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Exact analytical solution of the quantum Rosen-Zener-Demkov model
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An exact analytical solution in terms of the Meijer functions is obtained from the quantum Rosen-
Zener-Demkov model for nonadiabatic transitions. The X matrix for the nonadiabatic transitions, the S
matrices, and the probabilities for elastic and inelastic atomic collision channels are found.

PACS number(s): 03.65.Nk, 34.10.+x, 34.50.—s

I. INTRODUCTION

The Demkov model [1],as well as the model by Rosen
and Zener [2] to which it closely related, is well known in
the theory of atomic and molecular collisions. It applies
to a wide class of problems ranging from charge transfer
in atomic collisions to vibrational transitions in molecu-
lar scattering. Unlike the avoided-crossing model by
Landau, Zener, and Stueckelberg [3], in the Demkov
model the zero-order terms are independent of the nu-
clear separation while the interaction between them is de-
scribed by an exponential coupling.

Previous studies of the Demkov model have utilized
semiclassical and quasiclassical methods [1,2,4—6]. Here
we present an exact quantum-mechanical solution to the
model with exponential coupling. This makes the model
an ideal reference problem for many applications in col-
lision theory and enables one to quantitatively identify
the ranges of validity of various approximate solutions.

II. FORMULATION OF THE PROBLEM

The radial quantum equations describing the nonadia-
batic transitions in atomic collisions are of the form

d + V1, (R ) E tt11(R )+ V—12(R )$2(R )=0,
2m dg2

(2.1)
d + V22(R) —E $2(R)+ V21(R)$1(R)=0,

2m dg2

where V»(R), V22(R) are the so-called diabatic terms,
V,2(R) is a coupling between diabatic states, R is the in-
ternuclear separation, m is the reduced mass, and E is the
collision energy. Equations (2.1) are written in the dia-
batic representation and were obtained after separating
out the angle variables and truncating the basis [3].

As indicated above, there are two different mechanisms
for the nonadiabatic transitions at atomic and molecular
collisions. According to the first mechanism elaborated
in works by Landau, Zener, Stueckelberg et al. the nona-
diabatic transition is localized in the region of the inter-
section of the diabatic terms V» (R ) and V22(R), which
are approximated by linear functions of R, the coupling
V&2 being considered constant. This mechanism ade-
quately describes the situation provided the nonadiabatic

transition is accompanied by a large energy transfer, i.e.,
asymptotically the energetic states of the reagents and
products are well separated. However, there exists a
large majority of collisional atomic and molecular pro-
cesses accompanied by small changes of the electronic or
vibrational energy. Typical examples of this sort of pro-
cess are the nonresonant charge exchange
A ++B—+ A +8+, the nonresonant excitation transfer
A '+B~A +B*, the exchange chemical reactions
A+BC(v) ~AB(v')+C, etc. These processes result in
nonadiabatic transitions occurring as a rule at large sepa-
rations, which permits the use of asymptotic forms for
the potentials V», V» and the coupling V».

In accordance with the semiclassical Demkov model

[1] we shall approximate the coupling V, 2 by an ex-

change interaction with an exponential asymptote

V,2(R) = V2, (R)= V exp( —aR ) . (2.2)

Additionally, we shall assume that V„(R) vary much
more slowly than V,2(R). For the above V;;(R) and

V,2(R), the physical boundary conditions for Eqs. (2.1)
are conveniently specified in the basis that is determined

by the functions

%,(R)

qi2(R )
(2.3)

cosP(R ) sinP(R )
—sinP(R ) cosP(R ) $2(R )

Here

2 V12(R )
P(R) =—,'arctan

11 22

(2.4)

and the adiabatic terms of the system are

U1,2(R ) 2 [ V11+ V22 —[( Vll V22 ) +4V12 ]

(2.5)

Write down these conditions in the form

qI12(R)=0, R ~0,
(R}=k-'"[A e' "

l(k
l 2R 1%/2) ], R ~ca

where k,. =I2m[E —V,, (m)]]' /fi, E) V;;(00), and l is
the orbital angular momentum. The asymptotic expres-

1050-2947/94/49(1)/265(7)/$06. 00 49 265 1994 The American Physical Society



V. I. OSHEROV AND A. I. VORONIN 49

sions (2.6) define the S matrix through the relation

A=SB, (2.7)

d + V» Eg—i(x)+ Voexp( —ax )1(z(x)=0,
2m

(2.9)

z
+ Vzz Egz(—x)+ Voexp( —ax )P, (x)=0,

2m

where x = (R —R, ) and Vo = V exp( —aR, ). For sake of
definiteness take V22 V». The semiclassical counter-
part of Eqs. (2.9) was first considered by Demkov [1].
The relation to the Rosen-Zener model is clarified by the
trajectory equation

where A=(A„Az) and B=(8„82). To find out the S
matrix consider Eqs. (2.1) near a point R, defined by the
equation

—,
'

~ V„(R, ) —Vzz (R, ) ~

= V exp( —aR, ) .

In the vicinity of R, the diagonal elements V;;(R) are as-
sumed to be constants V;; since they vary more slowly as
compared to Viz(R). Within the above assumptions the
system of quantum equations (2.1) takes the form

Further, for simplicity, the asymptotes U; (R ~ oo ) and

U; (x ~ oo) are assumed to be coinciding, resulting in

q; =k; =
[ 2m [E—

V,; ( oo ) ] ]
'~ /A'.

If the energy E) V»(oo), Vzz(oo) (see Fig. 1), then

three channels are open in the collision process: two
channels at x~ oo [iPi( oo ), %2( oo)] and one channel

[iPi( —oo )] at x ~—oo. The corresponding N matrix for
the nonadiabatic transitions is of 3X3 dimension. At
V»( oo ) & E & Vzz( oo) the N matrix is reduced to a 2 X2
matrix.

If the exact terms, i.e., Ui(R) and Uz(R) from Eq.
(2.5), are considered at small R's, the boundary condi-
tions should be specified at R =0. In this case, at
E) Vii(oo ), Vzz(oo) the total S matrix combined from

the nonadiabatic N matrix and the diagonal matrix of the
adiabatic evolution at R «R, is of 2X2 dimension. At

V»( oo ) &E & Vzz( oo) the one-channel potential scatter-

ing occurs.
Finally, Eqs. (2.9) can be regarded as a sample of an ex-

actly solvable two-channel s-wave scattering problem. In
this case the zero boundary condition for 4, 2 should

be specified at x =0, and the S matrix at E) V»(oo), Vzz(oo) is of 2X2 dimension. All these S ma-

trices in the above order will be given below.

exp( —ax ) =
I /2

2E 2EU=
cosh(aut )

'
m

(2. 10) III. THE SOLUTION OF QUANTUM EQUATIONS

provided the turning point is sufficiently remote, where t
is time. The system (2.9) is to be solved with boundary
conditions for the adiabatic functions (see Fig. 1)

%,(x)=q, ' azexp i I q, (x)dx

p ( 8mVoe )
~ /&a qi, z qi, z/~ .

Then quantum equations (2.9) take the form

(3.1)

Introduce a new variable p and dimensionless wave
numbers

r

—b3exp i I q—, (x)dx

qlz(x ) =0, x ~ —oo,

——1/2 lq I PX lZg I 2X0, 2(x)=q, , (a, ze b, ,e —),

(2.11)

dp', +p +4qi 4i+p'6=0
dp dp

d'
p +p +4q Q +p $,=0.

dp dp

(3.2)

where

q;(x) = [2m [E U; (x) ] ]
'~2/iri—, q, =q,. ( oo ),

(2.12)
Uo(x) = i

[
Vo + Vo ~ [( V 0 Vo )2+4 V2e

—zax]1/2]

0 - t ~-~ '--'
J

J:.,
'v'.

&,

!Q

1

0
-'1

R, ','x =-() ',

FIG. 1. Schematic diagram of diabatic V», V» and adiabatic
U&, U2, UI, U2 electronic terms.

Make one more variable substitution, p=4z, and elim-1/4

inate the function fz from Eqs. (3.2}. For the function g,
we obtain the equation

4 d
z b„g,+zg, =O-,

n=1 dz
(3.3)

where b12=+iq, /2 and b34 1/2+iq2/2. The general
solution of (3.3} represented as a linear combination of
four Meijer functions [7]

'"'(p/4)'I bq)+ciiGo4((p/4)'Ib, }

+c„,Go4(e '(p/4) ~b )

+c,vGo4(e "'(p/4) ~b ), (3.4)

where G~(e "'"(p/4) ~b ) (r= —1,0, 1,2 and b&=b„
bz, b3, b4} are four fundamental solutions of Meijer equa-
tion (3.3) in the region of irregular singular point p= oo.
The function ittz(p) has the form similar to Eq. (3.4) where
the substitution q, ~q2 should be performed
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$2(p) =clG04(e '(p/4) ~b') c—„G ((p/4)"ib')

+c„lG04(e '(p/4) ~b')

c—, G (e '(p/4) ~b'), (3.5)

pl IV

CL 8
L=I

(3.6)

where in accordance with (3.4) and (3.5) the vector func-
tion Iti is composed of the fundamental solutions
G04(e '"(p/4) ~b ) and G04(e '"(p/4) ~b').

The next step is to find out the asymptotes of the func-
tions cP (L =I—IV) at p~0 (x ~ 00) and p~ ~
(x~ —ao). To this end invoke the well-known asymp-
totes of the Meijer G-functions [7]. For g we obtain

with bq =iq2/2~ iq2/2~ 21 +iqi /2» I
iq1 /2. Thus the

general solution of Eq. (3.2) and hence of system (2.9) can
be written in the form

IV. DETERMINATION OF THE XAND SMATRICES

A. Three-channel nonadiabatic N matrix:
E) V11(m) V22(m)

Let us define the channels 1,2,3 and the elements of the
nonadiabatic N matrix for the inelastic processes as fol-
lows (see Fig. I). Let

2E'q
&

—2iq
&

2ql
(4.1)

stand for the ingoing and outgoing waves, respectively, in
channel 1; then the outgoing waves in channels 2 and 3
are

The angle P goes to m. /4 at p~ ~ and to zero at p~0.
Note that the solution 4' in (3.6}and (3.10) growing ex-
ponentially at p~ ~ (x ~—oo ) does not satisfy the phys-
ical boundary condition for 4'(ll), and therefore c' =0
in linear combination (3.10}.

—2iq2

2lq l
P

+2qi
aL

2
P

+2q2

b)
P

&2qi
L

Zq,
P

+2q2

P~O, (3.7)

2Eq2

P
12 ~

e EP

P
(4.2a)

respectively. Similarly, for the ingoing wave in channels
2 and 3 we define

— '(a e'I' be 'i')—= 1
3 3

P

1 2iq& 2iq&—

2q2

1
+(a4ei'+b4e I') p~ Qo (3.8)

2lq )
P

21 ~
e'p—N23~ '

P
(4.2b)

The exponentially small terms b4e I' are obtained from
G04((p/4) ~b4) and G04((p/4) ~b'). The necessary con-
stants are

P
32

2lq 2 2lq l—N 31 ~

1—(e 'I' —N33e'I'),
P

(4.2c)

a I
= I (iq1 )I [—,'+I'(qi+q2)/2]

X I'[—,'+i(ql —q2)/2]2 'e '+2qi,
respectively. Three-channel nonadiabatic N matrix con-
nects the coeScients of the ingoing and outgoing waves
centered at x =0, i.e.,

a 2 =+q I (q I~q2»
I (2 )3/2 iw/4
3 7

Iv (2 )3/2 —im/2a4 — ~ e (3.9)
a=Nb, a=(a„a2,a3), &=(b„b„b3) (4.3)

b, = —a, (qi~ —q, ), b2 = —az(q2~ —q2),

b III (2 )3/2 —im/4 blv (2~)3/2
4

IV= gCL%
I.=I

(3.10}

where the sign (+) is for L =I,III and the sign ( —) is for
L =II,IV. The others constants equal zero.

The consequent determination of the S matrix requires
constructing of a linear combination similar to (3.6) for
the adiabatic functions (2.3)

in accordance with (2.11). Vector equation (4.3) reduces
to three simple algebraic problems

a, = QN, „b„(i,k=1,2, 3; L =I,II,III) .
k

(4 4)

A simple way to calculate the N matrix is to choose the
cL coe%cients providing successive ingoing waves in each
of the three channels and outgoing ones in the rest chan-
nels according to (4.2a) —(4.2c}. Simple calculation leads
to the following expressions for the elements of the X ma-
trix:
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s;q „q r'[ ,'—+i(q,—qp)/2]r(iq$ )lql 7Tql

I [—,
' —i(q, +q2 ) /2]I (

—iq, )

—Qq&+q2)
N22=N»(q, ~q2), N33 ie

r[—,'+i(q q )/2]I [—,'+E(q —q, )/2]I [—,'+i (q, +q )/2]=2
I ( ,' —i—(q, + q& ) /2) I ( i—q, )I ( i—q2 )(q, q2 )

'~

4t q '~4 —m(q
&
+q2 )/2 p 'q l 'q2r[-'+i( — )/2]

I [ —,
' —i(q&+q2)/2]I (

—iq, )

N23 N3z =N»(q, ~qz )

(4.5)

where r(x) is the gamma function. The N matrix given
the above expression is symmetrical and unitary.

=N, k&
'~ (x)sin f ki(x)dx+n. /4 sinP

B. Tw'o-channel nonadiabatic N matrix:
v»(~) &s & v»(~)

—N~k2
' (x)sin f k, (x)dx+n/4 co.sP,

"2
(4.8)

a=N b, a=(a&, a3), b=(b„b3) (4.6)

and is an analytical continuation of the corresponding
submatrix of N by the parameter q2 (q2~iq2) As a .re-
sult we obtain

I' ( —,'+q2/2+iq, /2)r(iq, )
NO 2 I 1

I ( —,'+q2/2 iq, /2)—I ( —iq, )

In the energy region under consideration, channel 2 is
closed while channels 1 and 3 are open, i.e., the N matrix
(4.5) is reduced to a N matrix of the 2X2 dimension. In
this case linear combination (3.10) has to fulfill the condi-
tion %z(p) —+0 at p~0 and p~~. The N matrix is
defined by the relation

$2 =N, k, ' (x)sin f k, (x)dx+m/4 cosP
1

+Nzk~ '~ (x)sin f kz(x)dx+n. /4 sinP
x2

in the range between x, (R, ), x2(Rz), and x =0(R =R, ).
After using the quasiclassical representations for the
Meijer G functions, the exact functions 1(&(x) and gz(x)
(3.4) and (3.5) to the left from R, can be presented in the
analogous form. To be specific, we shall assume that only
the U, term is modified at small R. Matching P& (x) and
i)'j&(x) and using of the asymptotic expansions of the
Meijer G functions (3.7) and (3.9) at p~0 gives after rou-
tine algebra the following S matrix for the boundary con-
ditions (2.6)

N33 ie 'e

N» =N» = Q2n/q—, 2 'e' . e ' e

r( —,
' +q2/2+iq, /2)

X
I ( —,'+q2/2 iq, /2)r—(

—
iq& )

(4.7) 13 31
N' N'

e '"—N 33

23 31
—2ig

33

13 32
N' N'

12 —Zi ge

+
N' N'

22 —2l
33

(4.9)

Like the N matrix, the N matrix is symmetrical and uni-
tary. where

C. The total two-channel S matrix: E ) V» ( ao ), V2z ( 00)

As noted above, the total S matrix appears when the
exact terms U&(R) and U2(R) are taken into account in
the region of small R. It describes both nonadiabatic
transitions characterized by the N matrix and the adia-
batic evolution of the states 4, and 0'2 at small R. In or-
der to calculate the S matrix, we shall invoke the match-
ing method. In the spirit of that method we shall suppose
that the quasiclassical and adiabatic approximation apply
outside the domain of nonadiabatic transitions. Then
there exist the turning points R&(x, ) and R2(x2) on the
U, and Uz terms (see Fig. 1), and 1(t, z are represented as
a sum of quasiclassical waves

N,
' =N,"exp[ —(g, +g.)], N 3 =N, 3exp( i(,)—

(i,j =1,2),
vo

g, =q, ln
Aa

(4.10)

(4.11)

The phase g is the so-called matching phase and the
phase g,. emerges in going from the variable p to the vari-

able x by (3.1).
The above S matrix expressions enable one to calculate

the probabilities of the nonadiabatic transitions. For ex-
ample, the nonadiabatic transition probability from the
state 4', to the state %2, i.e., the nonresonant charge-
exchange probability has the form



EXACT ANALYTICAL SOLUTION OF THE QUANTUM ROSEN-. . . 269

&i2 —ISi2I'

sinh(irq, )sinh(n. q2 )cos q

2i(I2+ iiz2) ( 1+e '
) + i ( 1 —e ' )tano

e '~=e
(1+e ' }—i(1—e ' )tano

m.(q, —q2) m.(q, +q2)
cosh cosh

2 2
cos 'g

The elastic phase y is

(4.20)

(4.12}

This expression agrees with that of the work [6] where,
however, the phase g was not de6ned. In the case of the
resonant charge exchange, i.e., q1=q2 =q, the probability
reduces to

(1—e ' }tan+
y =(2+$22+ arctan

1+e
(4.21)

$22=4q, ln2+argI'(iq, )+2argI ( —,
' —q2/2+iq, /2) .

sinh (n.q)cos il
12

cosh (n.q) —cos ri

At high collision energy when

(4.13) The elastic S matrix displays well-known features of the
low-energy scattering of the particles.

E. Two-channel S matrix for the s-wave scattering
2(U2 —Ui) 2b U(00)

~aV
=

~V (4.14)

takes place, Eq. (4.13) coincides with the semiclassical
Rosen-Zener-Demkov (RZD) probability for the non-
resonant charge exchange process A +B+~ A ++8

sin e
~RZD (4.15)

cosh25

where

Of certain interest is the S matrix for the quantum
problem (2.9) regarded as a model for the two-channel s-
wave scattering under zero boundary conditions at x =0.
For the wave functions P, =P, + itjz and $2= f, —

g2 the
system (2.9) has the form

1 d'
2m dx

E+p+ —Voe Pi=v/2,
(4.22)

5=6,U(ao )/fiav, o =q n/2 . — (4.16)
1 E+p —V—e ™

P =vP, ,
2m

In this limit Eq. (4.13) coincides with the semiclassical
nonresonant charge-exchange probability

P12 =Sin 0 (4.17)

exp( i ri2) exp(i ri2)

(4.18)

where q, and riz are the adiabatic phases for the Ui and
U2 terms in the range of R )R, .

Concluding this section, we note that if the terms
U, (R) and U2(R) are modified at large R, too, then the S
matrix (4.9}is replaced by the S' matrix

exp(irii) 0 exp(i', ) 0
S'=

0

f(po)=0 or $(po)=0, po=( —8mVo)' /Ra, (4.23)

which are, according to (3.6), equivalent to the system

IV

X cL/1, 2(po) =0 .
L=I

(4.24)

This system enables one to replace any pair of the cL
coefficients in Eq. (3.6) with linear combinations of two
others and, as a result, to introduce a new basis of funda-
mental solutions

where p=(v»+ V22)/2 and v=(V» —V22)/2. The S
matrix for the system (4.22) is a generalization of the
one-channel S matrix for an exponential potential [8].
The boundary conditions for either (2.9) or (4.22) lead to
the equations

D. One-channel S matrix: V» ( tx ) &E & V» ( ~ ) IV
W= g QMLd (~=1 2» (4.25)

Within this energy range, elastic scattering in the adia-
batic term U1 occurs, the scattering being distorted by
the nonadiabatic coupling with the adiabatic term U2.
The elastic S matrix is equal to the matrix element S11
subjected to the analytical continuation as a function of
parameter q2 (qi +iqz)—

S =e ' =Si, (q i2q )2

L=1

where the rectangular matrix Q~L consists of 2X2 deter-
minants of the form

W(po) 0k(po)

6 (Po) 4k (Po)

The basis (4.25) specifies the coefficients AL and BL and
defines the S matrix similar to the Smatrix (4.9)

N13N31
2l Y/e —

N33 (q2 q2)
(4.19) A; = QSg, Bk (i,k=1,2; M=1,2) .

k
(4.26}

With the use of Eq. (4.5), this expression can be recast in
the form

The actual calculation of the elements S;k is appropriate
to perform by choosing the two yet indefinite c&
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coefficients in a way providing an ingoing wave in chan-
nel either 1 or 2, i.e.,

1 —iaq I x — i aq
&
x

(e —S»e '
)

1 — iaq2x
S12e

aq2

C1 A1
D C A

Thus a11 of the N and S matrices mentioned in Sec. II, for
the nonadiabatic transitions described by the quantum
Rosen-Zener-Demkov model have been found out.

1 — iaq, x
S2,e

aq,

(4.27)

V. CONCLUSION

V12, V1C12

D, 2

I II aIII

pI pI I pI II

g I
fi

II fi III

m

IV

pIV

y
IV

fiIv

p

(4.28)

They obey equations V, 2
=1&v, 2. The coeScients

a,P,y, 5 (L =I, . . . , IV) are determined from asymp-
totic expansions of the Meijer G functions at x ~ oo, as in
Eqs. (3.9), and they are

a = —+a/2A 'b, , p =v'a/2A 'a&

y = —&a/2A 'b 5 =v'a/2A 'a

A =( —8m V&)' /gaia .

(4.29)

The quantities r, m, n, p, q are the determinants composed
of the boundary values of gf z(x =0)

P', (p ) f', (p )

qI I I (p ) QI II
(p )

m = —r(III~ I), p =m (III),
n = —r(IV~I), q =n(I~II) .

(4.30)

The sufficient development of the Meijer G functions per-
mits calculations r, m, n, p, q with any degree of accuracy.
Then the elements of the S matrix have the form

S11

S2, =

B1 C1 D1 C1

B C D ' S' D C D
2 2 2 2

A1 B1 A1 D1—1 —1D, S22 —
A D D

2 2 2 2
(4.31)

1 —iaq2x — iaq2x

Qq2

The final result can be formulated as follows. Define vec-
tors V „V2,v, , v2 and a matrix 1&

'A12

B,, 2

The Rosen-Zener-Demkov model in its original semi-
classical form as well as in other modifications [4,5,9] is
frequently used for interpreting experimental data on
nonresonant charge exchange in ion-atom collisions. In-
vestigated in most detail have been the charge-exchange
processes in collisions of alkali-metal ions with atoms
such as [10]

K+('S}+Rb( S)~K( S)+Rb+('S}+0.163 eV,
(5.1)

Li+('S)+Na( S)—+Li( S)+Na+('S)+0. 253 eV,

etc. Recently, this semiclassical model also has been used
for interpreting complicated numerical calculations of
the probabilities and cross sections of chemical reactions
involving light-atom transfer [11]

Cl+ HBr( u =0)~Br+HC1( u =2),
Br+HC1(u =0)~C1+HBr(u =2),

(5.2)

with special attention being paid to resonances in the en-

ergy range near threshold. The discrepancies seen be-
tween the experimental data and the exact numerical cal-
culations, on the one hand, may to a degree be due to
breakdown of semiclassical version of the model at low
collision energies. The expressions given in this paper for
the N and S matrices, and the resulting probabilities, pro-
vide, in contrast, an adequate representation of these pro-
cesses, especially in the threshold energy range.

In addition, the exact results given in Eqs. (4.5) and
(4.7) can be exploited as local elements in numerical cal-
culations for other real problems in collision theory. In
this case, depending on the applicability of the exponen-
tial approximation, significant improvements in the time
requested for the calculations may be expected. In the
best case, the problem may reduce to numerical matching
of the adiabatic wave functions inside the co11ision region
with the exact quantum amplitudes from the coupled
equations (2.9) or (4.22). As a result, the calculation for a
real system will simplify in practice to a calculation of the
adiabatic motion whose results in quasiclassical range of
parameters can be controlled by means of Eqs. (4.9) and
(4.19).
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