the heavy-particle motion in the fields of adiabatic
potentials accompanied by nonadiabatic transitions.

In fact, as for the first step, a formulation exists. It was
developed to treat collisions of complex nuclei where the
problem of simultaneous accounting for the correct
scattering boundary conditions and the indistinguishabili-
ty of nucleons belonging to different nuclei also exist, but
in this case masses of all the particles are of the same or-
der. This is called the resonating-group method (RGM}
suggested by Wheeler [21]. Since then, the RGM was
successfully applied to a variety of concrete nuclear col-
lisions and its mathematical structure was thoroughly in-
vestigated. A comprehensive account of all the subjects
concerning RGM can be found in Refs. [32—37]. In-

dependently similar equations for the charge-transfer
process in the ion-atom collision were written by Mott
and Massey [16].

The starting idea for the second step, based on the use
of the expansion over moments of the originally nonlocal
(RGM) equations, was suggested in [38,39] in connection
with the nuclear structure calculations. A similar idea
was used by Delos [22,23] in his consideration of the
charge transfer based on the equations from [16].

III. RESONATING-GROUP METHOD EQUATIONS

A. Hamiltonian

H =T'"+0'"+0'"+V"'
rel 1 2 (3.1)

where T,",~' is the relative kinetic energy,

The diatom H-H, which consists of two electrons e,
and e2 and two protons p &

and p2 mutually interacting by
the Coulomb forces, is described in the center-of-mass
space fixed-coordinate frame. See Fig. 1 for notations.
Since electron exchange must be taken into account, two
equivalent sets of the relative Jacobi coordinates are to be
used.

The first set, r'&", r~2", and R'" (see Table I), corre-
sponds to the situation where e& is bound to p, and e2 to
p2 and will be called the reference arrangement (RA}.
The second set, r& ', r2 ', and R' ', corresponds to the sit-
uation where e, is bound to p2 and e2 to p &

and it will be
called the transposed arrangement (TA).

The Hamiltonian of the H2-system in the RA has the
form

TABLE I. Vectors characterizing relative positions of particles in the H2 system.

Jacobi coordinates

Radii vectors between
electrons and protons

Reference arrangement (RA)

rz"=rz —R$

Transposed arrangement (TA)

rI'~=re —R~
r"'=re —R)

Radii vectors between

atomic centers of mass

R"'= (MR$+rz) — (MRf+rf)
1 1

M+1
R"'= (MR)+ r f) — (MR('+ r2)

1 1

M+1 M+1

Interrelations

R( )—

(&)— 1 (r(2) +Mr(2) ) +R(2)
M+1

(Mr]"+r2")—R"'

2M
(

(2) (2))+ M —1 R(~)
(M+1) M+1

(2)—rl (r&"+Mr&")+R' "

(Mr', "+r',")—R"'

R(2) 2M
(

()) (I))+ M —1 R"'
(M+1)' M+1

Radius vector between electrons r»

r M (r'"—r"')+R "=r'—r'
12 M+1 2 1 2 I

Radius vector between protons R&2

1R =R'"+ —(r"'—r"')=R$—Rf12M+112



2654 S. YA. UMANSKII, G. HADINGER, AND M. AUBERT-FRECON 49

12

M
fn. (3.7)(p„(r)=

with eigenenergies cI, where i = 1,2, j = 1,2, and n, are
l

principal quantum numbers. The functions g„„(R"')
1 2

play the role of variational amplitudes.
The functions q&„(r(J') and energies ef take into ac-

l l

count finite values of proton masses. In practical
quantum-chemical calculations, the functions q&„(r) and

l

energies c.„corresponding to infinitely heavy nuclei are
l

used. For the H atom they are related to P (r) and ef in
l I

the following simple way:
' 3/2

FIG. 1. Coordinates of electrons e1 and e2 and protons pl
and p, in the space fixed frame (x,y, z). EI =~„ M

"M+1 (3.8)

T(1) 1 q(2)
R( )

H(1) q2
1 2M ~(1) (y) ~

r;

and V"' is an interaction in RA.

V(&)— 1 1

R&2 r12

1

r(2)
1

1

(2)r2

H,"and 82" are the electronic Hamiltonians,

(3.2)

(3.3)

(3.4)

where M is the proton mass.
The wave function (3.5) is different from the corre-

sponding trial electron-nuclear wave functions of the con-
ventional atomic collision theory (see, e.g., [17]). In the
former, symmetrization with respect to electron permuta-
tion a6ects both basis electronic atomic functions and
amplitudes g„„describing the relative motion of atoms.

1 2

In the latter, only basis electronic functions will be sym-
metrized.

By introducing the 5 function, 4' can be given a more
suitable form for physical interpretation and for further
consideration (see, e.g. , [34]):

B. Wave functions

Our aim is to construct a two-electron —two-nuclei
wave function which will be antisymmetric with respect
to permutations of electrons and compatible with the
correct scattering boundary conditions. The spin func-
tions are factorized and only spatial parts of the singlet
and triplet wave functions may be considered indepen-
dently. Explicit consideration will be performed for the
singlet states with the even under electron permutation
spatial wave functions. The corresponding formulas for
the triplet case can be deduced from those for the singlet
one by an obvious change of signs.

RGM accepts the following form for the electron-
nuclear wave function 4 with the desired properties:

—[ (p„(r((")q„(r&")g„„(R'")
nl n2

f ( (2)) (r(2))g (R(2))] (3.5)

where the sum runs over a finite number of electronic
atomic states with the angular momentum I =0 for the
simplified case treated here. The corresponding atomic
orbitals are eigenfunctions of the atomic Hamiltonians
H;"' [Eq. (3.3)]

H(')P(r(')) —f P( (J))
l l

(3.6)

where R,2, r &2, r', ', and r 2
' are expressed as functions of

r', ", r(2", and R'" (see Table I). Relations similar to Eqs.
(3.1)—(3.4) can be written in the TA by substituting the
upper indices (1) by (2).

q(=g g I d' Rg„„(R)~Rn,n~) .
tl2

(3.9)

Here, R is the so-called parameter coordinate character-
izing the distance between the atomic centers of mass re-
gardless of the distribution of electrons between the
atoms, and

+t)(R —R' ))q)f (r()~')(pf (r' ))
I (3.10)

is the nonorthogonal basis electron-nuclear function, cor-
responding to two atoms at a distance R. The amplitudes
g„„(R)may be interpreted as wave functions of the rel-

1 2

ative atomic motion though in the limited sense because
of the nonorthogonality of the basis

~
Rn, n 2 ).

C. RGM equations and their general properties

where E is the total energy of the H2 system, correspond-
ing to the Hamiltonian H given by Eqs. (3.1)—(3.4). Us-

ing the RA variables, one obtains for the matrix element
in Eq. (3.11):

The application of the variational principle to 4' in the
form (3.9), considering g„„(R) as variational ampli-

1 2

tudes, leads to RGM equations for g„„(R)[21,32 —37]:
1 2

g g Jd R'(n n(zR~ H E~R'n', nz)g, , (R')=0,
I I 1 2

nl n2

(3.11)
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(n, nzRiH —EiR'n', nz &= — d R"'d rI"d r'z"
2

X [P (r',")P (rz")5(R"'—R)+qr„(rI ')qr„(rz ')5(R' ' —R)](H E—)

X [qj, (rI )yf, (rz )5(R —R')+y, (r )y, (r~ )5(R —R')] .
1 2 2 l

(3.12)

Here Eq. (3.1}is to be used for H and rP', r~z ', and R' ' are to be considered as functions of r', ", r~z", and R'" (see Table
I). Note that the s functions p„are real and therefore all the matrix elements in this paper are also real.

Using the invariance of H under the transformation r', ", rz'", R'"~r'1 ', rz' ', R' ' and the fact that P are eigenfunc-
tions of the atomic Hamiltonian H J' [see Eq. (3.3)] with eigenenergies sf then Eq. (3.11) can be given a more familiar

l

form:

I
nl n2

Vz+ef +sf E5—, 5, +(n, nzlg(R)lnInz& g,„(R)

+g g fd R'(n, n zRiKiR' nInz &g, , (R')=0, (3.13)
I I

nl n2

where,

(n, n zi g(R)in in& &
=fd r', "d rz"p„(rI")gr„(rz")V"'(R)y, (rI")y„(rz")

1 2
(3.14)

is a matrix of Coulomb integrals [V'"(R) is given by Eq. (3.4) with R substituted for R'"]. It differs from the conven-
tional matrix of Coulomb integrals in quantum chemistry because here, V"' and the electronic wave functions take into
account the difference between the centers of masses of atoms and the positions of the corresponding nuclei.

The nonlocal kernel ( n, nzRiEiR'n', n z & describes electron exchange and its explicit expression is as follows:

(n&nzRiEiR'ninz &
=—f d R"'d rI"d rz" [ [p„(r"')P (rz")5(R—R"')(H E)p, (—r' ')yf, (r' ')5(R' —R' ')]

+[qr„(r' '}P (rz ')5(R —R' ')(H E)P, (rI"—)P, (rz")5(R' —R"')]] .
1 2

(3.15)

Due to the hermiticity of H and V"' the matrix of the
Coulomb integrals and the nonlocal exchange kernel are
hermitian. Then

and

(n, nzlg(R)in', nz &
= (n', nz ig(R)in, nz & (3.16)

(n]nzRIZIR n Inz &
= (n InzR lEln jnzR& . (3 17)

It is to be noted in connection with Eq. (3.15) that be-
cause the electron permutation operator commutes with
H, the two terms in square brackets on the right-hand
side (rhs) of Eq. (3.15) give equal contributions to the ker-
nel. This fact is not used here as is usually done [33—36]
to simplify the kernel because of the following reasons.
We are going to simplify Eq. (3.13) using the smallness of
1/M. The total Hamiltonian includes the operators T,",&'

and V"' (or T,',&' and V' ') which are principally different
from the point of view of such simplifications. Therefore

I

(i) M+1 (i) M+1ri' r2 = r2 . (3.18)

It allows us to eliminate the mass dependent scaling fac-
tor from the atomic wave functions [see Eq. (3.7)] and to
get all the expressions in terms of the generally accepted
wave functions p„ for infinitely heavy nuclei.

l

After these transformations one obtains for the
Coulomb matrix elements

their contributions are to be considered separately and it
is desirable that the corresponding kernels possess an im-
portant property of hermiticity. But since separately TI,'1'

and V"'(or T,'„'and V' ') do not commute with the elec-
tron permutation operator, commutation can be achieved
only by using the symmetrical expression (3.15).

In order to obtain suitable final expressions for the ma-
trix of Coulomb integrals and the exchange kernel, the
following transformations are to be made:

with

(n, nzig(R)in', nz &
=fd r,d rzy„(r, )y„(rz)V(r„rz, R)y, (r, )y, (rz)

—1 —1 —1

V(r„rz, R)= R+ (r, —rz) +ir, —rz —Ri —r|—R+ rz —rz+R+ r,

(3.19)

(3.20)
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As for the exchange kernel, after transformation (3.18) and integration over d R'" with the help of 5(R"'—R') the
final expression with the separated contributions of T,',i and V' ' is as follows:

&n, nzRiKiR'n', nz) =[—,'(Ef +sf +Ef, +sf, )
—E) &n, nzRiSiR'n', nz )+&n, nzRiTi R'n', nz )+&n, n zRi ViR'n', nz),

(3.21)

where (suppressing here and everywhere below the indices n, n z, n ', n z in the notations of the matrix elements)

&R~SiR')= fd r,d rzF(r, , rz, R)5 R' —R— p (3.22)

is an overlap kernel.

& Ri FAIR' &
= — (Vz, +Vz, ) & RISlR') (3.23)

is a relative kinetic energy kernel, and

&R~ ViR') =f d r, d rzV,„(r,, rz, R)F(r„rz,R)5 R' —R—
p

2

M+1 (3.24)

is an interaction kernel.
The expressions for F(r&, rz, R), p and V,„(r„rz,R) are as follows:

1 1F(r„rz,R) =y„(r, )y„(rz )y„, rz+ R+ p tp, r, —R — p (3.25)

p=r& —r2 —R (3.26)

1
V,„(r„rz,R)= R+ (r, —rz) +ir, —r, —Ri-'

1 M i M i 1

M+1 1 M+1 2 1 M 2
1+ r2+R+ r&M

(3.27)

It can be readily verified that all three kernels entering the total exchange kernel are separately hermitian.

IV. DIFFERENTIAL RGM EQUATIONS
IN THE NARROW KERNEL APPROXIMATION

A. Narrow kernel approximation and general consideration

The RGM equations introduced in Sec. III solve the
problem of simultaneously accounting for the correct
boundary conditions and indistinguishability of electrons
using a unique coordinate describing the relative motion
of atoms. However, the price of it is very high because
these equations are nonlocal. There is no doubt that the
conventional picture of an atomic collision based on the
local equations in the molecular basis is correct in its
main features. Therefore it is natural to expect that due
to the small value of 1/M, entering the RGM equations
integral operator differs little from a differential one.

The nonlocality of the RGM equations is a conse-
quence of the fluctuations of the radius vector between
the atomic centers of mass about the radius vector R&2
between nuclei. Because 1/M is small and because in the
bound atomic states electrons cannot go far away from
the nuclei following the fluctuations

are small in comparison with R"', R' ', and R&2. There-
fore nonlocality must be small. Mathematically it means
that the kernel of the RGM equations is narrow, and it is
really so.

It is seen from Eqs. (3.22) —(3.24) that integration over
d r, in each term &Ri AiR') of the exchange kernel will
lead to the substitution r,~ [(M + 1)/2](R' —R) +rz
+R in the atomic wave functions and to the appearance
of the factor

(R' —R)+ . , (R' —R) .
2 "z 2

under the remaining integral over d r2. The hydrogen
wave functions are y„(r)„-exp( r/n ). Therefore-
if very diffuse atomic functions are not included in the
basis (say n,„(10, n, „corresponding to the most
diffuse function in the basis), this factor will lead to the
very rapid decrease of the exchange kernel as a function
of iR —R'i since M/2= 10 . In other words, the kernel
is narrow since its width

5R"" '=R' ' —R'"= (r —r —R"')2
M+1 (4.1)

2' max
I

M
(4.2)
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lx —n,„(4s,/M)'~ &&1 . (4.3)

is very small in comparison with the characteristic atom-
ic distances.

In fact, for narrow kernels there exists a well-
developed method of moments of approximating integral
operators by differential ones. It originates from the
theory of stochastic processes (see, e.g., [40]) and was ap-
plied to problems similar to the present one in Refs. [21],
[22], [38], and [39].

In the method of moments g, , (R') under the integral
n1n2

in Eq. (3.13} is expanded in powers of d=R' —R in the
vicinity of R'=R retaining only several first terms.

Such a truncation is legitiinate if g, , (R ) varies much
n 1n2

slower than the kernel. The range of the kernel variation
is given by Eq. (4.2). The range of g, , (R') variation is

n ln2

of the order of the relative motion de Broglie wavelength
A, =(Me, )

'~ . Thus the method of moments can be used
in the present problem if

Taking into account that I /n, „ is of the order of the
characteristic velocity v, of electrons participating in the
process and (4s, /M)'~ is the relative proton velocity v,
inequality (4.3) can be rewritten in the form

v /v, «1. (4.4)

Note that the fulfillment of this inequality is generally ac-
cepted as a justification of the conventional theory of
slow atom collisions (see, e.g., [17]).

Usually only terms up to second order in 5 in the ex-
pansion of g, , (R') are taken into account to get a

n ln2

second-order differential equation which can be physical-
ly interpreted in terms of potentials and effective masses.
In the present case the third-order term must be retained,
and the reason for that will become clear below. As a re-
sult we get

R' RER' = E''R g, , R+ E" Vg„,„, R

+—,
' [IEk '(R)l ]V;Vkg, , (R)+—,

' [IE „'(R)l ]V;V,Vkg, , (R),
1 2

(4.5)

where

[IK '(R)l]= f d'R'(RIEIR'~,

[I& "(R)I]=fd'R'« —~;}&RI&IR'&,

[IE' '(R)l)= fd R'(R R;)(Rk R—k)(RIEIR—'),

[IE k'(R)l]= f d R'(R, '
R, }(R,

' —R —)(Rk Rk)—
x (RI~IR'),

(4.6}

(4.7)

(4.8)

(4.9)

are the zero, first, second, and third moments of the ker-
nel. Here and below the index notations for the three-
dimensional vectors and tensors are often used together
with the usual convention that the summation is to be
performed over the same indices appearing twice.

B. Moments and their properties

Explicit expressions of the moments of the overlap [Eq.
(3.22)], interaction [Eq. (3.24)], and kinetic energy [Eq.
(3.23)] kernels are readily obtained from the general ex-
pressions (4.6)—(4.9) introducing b =R' —R as an in-
tegration variable instead of R'. They are given in Table
II.

The moments form matrices in the space of basis elec-
tronic functions. Further it will often be suitable to use
operator notations A' ', A,'", . . . , for these matrices.
They depend on R and often enter different expressions
together with the gradient operator V';. Therefore it is
suitable to use special notation 8; A for the gradient of
the matrix retaining the symbol V; only for gradients of

the functions. In these notations we have, for example,

V;A=8;A+ AV; . (4.10)

The following general conclusions concerning the mo-
ments can be made based on the expressions in Table II:

(1) The ith moment of the overlap and interaction ker-
nels is in some sense an average of the corresponding de-
gree of the Auctuation 5R"" ' [see Eq. (4.1)] of the dis-
tance between atomic centers of mass due to electron ex-
change and therefore contain a small factor
[2/(M+1)]'=(2/M)'; and

(2) the first three moments of the relative kinetic-
energy kernel, due to the presence of derivatives in Eq.
(3.23), contain terms —1/M and the forth moment is
—1/M .

As pointed out previously the nonlocal exchange ker-
nel is hermitian and the same is true separately for the
kernels of the overlap, interaction, and kinetic energy.
Therefore the differential operators approximating the in-
tegral ones in the method of moments must also be her-
mitian. This requirement imposes relations between
different moments. In the operator notations introduced
above these relations are as follows ( A =S,V, T):

A ' = A"' +—'8 A' ' +—'a-a A'. ' '
i i 2 k ik 4 i j ijk

A' '= A' ' '+ —'8 A. -/ik ik 4 j ij4

A"'= A"-~" .

(4.12}

(4.13)

(4.14)

A' '= A' ' '+ —,'8;A' "+—'8;8 A'; ' '+
—,', 8;a,a A';. ' ',

(4.11)
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TABLE II. Explicit expressions of the various moments.

Overlap and interaction kernels'

[~ A' '~]= f d'rid'rzAF{r, ,r, ,R)

[I A';"I]= f d'r(d'r~p; AF{riri, R}2

4
[l Alk l]= i d'rid'r~;p„AF{r„r2, R}

(M+1)2

Relative kinetic-energy kernel

'
, [v„[lsI"I]+v, [lsi,"I]]— , 8,„[ls"'I]

~]+8; [~s,'"~]+8, [~sl"~]]+0{1/M

A= 1 and A= V,„[Eq.{3.27)] are to be substituted in the cases of the overlap and interaction kernels, respectively; Fir(, r2, R} is
given by Eq. (3.25).

A(2) A(2, 2)= 1
ik 2 (2)ik (4.15)

A(1) A(1, 1)+
I

A(1, ()+ 1g A(»&1
j

1 1
i M (1)i 2 (2)i 2 k (2)ik

A(0) A(0,0)+ [
A(0,0)+ (g A(1, 1)]1

(0) ~ (1) 2 i (l)i

(4.16)

In Eqs. (4.11)—(4.14) the matrices A' ' ' and A(k' ' must
be hermitian (symmetrical in the present case, when all
quantities are real} and A' "and A'; j ' must be antiher-
mitian (antisymmetrical). These relations are the general-
ization for the multistate three-dimensional case of the
relation between the first and the second moments con-
sidered in [39].

Note that if one connects the relations (4.11)—(4.14)
with the above-stated properties of the moments concern-
ing their dependence on 1/M, it becomes obvious that,
generally speaking, terms of different orders in powers of
1/M are to be taken into account to evaluate the mo-
ments. Thus, it is not enough to retain leading terms in
1/M in the moments, but generally speaking further
terms in the expansions of the moments in powers of
1/M are to be included.

For the moments of the overlap and interaction kernels
the expansions up to the second order in 1/M, compati-
ble with the relations (4.11)—(4.14), are as follows:

IT" (1+ ((l T'2 . 1]= 1
i M (1)i 2 k (1)ik

1+, I T(„',I1+-,'a, T(2;P +-,'a, a„T",„',j(„],
M

T(01 IT(0,0)+ (g T(, )+ (g g T(, 11
(1) p i (1)i 4 i k (1)ik

(4.20}

1+, I
T(o;"+-,

' a, T, (;I1+-,'a, a„T,",,
',,'

M

+ (i ~i~j~k T(2)ljk ] (4.21)

In Eqs. (4.15)—(4.21) the lower index in brackets indi-
cates the order in 1/M. The matrices A( '1', T' '1',

A( '),.k, and T( '),.k must be hermitian and A( '),.', T( '),.),

and T(2'), k must be antihermitian.
All the moments considered here are symmetrical ten-

sors of the corresponding rank (see Table II). But there
exists additional symmetry. Namely, it can be readily
shown using explicit expressions of the moments from
Table II and the fact that only spherically symmetric
atomic s states are included in the basis, that in the
body-fixed coordinate system [x'y'z'] with the z' axis
parallel to R,

1+, [ A,",&"+-,'a, A((,'&I1+-,'a, a„A(",}',„'] . (4.»)
M

A",'= A", '=0 A"'= A'"(R)x y
(4.22)

(3) — (3,3)1
TIqk 2 T(2)ijkM

(2) — (2, 2)1 1 (2, 2) I (3,3)
ik (1)ik p [ (2)ik 4 ~j (2)ijk ]

(4.18}

(4.19)

For kinetic energy, analogous relations have the form A(2) —A(21 —A(2)rd(g ) A(2) —A(&)(g )x'x' y'y' 7 ZZ

A'2' =0 for i'Wk' .
(4.23)

In the body-fixed system, various moments are obviously
functions of R only.

It is sufficient to derive explicit expressions of the ma-
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trices S( '), S( ');, S(2);k, V( '), V( ');, and V(2'),-k in order(0,0) (1,1) (2,2) (0,0) (1,1) (2,2)

to obtain various moments with the accuracy chosen here
(up to the second order in 1/M), see Eqs. (4.15)—(4.21).
These expressions are obtained by direct expansions of
the integrals in Table II in powers of 1/M with the use of
the relations (4.15)—(4.21) between different moments.
The results for the moments entering the final radial
equations and also for the Coulomb interaction are given
in Table III.

C. General structure of the differential RGM equations

The ROM differential equations including all the terms
up to the second order in 1/M can be written in the fol-
lowing form:

(Wi+ W2+ Wi+ Wo)g =0,
where g is a column vector, constructed from the func-
tions g„„(R), and W is the following hermitian

1 2

di8'erential operator of jth order:

W3 = B;Jk V; VJ V'k + ', d; B;~k—Vi Vk

W, =G, V, +-,'a, G, , (4.27)

} 1
Vf =U+ U+ U

M
(4.28)

Expressions of all the matrices entering Eqs. (4.25)—(4.28)
are given in Table IV.

The matrices Q, N, and e, which were not defined
earlier, enter these expressions. The matrices Q are the
"coefficients" in the expansion of the matrix Q of the
Coulomb integrals (3.19) in powers of 1/M:

1 1
Q =Qo+

M Qi+, QzM
(4.29)

In the present simplified model when only even spherical-
ly symmetric atomic states are taken into account Q,
vanishes identically.

The normalization matrix N is defined by the relation

x=r+s('",(0) (4.30)

where I is a unit matrix and a is a matrix of atomic ener-
gies defined by the relations

+-,'a, a,B...V„+-,'a, a,a, B... ,

W =D;„V;V„+8;D;„V„+—,
' 8;B„D;

(4.25)

(4.26)

[n}n2IEIn', n2]=(e„+s„)5,5 (4.31)

The RGM equation [Eq. (4.24)] which is yet very

TABLE III. Expressions in the form of quantum-chemical integrals of the Coulomb interaction and various moments entering ra-
dial difFerential ROM equations (5.1). All the integrations are performed in the body-fixed coordinate system (x',y', z') with the z'
axis parallel to R; in this system R=(O, O, R).

Coulomb interaction, hermitian matrix'

[Idol]= f d rid r2q„(r()y„(rz)V' '(rI, r2, R)q&, (r()q&, (r,')

Zero-order moments, hermitian matricesb

Overlap
[IS((o)o'I]=fd'rId'r Fi(ro'„r Ri)

[ IS( olI ] 3[IS(o'oi( ]

Interaction' [ IV(o('I ]=f d r', d'r2V', „' (r'„r2, R)Fo(r'„r2, R)
[IV',o;"l]=2[IVlo;"I]

First-order moments, antihermitian matrices

Overlap

Interaction'
[IS((i"l]=2fd'r', d'r,'(z( —z2 R)Fo(r( r2 R)

[IV,",,"I]=2f d'r', d'r2(z', —z~ —R )V,'„' (r'„rz, R)Fo(r'„r,', R)

Second-order moments, hermitian matrices

Overlap

Interaction'
[ IS(z) 'I]=4f d r', d r2(z', —zp R) Fo(r„rz,R)

[ IV(2P I]=4f d'r(d'r2(z', —z2 —R ) V',„' (r(, r2, R)Fo(r„r2,R)

V (r] r2 R)= +(Q) r r 1 1 1 1

[r(—r2 —Rl Ir', —RI Ir2 —RI
'

'+Q(ri, r2, R)=p. (rl)y„(r2)y ~ (r2+R)g, (r$ —R) ~

1 2 Pl 2

V y (r$ r2 R) + 1 1 1 1

R Ir', —r2 —RI r', r2 Ir', —RI Irz+RI
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TABLE IV. Matrices entering Eqs. (4.24)-(4.28).

Dik ~(k +
p [ p V(2)ik +

4 [{e E )s(2)ik +S(2)ik {eM ' M'
—3S(0) &(), +N5;k] '

U() =Q()+V((()) '+
—,'(eN+Ne);

U =V ' + —[{e EI}S()') +S ' {e EI)] &{eN+Ne)

U = Q +V""+-'[(e—EI)S""+S(00){e—EI)]—-'{eS(0"+S(o0)e)

+ —,'(cN+Nc j

1
Bijk p (~ijS(1)k +~ikS(1)j + jkS(1)i ~ )6M

Antihermitian matrices

G; = {VII'); +
&
[{8 EI)S()'); +S()'); {e EI)]1

+ [V,]',"+—'[( —EI)S'2"'+S,", ,
"( —EI)]——'{ S'))"+S,')'," )]

different from the equations used in conventional theory
can, in principle, be used to solve the collision problem in
the adopted electronic basis. However, our present aim is
to come as close as possible to the conventional formula-
tion retaining only the leading corrections due to both
taking into account the finite value of the nuclear mass
and the indistinguishability of electrons.

In order to obtain equations in a form close to the fa-
miliar Schrodinger equations, further simplifications and
transformations are needed. First of all, some
simplifications may be made in the operators W . If we
want to take into account only first corrections to the
conventional picture then the term (1/M )U2 can safely
be neglected in Wo which is the analog of the potential
matrix. More than that, all —1/M potential-like terms
which will arise below from the differential operators un-
der R-dependent transforrnations of the equations can
also be neglected. But the —1/M term in D;k must be
retained. It is just this term which leads to the
modification of the reduced mass of the relative motion.
The operator W& has no analog in the conventional pic-
ture. Therefore, only leading —1/M terms will be re-
tained in it and in other operators with analogous struc-
ture (including antihermitian matrices).

3 2
W = — S"" d +—'dS(

+ 3 d 2S( I, I ) + ) d 3S(1,1)
(&) p (1) (5.2)

with

d2

dR

D = — N+ [ —'V'''1 1
(2)

+-'[(a —EI)S,",;"+SI,')"(e—EI)]

tronic angular rnomenta of the atoms in the presently
adopted basis are zero, this invariance means that the rel-
ative angular momentum I is conserved (the correspond-
ing quantum number is 1). Then, using the standard pro-
cedure, the following radial equations for the column vec-
tor g'(R) are obtained:

(W3 +W2+W)+W() )g'(R) =0 . (5.1)

RThe radial hermitian differential operators %'" are as fol-
lows:

V. NONADIABATIC RADIAL SCHRODINGER
EQUATIONS IN THE MOLECULAR BASIS

A. Radial differential RGM equations

WR GR + 1 d~R
A.

dR

with

3SIo') +N ] (5.4)

(5.5)

The above-described simplifications do not change the
general form of equations which remain di6'erent from
the familiar Schrodinger equations in the molecular basis.
To get this form further transformations are needed.

The tensor structure of the operators W - is such that
they are invariant under rotations in space. Since elec-

(5.6)

WR U ~E + UR (5.7)

Cx = [V")"+—,'[(a —EI)SI'"+SII')"(e—EI)]],1
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with

1(l+1}
1 (5.8)

In the case of energetically open channels,

g', , (R)R „-exp( —ik'iR) . (5.12)

«}R O
I
n ln2

and, in the case of scattering,

(5.9)

and U0 and U, are given in Table IV. In accord with the
above-introduced notation for the gradient of the matrix
[see Eq. (4.10)] the notation d A is used for the matrix
d A/dR in these equations and below.

Expressions of all the matrices entering WJ in the form
of quantum-chemical integrals are given in Table III.

Because the basis functions are orthogonal for R ~ 00

(all S((")'R „~0),Eq. (5.1) is to be solved with the usual
boundary conditions (see the discussion of this point in
Refs. [33] and [35]):

g', , (R)R „~0 .
n&n2

(5.13}

Scattering cross sections are expressed through the ele-
ments S', , of the scattering matrix in the usual way

n $n2, ni n2

(see, e.g., [16,17]}.

In the case of energetically closed channels and in the
case of bound states

le.g', , (R )R „—exp i k—R—
n&n2

5,5
n]n l n2n2

B. Orthonormalization of the RGM equations
Schrodinger radial equations in the molecular basis

with

—S, , exp i k'R—I lm.

n in2 n]n2 2

' 1/2

k = (M+1) E —(e„,+e„,)
1

(5.10) To make the radial difFerential equations (5.1) as simi-
lar as possible to the conventional radial Schrodinger
equations let us introduce a new column vector 21'(R) by
the relation

' 1/2 gl(R ) N
—1/2ril(R ) (5.14)

k'= (M+1) E —(e +& )
1

M

(5.1 1)
and multiply Eq. (5.1) by N '/ from the left. Then one
obtains the following equations for g'(R ):

2 2

I+ l(l+1) +U EI '= ——U +G ' d + 'dG"' '—— DRlv d +dDRN d
M dR MR dR dR

3 2

+ ' S""""+-'dS"""" +-'d'S"""
2M2 (1) dR3 2 (1) dR2 2 (1) dR

(5.15)

Here,

UN=N0 0 (5.16)

(5.17)U N 1/ + [dN
—I/ dNl/2+dNl/2dN —1/2]+ 1[N—1/2GRdN 1/2 dN

——1/2GRN 1/2]—
1 1 2

GR, N N
—1/2~RN —1/2 (5.18)

D [ N V ' )N 3N S( ' N + )N [(e—EI)S' ' '+S' ' '(e —EI)]N I/2+I
M (2) (0) 4

t [N
—1/2S(1, 1)dN —1/2 dN

—1/2S(1, 1)N —1/2]](1) (1)

—N
—-/ S(, )N —/2

(1) (1)

(5.19)

(5.20)

NR „—+I, (5.21)

Again, insignificant from the point of view considered at
the end of Sec. IV, the terms —1/M were omitted.

Since N=I+SIo') ', where S((o)
' (see Table III) is the

usual two-electron overlap matrix of quantum chemistry,

and the boundary conditions for ri'(R} are the same as
the boundary conditions (5.9)—(5.13) for g'(R).

Note that the orthonormalizing transformation (5.14)
was considered in quantum chemistry in connection with
the solution of the secular equations written in a
nonorthogonal basis (see, e.g., [41,42]}and was discussed
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in connection with the RGM equations in nuclear physics
(see, e.g., [33,35,37]).

Neglecting the rhs of Eq. (5.15), the remaining equa-
tions coincide exactly with the usual radial equations
written in the basis of orthonormalized products of atom-
ic wave functions. The rhs describes the corrections due
to the simultaneous accounting for the indistinguishabili-
ty of electrons and finite value of the nuclear mass. The
terms —1/M include corrections to the interaction ma-
trix (UP') and dynamical coupling (G ) due to the ex-
change fluctuations of the distance between the atomic
centers of mass. The last two terms —1/M will give the
fluctuational contribution to the effective reduced mass in
the radial equations in the molecular basis.

An introduction of this basis is necessary to decouple
maximally the equations because Uo has large nondiago-
nal elements. In the basis of products of the atomic wave
functions, the adiabatic electronic terms are obtained as
solutions of the following eigenvalue equations:

and multiplication of Eq. (5.22) from the left by N
one obtains

(Uo —U)b =0 . (5.24)

The diagonalization of Uo provides a set of adiabatic
electronic terms

OU 0+=U,
1

(5.25)

corresponding to the adopted basis. Here, 0 is a unitary
transformation matrix and U, 1 is a diagonal matrix

[plU, alp'] =5' Up, (5.26)

I g+~l (5.27)

where U& are the molecular potential curves and P is a
set of quantum numbers characterizing molecular adia-
batic states.

Let us now introduce a new set of radial functions y',

(Uo —UN)a=0 .

After the transformation

a=N ' 'b

(5.22)

(5.23)

substitute Eq. (5.27) into Eq. (5.15), and multiply from
the left by Q.

Then we obtain the radial equations in the molecular
basis for the singlet states

d' f I+1 d d
mo1 mo1 mol dR 2 mol

dR

where

V =QU Q++ dQdQ++ —'[QG dQ+ —dQG Q+]1
(5.29)

G =QG"' Q+ — Qd Q+2
mo1 M 7

and 5M ' is a diagonal matrix

(5.30)

[pl5M 'I p'] =5,~5M- (5.31)

with

5M' ' = —[plDq, ) lp], (5.32)

Q+ — [QS" 'UvdQ+ —dQS'& &'&Q+]1
2 mol 2 2 (1) (1) (5.33)

Equations for the triplet states have the same form as
Eq. (5.28), only the signs must be changed before the ex-
change terms.

Note that Eqs. (5.28) —(5.33) are the main result of this
paper.

In the present homonuclear case, Q does not approach
I as R ~ oo because even and odd molecular states con-
serve their character everywhere. But the modification of
the boundary conditions (5.10) due to this efFect can be
readily obtained (see, e.g., [17])and will not be considered
here.

VI. ILLUSTRATION: NONADIABATIC
HEITLER-LONDON APPROXIMATION (NAHLA)

As mentioned in the Introduction the present investi-
gation was stimulated to a considerable degree by the
difficulties with the heavy-particle reduced mass in the
problems of the supercold hydrogen atoms collisions [6]
and highly excited vibrational states of H2 [20]. In both
problem. s distances between nuclei considerably exceed-
ing equilibrium are of importance. But at such distances
the interaction between the atoms is weak enough.
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Therefore the electronic structure can be at least qualita-
tively correctly described within the basis consisting of
antisymmetrized products of the ground-state hydrogen
wave functions. In the conventional adiabatic theory it is
the famous Heitler-London approximation (HLA), (see,
e.g., [43]). It is natural to call the radial equation ob-
tained by the method of the present paper in the same
electronic basis the nonadiabatic Heitler-London approx-
imation (NAHLA).

It seems to us useful to consider NAHLA in more de-
tail. Comparison of NAHLA and HLA will allow us to
better understand the difference between the mass depen-
dent corrections in the present nonadiabatic approach
and the conventional adiabatic one. Except that at large
enough distances NAHLA allows us to estimate the
correction to the reduced mass mentioned in the Intro-
duction.

A. Radial Schrodinger equation in NAHLA

+y(r', —
—,'R}y(r3+ —,'R}] (6.6)

is used for the adiabatic electronic wave function, then

UHL J d 3rcd 3rcqHLIIiyHL + fi UHL1

where

'N —'(d—N/dR) S+—T(R)
fiUHL

ad M

(6.7)

(6.8)

(see, e.g., [44]). Here I, = —i [r',V, ], lz= —i [rzV, ] are
1 2

the operators of the electronic orbital angular momenta,
r', and r3 are radii vectors from the geometrical center be-
tween protons and electrons, and the partial
differentiation 8 /BR is performed at a constant r; and

Cr2.
If

f "=N '~
[ q&(r&+ —,'R)g(r3 —

—,'R)

Introducing simplified notations for the integrals from
Table III

s'=[IsI }0"I]; N=l+s',
@=[la.l],

and

T(R}=I d r', d rzp(r', +—,'R)qr(rz —
—,'R)

(&)+&p)' ——,'(V +V )'

(6.1) Xy(r', —
—,'R)p(r2+ —,'R) . (6.9)

Equation (5.28) for I =0 reduces in NAHLA to the form
r +,—

s~ X+ Ui X=od 1 d Q+I
dR M,~ dR l+S2 (6.2)

with x=x where the correction to the potential is given
by

2I —3s S 'N '(dN/dR)— —
UN

MN

and an inverse effective mass is as follows:

(6.3)

V2
' —c,S2[ '+2N —6S

M,~ M 21'
(6.4)

It is seen that if one neglects the second-order correction
to the inverse mass and the first-order correction to the
potential, Eq. (6.2) would reduce to that obtained in
HLA.

The correction to the reduced mass principally cannot
be obtained within conventional theory. But the first-
order correction to the potential in 1/M, the so-called
adiabatic correction U, ,d, can be calculated. In the
present case of the axially symmetric electronic state, it is
defined in the body-fixed coordinate frame as an average
over the electronic state of the operator

a2

~ gR2 4M rl r2 MR2

(6.5}

The first constant term 1/M in Eq. (6.7) is nothing else
but a first-order correction for the finite values of the pro-
ton masses to the ground-state energy of two noninteract-
ing hydrogen atoms. Therefore, from the present point
of view, it is to be included in the definition of zero ener-

gy and only 5U,&, which goes to zero for R ~ ao, is to be
compared with Uf as shown in Eq. (6.3). It is seen that
the difference is significant.

The energy-dependent terms which are present in U&

[Eq. (6.3)) and 1/M, tr [Eq. (6.4)] are often insignificant
from the practical point of view. The thing is that
energy-dependent terms enter UP and 1/M, s in such a
way that a significant variation of the latter will be
achieved in intervals of the s, variation of the order of 1

a.u. Considering, e.g. , thermal atomic collisions or high-
ly excited vibrational states, when Ie, l does not exceed
—10 K ( —10 a.u. ), these energy-dependent terms
can be safely neglected in U, and 1/M, ~.

The corrections U, and 5U,~" are of the same order
and both of them lead to a small modification of zero or-
der in the 1/M Heitler-London adiabatic potential. The
inaccuracy of HLA is, of course, much larger than U,
and 5U d . Therefore we shall not consider the correc-
tions to the potential in more detail.

For the reduced mass the situation is different. In con-
ventional theory there is no modification of this mass
which in all approximations is equal to the reduced mass
of the protons. The present nonadiabatic theory predicts
such a modification and it may be expected that the
correction to 1/M calculated in the present NAHLA
correctly describes this effect at least in distances large
enough so that the inhuence of the excited states may be
neglected.
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8. KS'ective mass in NAHLA. Results and discussion

One obtains from Eq. (6.4), neglecting the energy-
dependent term, the following expressions for the
effective masses of both singlet (S) and triplet (T) states:

M, M+1+5Ms, (R) (6.10)

with

V,"'—6S'
5M' =+

2(1+S )
(6.11)

0.6

0.4

0

—0 2

—0.6

—O.s

—1
I

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
R ( ou. ')

FIG. 2. Mass corrections 5M ' [Eq. (6.11)]. (1) X 'X+ state;
(2) a 'X„+ state.

Here, the plus sign corresponds to the singlet state and
the minus sign to the triplet state.

The results of the numerical calculation of 5M and
5M at R ) 3 a.u. are given in Fig. 2. The details con-
cerning the evaluation of the integral Vz

' can be found in
the Appendix. The calculations were not performed for
smaller R because there the Heitler-London electronic
basis is obviously very bad.

It is seen from Fig. 1 that 5M ' —+0 as R ~ (x) and is,
therefore, in accord with the physical intuition that M,z
goes to the atomic mass M +1. At not very large R the
corrections 5M ' may become of the order of unity (see
Fig. 2). But it is important to note that 5M and 5M
have opposite signs. It is the manifestation of the purely
exchange nature of the modi6cation of the reduced mass
of atoms. This effect cannot be understood in terms of
classical physics as it has been said in Ref. [20] "there
will be some nonadiabatic lag of the electrons behind the
nuclei as they vibrate. "

Nevertheless, since V2
' appears to be negative,

M ff (M + 1 in agreement with the semiempirical fit in

[20]. But, generally speaking, it can become smaller than
M at distances smaller than those considered here. Of
course, it is diScult to compare directly the curve in Fig.
2 with the value obtained semiempirically in [20],
5M = —0.075. There are two reasons for this.

First of all, the vibrational problem with M,ir(R) is to
be considered. But it needs the knowledge of 5M (R) for
smaller R where the Heitler-London basis is obviously
bad.

The second reason is that in performing the solution of
the vibrational problem, the correction U& to the adia-
batic electronic potential calculated within the theory
developed here is to be used but not the adiabatic correc-
tion U&,d of the conventional theory.

The present nonadiabatic theory allows us to solve
both problems provided the results of the calculations of
the adiabatic electronic states are expressed in terms of
the electronic basis constructed from the orthonormal-
ized products of atomic wave functions. The recent con-
sideration of the Hz ground electronic state within the
generalized valence-bond method in [45] may be useful in
this respect.

The following is also to be noted. The extension of the
electronic basis will give corrections to U& and 5M
which themselves are small corrections to the adiabatic
electronic potential and M. Therefore, the influence of
the dimension of the basis used for the adiabatic calcula-
tions upon final results through 5M and Ui may be ex-
pected to be much weaker than through the adiabatic
electronic potential itself. Such a situation was men-
tioned in [46] in connection with the calculations of the
conventional adiabatic correction to the electronic
potential-energy curves.

VII. GENERAL DISCUSSION

The radial equations in the molecular basis [Eq. (5.28)]
solve principally the problem formulated in the Introduc-
tion. They have a form almost similar to the convention-
al scattering equations in the molecular basis. The left-
hand side (Ihs) of Eq. (5.28) is a familiar set of equations
of radial nuclear motion in the fields of adiabatic elec-
tronic potentials UI)(R ).

The rhs includes two terms possessing direct analogues
in the conventional formulation. The first one
(1/M)dQdQ+ [see Eq. (5.29)] corresponds to the so-
called adiabatic correction to the interaction and the
second one —(2/M) Q d Q+ [see Eq. (5.30)] corresponds
to radial nonadiabatic coupling. But, contrary to the
conventional formulation they go to zero fast enough as
R ~~. In fact, these terms coincide with the conven-
tional adiabatic correction to the interaction and radia1
nonadiabatic coupling if the latter is calculated assuming
that the orthonormalized atomic basis is a strictly diabat-
ic basis.

All other terms on the rhs of Eq. (5.28), except those
arising from the isotope shifts of the atomic energies and
the trivial difference between 1/(M+ 1) and 1/M in Eq.
(3.13), are due to the exchange fluctuations of the dis-
tance between atomic centers of mass. The most impor-
tant of them are the fluctuational radial nonadiabatic
coupling QG"' Q+ [see Eq. (5.30)] and the fluctuational
R-dependent contribution to the inverse reduced-mass
corrections 5M& '. All these fluctuational contributions
go exponentially to zero as R ~~. In particular, due to
this 5M&

' —1/M, reproducing the reduced mass of
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atoms in the scattering equations at large R.
Two additional comments are to be made concerning

the fluctuational terms in Eq. (5.28).
First, in the regions of close pseudocrossings of the

molecular potentia1 curves corresponding to—(2/M)QdQ+, nonadiabatic coupling between such
terms will be anomalously large and very near to the con-
ventional nonadiabatic coupling matrix elements. Fluc-
tuational nonadiabatic coupling is not afFected by pseudo-
crossing and remains small. Therefore, in such regions
the corrections to the standard theory of nonadiabatic
transitions from the effects considered here are expected
to be insignificant (see the discussion in [17], Chap. 2,
Sec. 3).

The second comment concerns the energy dependence
present in the fluctuational terms. It appears there due to
the fact that the transformation (5.14) excludes nonortho-
gonality only in zero order in 1/M. Therefore, the func-
tions g' [Eq. (5.14)] and y' [Eq. (5.27)] can literally be un-
derstood as wave functions of relative motion only if this
energy dependence is neglected. An explicit account of
this dependence leads to nonorthogonality of the relative
motion wave functions corresponding to difFerent E. But
the total electron-nuclear wave functions 4 [Eq. (3.9)]
corresponding to difFerent E will be, of course, orthogo-
nal (see the discussion of this question in [34]). This fact
reminds us that R is not a dynamical variable in the usual
quantum-mechanical sense. It is a collective variable
describing the simultaneous motion of nuclei and elec-
trons. From a practical point of view this energy depen-
dence may often be insignificant. The structure of the
fluctuational terms is such that the range of their energy
variation is —1 a.u.

VIII. CONCLUSIONS
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APPENDIX

Two integrals, S2 and V2'
' [Eq. (6.1}, and Table III],

are to be evaluated to obtain the mass correction 5M '

[Eq. (6.11}].
(a}Overlap integral S .

S2—e
—2R( I+R +R 2/3)2 (Al)

(b) Interaction integral V2 '.
With the internuclear axis chosen as the z axis this in-

tegral reduces to the form

matrices and transformation matrices from the orthonor-
malized atomic basis to the molecular basis. Only molec-
ular integrals for the higher moments of the overlap and
interaction are to be calculated additionally. In the usual
molecular-orbital approach, an additional procedure is
needed to extract this information from the adiabatic
electronic wave functions. This problem is similar to the
analysis of the molecular-orbital wave functions in terms
of the valence-bond wave functions (see, e.g., [47]}.

The following general conclusions can be made.
(1) The inequality 1/M «1 plays a double role. First,

due to this inequality, the fluctuations R"'~~R' ' of the
distance between the centers of mass caused by the elec-
tron exchange are small (but not slow}. Second, this in-
equality leads to high frequencies of the transitions be-
tween adiabatic electronic states in comparison with the
frequencies of nuclear motion.

(2) Derivation of the atomic motion equations in the
molecular basis which are compatible with the correct
boundary conditions includes two physically distinct
steps. The first step is the derivation of the local equa-
tions including the slow collective variable R by averag-
ing over the fast but small exchange fluctuations
R'"~~R' '. The second step is the transformation of
these local equations to the adiabatic electronic basis,
where the equations can be approximately decoupled due
to the large differences between electronic and nuclear
frequencies. Just this second step corresponds to the adi-
abatic approximation in its classical sense.

(3) For the practical realization of the present ap-
proach, it is most suitable to perform quantum-chemical
calculations of the adiabatic electronic states directly in
the nonorthogonal atomic basis. Such calculations pro-
vide a large amount of necessary information: overlap

V2 '=4 p] p2 p, ]+p,2

Xq(p, )g(p, )y(p, +R)y(p, —R), (A2)

V2
' =4(I2+I3—2I, } (A3}

with

I& =
—,
' e (45+90R +71R +32R +9R + 3R ) (A4)

where p, &
and p, 2 are the z components of p, and p2 and

y(p)=(1/v m)e ~ is the ground-state hydrogen wave
function.

After performing analytically the integration of the
first three terms in Eq. (A2), V~2 ' may be written in the
following form:
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(A5)

The integral I3 which corresponds to the interelectron-
ic interaction term in Eq. (A2) has been evaluated numer-
ically using prolate spheroidal coordinates (1 ~i, ( ao,—1 ~ p ~ 1 0 ~ iP 2n ) through the following formula:

g 7 3

I3= g (2l+1)I3"
16 t

with

(A6)

and

I2= —e "(1+R+—,'R )(1+R+—,', R +—'R'+ 'R—) .=2
I(l) dg Qo(g )e3

X f '
diM, P,'(iu, )(g',—&', )

X f dkiPt (A, i)e
l

f "&i t (iMi)("i iMi)(~iPi "292)

(A7)

where Pi and Qi are Legendre functions of the first and
second kind, respectively.

These fourfold integrals have been performed numeri-
cally using the program QB01A of Harwell Library with a
Gauss-Legendre procedure.
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