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Molecular theory of collision-induced fine-structure transitions in atomic oxygen
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A molecular theory of collision-induced fine-structure-level transitions in complex atoms is presented.
The theory is applied to calculate the excitation cross sections for the fine-structure levels in the P
ground state of atomic oxygen. We discuss and compare the theory presented here with previous molec-
ular theories.
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I. INTRODUCTION

Atomic oxygen plays an important role in the chemical
reactions and the energy-transfer processes taking place
in the terrestrial atmosphere [1—6] as well as the atmo-
spheres of Venus and Mars [7,8]. Grossm ann and
Offermann [9] observed the 63- and 146-pm line emis-
sions from the fine-structure levels of the ground state of
atomic oxygen, and Sharma and co-workers [10—12] pro-
posed a passive remote-sensing method, which depends
on inverting these lines, to obtain the temperature and
density of atomic oxygen in the thermosphere. The
method assumes that the fine-structure populations are in
thermodynamic equilibrium with the local translational
temperature (LTE). In order to make definite predictions
of the altitude regime in which the assumption of LTE is
valid, the transition cross sections amongst the fine-
structure levels of oxygen due to collisions with other ox-
ygen atoms must be known.

Estimates for the fine-structure level-changing cross
sections in oxygen-atom collisions were given by Allison
and Burke [13]. They assumed that long-range forces,
obtained by first-order perturbation theory of the atom-
atom interaction, dominate the collision dynamics, and in
order to simplify the system of coupled equations they
did not take into account the fine-structure splitting of
the P ground state of oxygen. In this paper we develop a
fully quantum-mechanical molecular theory of collision-
induced fine-structure excitation in oxygen atoms. Both
the molecular nature of the atom-atom interaction and
the fine-structure splitting in the atoms are incorporated.

Molecular theories of fine-structure excitation in atom-
ic collisions were introduced by Reid and Dalgarno [14],
Reid [15], Mies [16], and Launay and Roueff [17], and
Harel et al. [18] discussed the range of validity of these
and other models. A general molecular theory developed
by Singer, Freed, and Band [19] was used to study fine-
structure excitation in the low-energy scattering of hy-
drogen with C+( P) [20]. Molecular theories have also

been applied to calculate charge transfer into fine-
structure levels during slow ion-atom collisions [21,22].
In this paper we present an alternative molecular theory
based on a gauge-theory formulation of the method of
perturbed stationary states (PSS) [23,24].

In Sec. II we outline the molecular scattering theory,
and illustrate the relationship between the molecular
states of the ground 02 molecule and the atomic states
which evolve from them in the separated atom limit. In
order to establish a one-to-one correspondence between
the molecular and atomic states we investigate the long-
range atom-atom interaction. In Sec. III we construct
the total system wave function and express it as an expan-
sion over the adiabatic electronic eigenstates of 02. We
arrive at a set of coupled Schrodinger-like equations for
the scattering amplitudes (PSS equations), but find that
the nonadiabatic couplings in these equations persist in
the separated atom limit. We induce a unitary matrix
transformation, or gauge transformation [23,24], on the
PSS scattering amplitudes and show that the nonadiabat-
ic couplings of the transformed amplitudes are well
behaved in the separated atom limit. In the new gauge
the nuclear amplitudes are uncoupled in the asymptotic
region, and we impose conventional scattering boundary
conditions on them. The scattering equations are re-
duced to a set of coupled radial equations, and in Sec. IV
we relate solutions to the coupled radial equations, with
appropriate scattering boundary conditions, to the ampli-
tude for two oxygen atoms in fine-structure states j, and

jb, respectively, to make a transition into the states j, ,
jb.. The formulation includes e8'ects due to the symmetry
of nuclear interchange in the 02 system. We discuss and
compare the theory presented here with previous molecu-
lar theories. Atomic units are used, unless otherwise stat-
ed, throughout the discussion.

II. MOLECULAR THEORY

In a space fixed coordinate system the nonrelativistic
Hamiltonian for the 02 system is
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where R, is the center of mass for the system, r, =r are
the position vectors for the electrons with respect to the
center of mass of the nuclei, and R is the vector describ-
ing the internuclear distance and orientation. The coor-
dinates for all dynamical variables are defined with
respect to a space-fixed frame. Inserting Eq. (2) into Eq.
(1) we get

H(R, , R, r)=H, +HKE+ V+ V. . . (3)

where H, is the kinetic-energy operator for the
center-of-mass motion and

KE M R 4M g r,
l

N

g V2
I

(4)

where R„R2 are the position vectors for the two nuclei,
r,

' are the position vectors for the electrons, and r' is
shorthand for the set of N electronic variables r&, . . . , rN.
V, and V2 are the electron-nuclear interaction terms for
the two identical nuclei, VN is the internuclear repulsion
potential, V, , is the electron-electron interaction, and M
is the mass of the oxygen nucleus. It is convenient to in-
troduce a new set of variables

M(R, +R2)+ g r,
'

clear vector R is aligned along the z axis of the space-
fixed coordinate frame [25]. The quantum numbers asso-
ciated with the BO states are

y=[ASXI ],

Il, m, &Il m, &SISX&,

where I„lb are the eigenvalues of the electronic orbital
angular momentum operators l„lb defined with respect
to centers a, b located, respectively, at kzR/2, m„mb
are the projections of orbital angular momentum of each
atom along the z axis, and S and X are defined above.
We introduce the product kets

I, Ib L
ILASX & =( —1) ' ' g v'2L+1

m m
m, mb A

a b

where A is the component of the electronic orbital angu-
lar momentum along the z axis, S,X are the total spin
and spin projection along the z axis, and I is any addi-
tional quantum number needed to fully specify the sys-
tem. The quantum numbers associated with the discrete
symmetries of nuclear inversion and reflection (for X
states) through a plane including the internuclear axis,
are related to the quantum numbers which specify the
asymptotic atomic states (see Appendix A).

At large internuclear distances R, the BO molecular
eigenstates g (R, r) are linear combinations of atomic
states. We define the atomic states

V=+ V,
R——r +Vl 2

R—+r
2 l

+ v~( IRI )

(5) which are eigenfunctions of the total, two-center, orbital
angular momentum

H~D(R, r}=——
—,
' g V„— g V,

1

'2

+ V(R, r)+ V, ,

are the kinetic energy and electrostatic interaction Harn-
iltonians, respectively. We define an adiabatic Hamil-
tonian

1.=1,+lb,

R
l, =g r; ——z Xp, ,

l

lb=+ r +—z xp, ,
R

J

(12)

%(R,r) =g F~(R)11|~(R,r), (7)

where the g are orthogonal eigenstates of the adiabatic
Hamiltonian

Factoring out the center-of-mass motion, we represent
the eigenstates ~11 of Hamiltonian (3) by the expansion

and where index i identifies electrons on center a,
p; = —i V; is the momentum operator for electron i, and
index j identifies the electrons associated with center b
(see Appendix A for a more detailed description).

However, they are not eigenstates of the total electron-
ic orbital angular momentum defined with respect to the
molecular center

H~Dpi, =@i,(R }pi, X:—g [r, Xp, ], (13)

and y is an index specifying the molecular quantum num-
bers of the adiabatic state. We define Born-Oppenheimer
I,'BO) states as those adiabatic states in which the internu-

where the sum is taken over all electrons. L and L. are
related, though, and using definition (12) and (13) we get
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L=X—RzXP,

P=l Xp-Xp,
(14)

=5.
After some angular momentum algebra (see Appendix

B},we obtain for the asymptotic element of the interac-
tion potential

A useful identity, which relates L,X through a unitary
transformation, is

L=exp( —iP.zR )X exp(iP zR ),

(X'S'A'L'i V iLASX) =— X(L'A', LA)5 .6
( 2)2

(21)

where the exponential is an electron translation operator.
The states defined in Eq. (11)diagonalize the molecular

electronic inversion (parity) operator 8 (see Appendix A),

where (r2) is the radial expectation value of the 2p elec-
trons in the oxygen atom. Numerical evaluation of the
coefficient X(L 'A', L A ) yields

e~LASX &
=(-I)'"~LASX &, (16) X(2222}=—,', X(2121)= —4, X(2020)=—' (22)

and most molecular states can be immediately correlated
with the atomic states ~LASX). We find that for singlet
molecular states S=0, the gerade (g) Born-Oppenheimer
states separate to L=O or 2 atomic states, and the
ungerade (u } states separate to L = 1 atomic states. For
triplet molecular states S=1, the g states separate to
L = 1 and the u states to L =0 and 2 states. For the quin-
tet molecular state S =2, the gerade BO states separate
to L =0 or 2 atomic states, and the ungerade BO states
separate to L =1 states. There are 81 molecular states
formed in the approach of two P oxygen atoms and, ac-
cording to the Wigner-Witmer rules [26], there exists a
one-to-one correspondence between the atomic and
molecular states except for the b 'X+ and 2'Xg+ states,
the A X„+ and 2 X„+ states, and the 1 'Xg and 2 Xg
[27] states, which are different linear combinations of
~L =OA=OSX) and ~L =2A=OSX) states with S=O, 1,
and 2, respectively. To determine the correct linear com-
binations, we must consider the nature of the interaction
at large internuclear distances.

The long-range interaction energy between a pair of P-
state atoms was discussed by Knipp [28], Chang [29], and
Umanskij and Nikitin [30]. The leading term in the in-
teraction energy at large R is obtained by solving the sec-
ular determinant

All other matrix elements vanish and there is no mixing
between the ~L=2A=O) and ~L=OA=O) states. We
find that the asymptotic interaction energies of the
molecular states have the form

5 (r2)2
25

(23)

TABLE I. Values of the parameter C„ in units of (r')'/25,
where (r & is the radial expectation value of the 'P electrons in

atomic oxygen.

Molecular Atomic state C5

state

with the values of C5 listed in Table I. These values are
in harmony with the results obtained by Knipp [28] and
Chang [29]. In Table I we find that the 2 'X+ state is as-
sociated with ~L =2A =OS =OX =0), and the b 'X+ state
is associated with ~L=OA=OS=OX=0). Similar con-
nections can be made for the triplet and quintet X states.

Each BO state correlates to an atomic state ~L ASX ),
and we identify the BO states with quantum numbers (9)
where now the quantum number I is set to have the

det~IE —H
~

=0,
where matrix H contains elements

[H]„.=(XSAL
I
V IL'A'S'X'&,

(17)

(18)

and we assume that electrostatic forces dominate the
atom-atom interaction. We express the two-center in-
teraction potential by a multipole series [29,31]

where

oo

(2g, R& ' (19)

Q —2

&=gg g gg(L, M)YI (r, )Y& L, (r )r;r.
JL=1M

(20)

the index i refers to the 2p electrons on atom a, j to the
2p electrons on atom b, and g(L,M ) is a coefficient given
by Chang [29]. For interactions of neutral P atoms, the
leading term is the quadrupole-quadrupole interaction

Sin glets
a 'ag
1 'Il
1'rr„
c 'r„
b 1++

2 1y+

Triplets
C 6„
1'rr„
1 n

X Xg
A'X'.
2 3y+

Quintets
5g
'II

1'rr„
5y—

1 5y+
g

2 'X+

k2
+1
+1

0
0
0

+2
+1
+1

0
0
0

+2
+1
+1

0
0
0

6
—24

0
0
0

36

6
—24

0
0
0

36

6
—24

0
0
0

36
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TABLE II. Connections between atomic and molecular states for two oxygen 'P atoms.

Degeneracy

+2
+1
+1

0
0
0

Inversion Molecular state

a '6,
1'rl,
1'rl„
c 'X„
b

X"-
g2'r+

Atomic state

~L =2A=+2S=OX)
~L =2A=+1S=OX)
~L =1A=+1S=OX)
~L =1A=OS =OX)
~I. =OA=OS =OX)
~L =2A=OS =OX)

+2
+1
+1

0
0
0

C'b„
1'rl„
1'H

X 'Xg
A 'X„
2 X„+

iL =2A=+2S=1X)
iL =2A=+1S=1X)
~L =1A=+1S=1X)
~L=1A=OS=1X)
~I. =OA=OS=1X)
iL =2A=OS=1X)

10
10
10
5

5

5

+2
+1
+1

0
0
0

5g

'II.
1'rl„
Sy—

1
r".

g
2'r. +

~L =2A=+2S=2X)
~L =2A=+1S=2X)
lL =1A=+1S=2X)
iL = 1A =OS =2X )
~L =OA=OS=2X)
~L =2A=OS=2X)

value L. Because we use the same set of quantum num-
bers to identify atomic and molecular states, we avoid
confusion by expression a molecular BO state in the form

convenient to introduce the expansion

%(R,r)=QF (R)u~(R, r),
r

(29)

~ASXL & (24} w~ere

in order to stress that L is not a good quantum number in
the molecular region. The eigenvalues associated with
the discrete molecular symmetries are related to the
quantum numbers L and S (see Appendix A). The de-
tailed connections between all molecular and atomic
states for the ground state of 02 are given in Table II.

III. MOLECULAR-STATE EXPANSION

and

u (R,r}=U(R)
~j(R )Qj,jb &,

Ij (R )Qj.jb & =g g [j,j.,jb, L,S)'"
LS AX

L j S
X( —1) +"

(30)

The Born Oppenheimer states
~
AS XL ) are eigenstates

of H,d(zR )—:Hso(R ) and we express the adiabatic states
(8) by

g (R, r)=U(R)~ASXL &,

where U(R) is a rotation operator

U(R) =exp( i PK, }exp( —i HK» )exp(iP—K, ),

(25)

(26)

H~D(R) = U(R)HBo(R ) U '(R), (28)

and g~(R, r) are eigenstates of H, d with eigenvalues
e (R ). We can use expansion (7) to derive the scattering
equations for the amplitudes F (R). However, it is more

0,$ are, respectively, the polar and azimuthal angles
specifying the orientation of R, and K=X+S, is the to-
tal angular momentum operator for the electrons. U(R)
rotates the electronic coordinates into p —=U(R)rU (R)
so that

U(R)(r z)U '(R)=p.z=r R, (27)

where unit vector R is aligned with R=(R, O, Q). There-
fore

lg s, j
x ib sb jb ~ASXL & . (31)

L S j

j jlQj.jb&=j(j+1)IjQj.jb&,

j,jlQj.j b & =QjIQj.jb &,

i. li Qj.jb & =j.(j.+1)lj'QJ.Jb &,

Jb Ij Qj.jb & =jb(jb+1)jlQj.jb &,

(32)

and where j=L+S, j,=l, +S„j„=lb+Sb,and S„Sb
are the spin operators for the electrons centered at atoms

The quantum numbers for channel index y= Ij Qj,jb)
are related to the molecular quantum numbers (9) by 9-j
and 3-j symbol selection rules. We used the shorthand
notation [a,b, . . . , c]—:(2a+l)(2b+1) . (2c+1), and
the notation

~j(R )Qj, jb ), or ~y(R ) &, to stress that j is

not a good quantum number in the molecular region. In
the asymptotic R ~ 0O limit, the states ~j (R )Qj,j b & con-
verge to the atomic states ~j Qj,j b ), which are eigenstates
of the total two-center angular momentum operators
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j=exp( —iP zR)Kexp(iP. zR) . (33)

The advantage of using expansion (29) is that, in the
asymptotic limit, channel states (30) diagonalize the
spin-orbit interaction at each atom. The states
I j(R )Qj,jb ) form a representation of the electronic pari-
ty operator 8. Using Eq. (16) in Eq. (31) we get

el J(R }QJ.j b ) =( 1) ' jI(R )Qj bj, ) (34)

where we make use of the symmetry properties of the 9-j
symbols, and the fact 1, = lb =s, =sb = l.

Treating the expansion coeScients F,F as variation-
al parameters we require

a and b, respectively. In deriving (32) we used definitions
(11),(31) and standard recoupling techniques. The vector
j does not commute with K=X+S. However, j and K
are related by a unitary transformation .Using Eq. (15)
we get

Ag(8 ) „Ap(8 ) „+(R}=AB(R )R+ 8+
R R sin8

(41)

where R, 8,$ are the spherical basis vectors in the space-
fixed frame. Using Eqs. (26), (30), and (39) we get

IA» ], , =((y(y() y'()()),

and l, =l,'=lb=lb=1, s, =s,'=sb=sb=1. In deriving
(39) we used

(L'X'S'A'IHBOIASXL ) =5A A'5L, L'5S, S'5X,X'NASL(R ) .

(40)

In order to calculate the S matrix for atomic transi-
tions we need to investigate the behavior of the solutions
to (38) in the separated atom limit. First we study the
behavior of the vector potential + in this limit. It is use-
ful to express it in the form

5[(+IHI+) —E(% le) ]=0, (35)

variation of the set

(36)

where 5 is an arbitrary
[F (R)],[F'(R)],and

—1H = VB +HAD .
2p

Inserting (29) into (35) we get

5 fd'R[F'[V, A(R)]—'F

]A,],„=i(y()() U ' y'(R))

= (y(R )IE„cos(f}—K„sin(()ly'(R ) ),
[ai]y y i(y(R) U=' y'(R))

= ( y(R ) IIt, (cos8 —1)

—sin8[E„cosg+K~sin(|}]Iy'(R ) ) .

(42)

2pF t[ V(R—) —E]F] =0, (37)

(IV —i~) F(R)+ V(R)F(R)=EF(R)
p

where

[A(R)]r =i fd rur(R, r)VRu (R,r),
[8(R )]r,,

[V(R)]r r =[W(R )]r r +
2p

where F(R) is a column matrix whose elements F (R)
are the wave functions corresponding to channel
y= [jQj,jb], and V and ~ are, respectively, scalar and
vector potentials described below. Carrying out the vari-
ations we arrive at the set of coupled equations (43)

where we used (14), j=L+S, and P is an electronic-
dipole operator whose matrix elements are, in general,
nonzero. For this system, a homonuclear molecule, the
dipole operator is odd under interchange of electrons as-
sociated with the two centers and its matrix elements
with respect to antisymmetrized electronic wave func-
tions vanish. Therefore, when evaluating the matrix ele-
ments of the total angular momentum operator K with
the states

I y(R ) ), we are allowed to equate

We evaluate the separate atom limit of ~ by replacing
the molecular states Iy(R ) ) in Eq. (42) with the atomic
states jIQj,jb ), and evaluate the asymptotic limit of the
angular couplings A, A&. The total electronic angular
momentum K can be expressed in terms of the two-
center angular momentum j,

K=X+S=j+RzXP,

[8(R )]r y
—— g A k Aky,

key, y' K=j . (44)

I IV«)], =gg [j,j'j.j.',jb jb]'"[L S]
AX LS

Because atomic states jIQj,jb) diagonalize operators
(32), we get

L S j L S j'
A X —0 A X —0'

A(](8(t)) A~(8$)
lim A8 +, AP~

R ' R
(45)

l'
la Sa ja a a ja

X lb sb Jb
' 'lb Sb Jb NASL(R },'

L S j L S j'
(39)

where As(8$),A~(8$) are matrices defined on the two-
sphere centered at the origin of the space-fixed coordinate
system.

In this picture, which we call the molecular gauge, the
coupled equations (38} suffer long-range nonadiabatic
couplings which fall off no faster than the inverse power
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of R. The long-range behavior is a consequence of using
the adiabatic electronic basis (25) or (30). We define a
new basis related to the adiabatic basis by a unitary trans-
formation. More precisely, we induce a gauge transfor-
mation on the set of coupled PSS equations. Gauge
transformations are a class of unitary transformations
where the set of transformed wave functions is related to
the original set by a unitary matrix whose elements are
functions of the coordinates of R. In this sense gauge
transformations are a multichannel generalization of a
phase transformation. Although the scattering equations
are not invariant [32] under gauge transformations,
measurable quantities, such as cross sections, are. We
use this freedom in choice of basis, or gauge, to transform
the PSS equations into a more suitable form. We show
that in the new gauge, which we call the atomic gauge,
the vector potential A is well behaved in the separated
atom limit.

We introduce a new set of amplitudes G(R) related to
the amplitudes F(R) by a unitary matrix T(8,$), so that

G(R }= T(8&}I))F(R), (46)

and where G(R) is a solution to (38) with the potentials
A(R), V(R) replaced by

A'(R)=T A(R)T '+iTV T
(47)

TBR T
2p

V'(R )=T W(R )T '+

Gauge transformation (46) can be interpreted as a
redefinition of the molecular expansion basis. For exam-
ple, the system wave function (29) is expressed by the
equivalent expansions

&Il(R, r)=QF (R)u (R,r)

where F(R),u(R, r) are column and row matrices respec-
tively, and the new basis functions P (R,r) are related to
the adiabatic basis (30)

&t&,„,, (R,r)= g U(R)~j'(R )0'j,'jb &

X [T '(8$)]jnj. J
' . (49)

We construct the transformation matrix

[T(8(}})]y,y
= [T(8(t ) l»'

=(if)J jb~TilJbflj &

—= (j Qj,jb exp( i', —)exp( i8j»)—

Xexp(i(t j, ) lj.'jbfI'j' &, (50)

T=exp( i P z—R ) U(R)exp(iP zR ) . (51)

where
~j,jb 0j & =

~ y & is the atomic limit of the molecular
state ~y(R ) & and, for the sake of convenience, we intro-
duced the alternative notation Tr to identify the y, y'
components of matrix T. T is a rotation operator which
generates rotations of the electrons about their atomic
centers. It is parametrized by the angles 8,$, as well as
the internuclear distance R, whereas the matrix elements
(50) are parametrized by the angles 8, &t& only. U(k) gen-
erates electron rotations about the molecular center. The
rotation operators are related, and

=u(R, r)F(R)

=u(R, r)T '(8$)T(8$)F(R)
=g G (R)&}I) (R,r),

r
(48}

This identity is derived by expanding the exponentials in
the definition for U(R), sandwiching the components of
K between the translation operators, and applying identi-
ty (33) to each term in the expansion.

Using (42), (47), and (50) we get

I A I, ], , iz &ylylr &=(y &ii) ri '
&""e &i"&ii) &0"Iy ' y') +i X &rlylr )&& &y" Iy 'Ir "), '

r",P"' r-
(52)

I &i], , =i X &rlylr &(y &ii) U ' "&]"&"R))&]]"Iy 'ly') +iz &ylylr )&y"Iy"'ly') .
r",P"' r

The sum over the matrix index y" runs over all values j0j,jb included in expansion (29). Operator T generates rota-
tions in the product space spanned by ~ jQj,jb & and the elements of the transformation matrix are

[T(8$)]»».=(j Qj, jb ~exp( i', )exp( i8—j»)exp(ig—j, )~j,'jb 'j'&

=exp( i &t)(Q I—I') )d'„—o.(8)5),,5. , 5
ja ja

=Dn, n(4 8 4)5, ,,'5, , 5, —
,ja Ja

(53)

where d Jn o.(8) is the reduced Wigner function (26). The
sum over the channel index y in the close-coupling ex-
pansion (29) includes all (2j+1) members of a manifold
with quantum number j, and when T acts upon any

member
~j0j,jb & of the manifold the transformed vector

remains orthogonal to any vector not in the channel set.
Therefore ( y ~

T~y" & is zero for all y" not included in the
channel set and we can replace the matrix index sum in
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(52) with a sum over a complete set. In the limit R ~ oo,

ly(R)) ~ly) and

lim g [y)(y(R)i~+ iy)(ye=I,
gazoo

y

(54)

lim [A's ] ~i(yiTU ' T 'iy')
g ~ oo 8

where I is the identity operator for the electronic coordi-
nates and we invoked the closure property of the elec-
tronic states. Using Eq. (54), Eq. (52) reduces to the
simpler form

U
—|BU T iBT

a8
=T

a8

iBU iBT
U =T

(56}

where it is understood that the identities are valid only
when taking matrix elements of the operators with the
atomic states jiQj,jb). Thus,

T 'UA1, but expression (55) contains partial derivatives
of the rotation operator U which, as shown explicitly in

Eq. (42), has the effect of introducing terms linear in the
operator K. Because we are forming matrix elements
with respect to the atomic states, we may use identity (44)
and replace the molecular rotation operator in Eq. (55)
with the two-center rotation operator T. That is, we
equate

lim [A'zj „ i y TU ' T ' i")
gazoo B8

+l f T

(55) lim A~0; 3&~0,
g azoo

where we differentiated (55) by parts and used the identi-

ty TT '=1. A detailed analysis of the asymptotic
behavior of+ is given in Appendix C.

In the atomic gauge, the scalar potential matrix is

[W'(R8$)],=g g [j,j ',j.,j.',j„jb]'"[L,S]
AX LS

L S j L S j'
XX +'

,nn(4 8 —0)Dn, ,n (0 —8 —0)
Qi 1 1

l, sg J l, s, J,
X !b sb Jb

'
lb sb Jb s~sr (R '),

L S j L S j'
(58)

where we used Eqs. (47), (53}, and ignored the nonadia-
batic scalar potential B(R ) (see Appendix B). We assume
that B /2p is a small correction to the scalar potential W.

At this stage, we have not yet considered the spin-orbit
interaction of the electrons with the nuclei. We approxi-
mate the spin-orbit interaction by including an additional
term in Hamiltonian (3),

Hso(R) =g I;, .S;g'(lr;, I }++l,, S,g Irib I } (59)

where index i represents an electron centered on atom a
located at R/2, index j represents electrons centered on
atom b located at —R/2, and l;„r,, are, respectively, the
angular momentum and electronic coordinate of electron
i with respect to center a. I.b, r.b are the corresponding
quantities with respect to center b, and the functions g
are chosen so that (59) reproduces the correct atomic
fine-structure splittings in the separated atom limit. In
approximation (59) we have neglected two-center terms
since we are only interested in the effect of the spin-orbit
interaction in the separated atom limit.

Matrix elements of the spin-orbit Hamiltonian (59)
with respect to adiabatic states (30) are

[Hso]r r =(y(R }iU '(R)Hso(R)U(R)iy'(R ))

=(y(R)IHso(R)ly (R)), (60)

where Hso(R ) is the spin-orbit operator for the geometry
R=R z. In the separated atom limit the molecular states
correlate to the atomic states (31) which diagonalize
Hso(R ) and

lim [Hsoly, y 5y, q [hE (j )+DEb(j b)]
gaz oo

(61)

but

Hso Hso T HsoT (62)

where EE,(j, ) and b,Eb(j b ) are the fine-structure energy
shifts of atoms a and b, respectively. In the atomic gauge
expression (61) becomes
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TLIsoZ =XDn, n" ( 0 8 0')Dn "n, ,
('

, g .I .I

X [AE, (j, )+b,Eb(j b ) ]5,, ; '

= [LIso 1,, 2
(63)

where G.
& &

(R ) is the JMth radial partial scattering am-

plitude. Using Eq. (66) we find

where we used the closure properties of the Wigner func-
tions [26].

Summarizing these results, we arrive at the set of cou-
pled equations for the scattering amplitude G(R) in the
atomic gauge,

[IV—i~'(R)] G(R)+ [ W'(R) —E]G(R)=0, (64)
p

where ~' and W'(R) are given by Eq. (47), E is a diago-
nal matrix with entries

i'(i'+1)
dR2 R2 1 J~Jb

(67)

We project out the JMth partial wave by multiplying Eq.
(67) with

(6&)

[E] =5r [E bE, (j,—) AE„(j—b )], (65) integrate over solid angle d 0, and sum over 0, to get

and E is the collision energy. Equation (64) replaces Eq.
(38) derived in the molecular gauge.

In order to obtain numerical solutions for Eq. (64), we
make an additional approximation, and ignore the nona-
diabatic vector potential +'. We assume that nonadia-
batic effects induced by the off-diagonal elements of the
vector potential are small. This approximation is not val-
id in the molecular gauge since, in that case, the nonadia-
batic vector coupling persists in the separated atom limit.

We simplify Eq. (64) by expressing the nuclear ampli-
tudes G(R) as a sum of partial waves. The potential
W'(R8/) is not rotational invariant so we need to per-
form a recoupling,

G (R)=G,n, , (R)

YI" (8$), J I J
m 0

1 d
dR'

where we have used

Gi~i~i i (R ), (69)

(70)
j I J j l J' $J J$MM
m m' —M m m' —M' [J]

In the same manner we get

l J
yy fdn Y,*(8(()[J]'"n
m 0

G... (R)
=&& n

lm JM

(66) Also,

R
(71)

I J
gg fdn YI' (8$)[J]'~2 n M g W' .(R8$)G (R)
m 0 r

I J=gg fdn Y; ( $8)[ J]'~

I I/ J/
X g W, , ;.', (R) g g Yi (8$)[J')'

I'm' J'M'
a b

L

j 'I'ja jb
(72)

Evaluating expression (72) we find the integral (see Appendix D)

fdn Yt' (84)Yi (80»'nn, (4 8 0, »r, o —(4 —8 0)—
Q i j Q i' j '

Q i' j '
Q=["]'"&[&]mn

q on, —n, m n q on, n, —
eQ

Inserting (73) into (72) we obtain



49 MOLECULAR THEORY OF COLLISION-INDUCED FINE-. . . 2595

g g g gggg g g [j j j,j.jb jb, l, l', J,J']' [L,S,Q]
Qm j'0'I'f' AX LS Qq 0& 1'm' J'M'

lalb

j I
X Q m

L

J L S
—M A X

j L S
—Q) A X —0) Q' m'

Q I j Q I' j '
Q I' j '

m Q q 0 Q&
—0& m' 0' q 0 0&

I,

b

L

I'
Sa Ja a

Sb Jb Ib

S j L

Sa ja G
J'M'

(R )J JaJb
sb Jb NASL (R )

S j'
(74)

Contracting two pair of 3-j symbols we discover that (74) vanishes unless J=J', M =M', and it simplifies to

GJM (R )

J I'laJb

where

V,; ,
'

, (JM;R. .)=g g g [j,j ',j„j,',j,,j,', l, l']' '[L,S]
l lalb hX LS 0

j I J L S j L S j' j' I' J
X

Q, 0 —Q, A X —Q, A X —Q, Q, 0 —Q,

(75}

r

I, s, j, ' I' s,'
~ g

ja

X lb Sb Jb
'

lb Sb Jb EAsL (R )'
L S j. L S

is a radial multipole potential. Combining Eqs. (69)—(76), Eq. (64}reduces to the coupled radial equations

(76)

1 d

2' dR
G ( (R )+ g V.,(,'. ,'. , (JM;R )G.,(, . , (R )=[E hE, ( ', ) —IbEb( 'b—)]Gj~(J (R ) .

J~~a Jb
j'I'J'a J

(77)

%(R,r)=g G(R)gr(R, r),
r

(78)

where G(R) is a solution to Eq. (64) and Pr(R, r) is
defined by Eq. (49). In the limit R ~~ we replace the
molecular states

~j(R )Qj,jb ) with their atomic limit

b&, and

In order to relate the solutions of Eq. (64) to the ap-
propriate scattering boundary conditions, we need to in-
vestigate the behavior of the electronic basis (49) in the
asymptotic R~~ again. The total system wave func-
tion is

U(R}T '(R)j, T(R)U '(R),

U(R)T '(R}j2T(R)U '(k),
U(R) T '(R}j2T(R)U '(R},
U(R)T '(R)jbT(R)U '(R),

(80)

where we used Eqs. (32) and (79). From identity (51) we

get

T(R)U '(R)=exp( iP zR }U(R)ex—p(iP zR)U '(R)

(81)

lim p n (R,r)=U(R)T (R)~jQj,jb), (79) but

where we employed the same arguments which led to Eq.
(54), and replaced the sum over channels with a sum over
a comp1ete set of atomic states. T(R) is the two-center
rotation operator defined in Eq. (50) and, in the notation
used here, the parametric dependence of T on R, e, p is
explicit. We show below that states (79) describe approx-
imate atomic states [33] of two approaching oxygen
atoms whose total atomic angular momentum j is quan-
tized along a fixed z axis.

States (79) are eigenstates of

so

U(R)(P.z) U '(R) =P R,

U(R)exp(iP. zR)U '(R)=exp(iP. R} .

Therefore,

T(R)U '(R}=exp( —iP.zR)exp(iP R} .

Summarizing, we have

(82)

(83}

(84)
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U(R}T '(R)jT(R)U '(R)

=exp( —iP.R)exp(iP zR )j exp( —iP zR )

Xexp(iP R)

=exp( —iP R)Kexp(iP R), (85)

T(O

where we made use of Eq. (33). Expanding the exponents
in the translation operators, invoking angular momentum
commutation relations, and combining Eqs. (80) through
(85) we get

U(R)T '(R)jT(R)U '(R)=exp( —iP R)Kexp(iP R)

=K+(PXR)—= j(R} .

(86)

x axis

j(R}is a generalization of the two-center electronic angu-
lar momentum (32), where now the atomic centers are lo-
cated at +R/2. The components of j(R) have the usual
angular momentum commutation relations at a given
value of R, i.e., [j,(R},jb(R)]=iE,b, j,(R). We conclude
that states (79) are eigenstates of z j(R), as well as j (R),
j,(R),jb(R). Because states

~jQj, jb ) form a representa-
tion for operator T (R), its action on these states in-
duces a rotation about each atomic center so that the
quantization axis, for each atom, is rotated through an-
gles 8,$. The subsequent action of rotation operator
U(R) rotates the atomic states centered at k(R/2)z, so
that their new centers are at the respective locations
+R/2. The end result is that states (79) are quantized
along the z direction for arbitrary orientation of the
atomic centers (collision impact parameter). Figure 1 il-
lustrates these rotations in the x-z plane. Alternatively,
because of identity (84), we may think of the product of
these rotations in the following way. Translation opera-
tor exp(iP zR ) translates atomic orbitals defined at
+zR/2 to the origin where they are coupled to form
states quantized along the z axis. The subsequent action
of exp( iP R) —on them displaces these states, keeping
the quantization axis fixed, to the new locations +R/2.

We conclude that states (79) form an asymptotic basis,
quantized along a fixed direction in the space-fixed frame,
for which we may define an S matrix.

IV. TRANSITION CROSS SECTIONS

F1G. l. Action of rotation operators T '(0$), U(R) on
atomic orbitals located at +R /2 on the z axis. We consider the
case where / =0; R is the internuclear distance.

trix whose columns are the N solution vectors to Eq. (77)

G(JM, R ) —=Gjili'ij "(JM,R ) . (87)

G(JM, R =0)=0,
lim G(JM, R )=f(R)C,

(88)

where C is a constant matrix, the elements off(R ) are

[f(R )]p~= —[5p gj((kpR )+Kp p (JM)rh(kpR )],1

Qkp
p—= [jtj.jb] p'= [j '1j'.jb]
kp =+2p[E bE, (j, ) bEb—(jb )]= kj.—J—(89)

The superscript, or column index, identifies a particular
solution to (77) and the subscript, or row index, identifies
the channel index. For each partial wave we impose the
boundary condition

The coupled radial Eqs. (77), for the N-channel wave
functions are solved numerically. Each partial wave has
N independent solutions and we construct an N XN ma-

and j&,gI are, respectively, the regular and irregular
Bessel-Ricatti functions. Kpp(JM)=K(JM} is a real
symmetric matrix and we choose the constant C so that

. I

lim G.I
' '(JM, R)=

V J.Jb

exp ikj, R+t —
8&,, J' SJ(, ,

' (JM—)exp ikj, R i-. l~ J I J~Jb J I JgJb ~ . lm.

Ja Jb J~Jb 2
(90)

~ pre r I

where S~& ~J.
'

(JM ) is an element of the S matrix for the JMth partial wave. Comparing Eq. (90) with Eq. (89) we find
JIJrt Jb

I+iK(JM )

I iK(JM)— (91)

Because the radial equation (77) is independent of the magnetic quantum number M, we introduce the shorthand nota-
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tion S(J}=S(JM }. The wave amplitude for the system in an initial electronic state j 'Q'j,'j
b is expressed in terms of the

functions 6 I (R ) which, in turn, are linear combinations of the amplitudes 6 &.
' '(JM, R ). We choose the linearJ JaJb JJ Jb

combination

'I Qt 1+
GJnJ~j '(R)=g g g Q m —M Q' m' —M Yl~(8$)YI'~. (8;p()[J]

Im 1'm' JM
Ja Jb

) ~ I I

so that in the limit R ~~, 6„'' (R) has the asymptotic formJ&Ja Jb

~ 7

(92)

(93)

g .I .I

where f„''(8$;8,$, ) is the amplitude for the system to undergo a transition from an electronic state j'Q'j,'jb toJ JaJb

jQj,jb and for the nuclei to scatter into solid angle dH(sinH}dp following an initial approach along the incident wave
vector K; with polar angles 8;P;. Comparing expression (93) with (92) we find that the scattering amplitudes are ex-
pressed in terms of the Smatrix,

J&J Jb j 1 J j' 1' J 27Tl
&~}—X X X Q m M Q m M Ylm(80}Y(m(8, 0;}[J]

1m 1'm' JM k, ,k. .
JaJb a b

[I—
S(J)]chili J

(94)

We define the total cross section for the two oxygen atoms to undergo a transition from state j,' jb to j,jb,

j.jb}= —, , g g JdQdQ;If nJ J', '(8$;8;p;}I',
U . . (2j.'+1)(2jb+1) nn J J 4"

Ja Jb

(95)

where v, , v are, respectively, the initial and final relative velocities of the projectiles. We integrate over the scatter-
JoJb a b

ing solid angle dQ average over the solid angle, d Q; of the incident wave, sum and average over the total angular mo-
menta jQj'0', to get

~i i ~ & ~ ~

o(J Jb~J jb)= 2 . , g g (2J+1)IT(J}',I, J"I',
k', . , (2j.'+1)(2Jb+1) J i.J»JaJb

where we used Eq. (94), invoked orthogonality of the spherical harmonics, contracted 3-j symbols, and defined

(96)

T(J); ' '=[I—S(J)], (97)

The above discussion does not take into account the fact that the oxygen nuclei are identical particles and that the to-
tal wave function for the system must be symmetric under the interchange of the nuclei. In our coordinate system the
interchange of nuclei corresponds to the inversion, R~ —R. According to (49) the electronic expansion states in the
atomic gauge are

p,.„,, (R,r)= g U(R)Ij'(R)Qj', 'jb)[T '(8$)]JnJ; '

=g U(R)I j'(R )Q'j,'jb )exp[ ig(Q' Q)]d—J„„(8)—. (98)

We need to know how these states behave under nuclear inversion R—+ —R. First we examine the behavior of the rota-
tion operator U(8, $) under the operation R~ —R, or H~m —

H, g~m. +P. We get

U( —R)= U(nH, m+P) =ex.p—( iK, Q }exp( —iK,n )exp—(iK 8)exp( iK w)exp(—iK,Q)exp(iK, ~), (99)

where we used definition (26}. We reexpress Eq. (99}as

U( —R)= U(R)exp( i PK, ) U(n. , n. )exp(iPK, ),—
where the operator

U(m. , n )=exp( —iK, n )exp( iK~n)exp(iK—,n). .

(100)

(101}
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transforms the electronic coordinates r; into

U (m. , m)x;U(m, m. )=—x, ,

U (m. , m. )y; U(n. ,vr)=y;,

U (n, n }z;U(n, vr)= —z, ,

for all i. Because of Eq. (102) we can equate

U(n, n)=No(xz)exp( iS—,n)exp( —iS m)exp(iS, m),

(102)

(103)

where 8,o(xz) are the molecular inversion and reflection through the x-z plane operators, respectively (see Appendix
A), and we used the fact that S commutes with all spatial operators. Combining these results we get

( —R, r) =g U(R)exp( —iIC, P)U(m. , m )exp(iQ'P)ij(R )Q'j, jb )exp[ ig—(Q' Q—)](—1)'" "'djn n (n —8) .
0'

(104)

Now [26]

d'n, n (~ 8}—=( 1}—""d'nn(, 8-}
and inserting Eqs. (105}and (A30) into (104) we get

Plnj i ( —R,r)=( —1) ' ' g U(R)ij(R )Qj'bj, )exp[ ig(Q—' Q)]d—jn n. (8)
0'

(105)

(106)

Because of relation (34), we conclude that transformation R~ —R, acting on states (98), is equivalent to the action of
the electronic parity operator 8 on them. That is,

(107)

Electronic states (98}have the same transformation properties under nuclear inversion as states (31}have under electron
inversion about the molecular center.

We may, therefore, express the system wave function in the symmetric form

%(R,r)= g G,„,; '(R)g, n i (R,r),
J~JaJb

where now the scattering amplitudes must obey the symmetry relation

Gi &aib
( R) ( 1 )J ia ibGl Ja Jb (R)J~J~ Jb J~Jb J~

We replace expansion (92) with

(108)

(109)

J ~ J~Jb j / J j' /' J
Gjn, ij '(R)=g g g Q —M Q' m' —M Y( (8$)YI'~ (8;p;)

lm ('rn' JM

2 l(+1 .,(, .I I

.I .I
Ja Jb

The asymptotic limit for the symmetrized amplitude G(R} is
.i g. l . I .I .I .I .I

G,„jJ' '(R)—+5jn [5 ' 'exp(iK, R)+( —1) ' 'exp( iK;.R)5—~

]J 1

exp(ik 1 R )

(110)

and the expression for the total inelastic collision cross sections becomes

J Jb 1 1

v, , (2j,'+1)(2jb+1) 2
Ja Jb

X g g f dQdQ, elfin,
. 1'. '(8$;8;p;)+( —1) ' 'fjnj,jj '( 8+~ Q+~;8;p;)l-

an '- 4~
J J

(112)
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where we have included an additional factor of —, in order to insure that the incoming flux is normalized to unity. In-

serting expression (94) into Eq. (112), employing parity properties of the spherical harmonics and the orthogonality re-
lations for the 3-j symbols, we get

(113)

V. RESULTS AND DISCUSSION

Equation (113)was used to calculate the total cross sec-
tions o (j,' j~~j,jb ) for the collision energies correspond-
ing to the range of temperatures T=680—2000 K. Re-
sults for the excitation cross sections, o (j,jb ~j,'j~ ), in-

cluding a detailed description of the computational as-

pects, will be reported in a follow-up paper. In con-
clusion, we briefly summarize the theoretical method in-

troduced above.
The 02 system wave function was expressed by a

close-coupled expansion, where the channel states are
adiabatic eigenstates of the electronic Hamiltonian (6).
We integrated out the electronic degrees of freedom and
arrived at a set of coupled equations (38), for the scatter-
ing amplitudes. These are essentially the PSS equations.
The nonadiabatic vector coupling matrix ~ is treated as
a gauge potential [23,24], and we found that this coupling
persists in the separated atom region. The long-range
coupling prevents us from imposing standard asymptotic
boundary conditions on the scattering amplitudes. It has
been recognized that in certain cases the PSS equations
suffer what appear to be anomalous long-range nonadia-
batic couplings and translation factors have been intro-
duced to eliminate such couplings [34]. Here we used a
different procedure, we introduced a gauge transforma-
tion and derived a new set of coupled equations (64). In
the new gauge, which we call the atomic gauge, the nona-
diabatic couplings are well behaved in the asymptotic re-
gion.

We could solve the scattering equations in the original
(molecular) gauge, but in order to satisfy the gauge in-
variance of the scattering matrix we would need to im-

pose unusual asymptotic boundary conditions.
The spirit of our program is similar to the molecular

theories of Mies [16], Launay and Roueff [17], and
Singer, Fried, and Band [19]. Our theoretical develop-
ment differs in some important aspects, described below.

Mies applied a molecular theory to calculate the exci-
tation of the PJ levels in ground-state fluorine by im-

pacts with protons. In his molecular treatment all coor-
dinates are defined with respect to an origin located at
the center of mass of the fluorine atom. As long as elec-
tron transfer to the proton is neglected it is acceptable to
define all angular momenta with respect to one center,
which Mies took to be the fluorine center of mass.
Launay and Roueff [17] apply the method of Mies to cal-
culate the excitation of PJ levels of C+ by impacts with
hydrogen atoms. They define all angular momenta with
respect to an origin located at the heavy atom. Because
we are dealing with the collision of complex atoms, both
of which have nonzero electronic angular momenta, the

IRjm, ) =QDJ''n(0 ~ 0)IRjQ),J' (114)

where we used the notation of Mies [16]. DJ'
n ($,8,0) is

j7
a Wigner rotation matrix, j is the total electronic angular
momentum defined with respect to the origin of the
fluorine atom, mJ- is the magnetic quantum number, and
0 is the total electronic angular momentum along the z
axis of the body frame. ~RJQ) is the body-frame molecu-
lar state and ~RjmJ. ) is the space-fixed molecular state.
Such a procedure is also advocated in the work of Ref.
[19]and an analogous expression is given by Eq. (II.11) in
their paper.

In our treatment, Born-Oppenheimer and atomic states
are defined with respect to the same quantization axis,
the z axis of the space-fixed frame. We define Born-

procedure of Mies is not applicable here. We distinguish
between two total angular momentum operators, the total
electronic angular momentum K with respect to the
molecular center, and the total two-center angular
momentum j. The former operator generates rotations
about the molecular center, and the latter one generates
rotations in the product space of two-center states. The
role of the two distinct rotations is crucial when we take
the asymptotic limit of electronic molecular states to
form atomic states. This is discussed at length in Sec. IV,
and illustrated in Fig. 1. The theory of Singer, Fried, and
Band also applies to interactions of two complex atoms,
and they do distinguish angular momentum quantum
numbers for different atomic fragments. They construct
molecular states out of atomic states using standard
recoupling techniques and define a total electronic angu-
lar momentum. However they do not appear to make a
distinction between this, a total two-center angular
momentum, and the total electronic angular momentum
which generates rotations about the molecular center.
The recent discussion by Kimura et al. [35] appears also
not to distinguish between the total electron angular
momentum and the sum of the atomic angular momen-
tum.

In the cited molecular theories [16—20], the Born-
Oppenheimer separation into electronic and nuclear wave
functions is carried out in a noninertial, body-fixed coor-
dinate frame in which the quantization axis is aligned
along the internuclear vector R. This is a standard pro-
cedure in molecular physics [36]. The wave function in
the body frame is then transformed back into the space-
fixed frame, since that is where the scattering boundary
conditions are defined. For example, Mies in Eq. (4.9) of
his paper constructs a space-fixed molecular state as a
linear combination of BO electronic states



B.ZYGELMAN, A. DALGARNO, AND R. D. SHARMA 49

Oppenheimer states as those adiabatic states, defined ir=

the space-fixed frame, where the nuclei are aligned along
the z axis. We construct adiabatic states for arbitrary nu-
clear orientation R by an active rotation (26) on the BO
states. Equation (26) is analogous in relation to Eq. (114)
above. However, our basis set, comprised of Born-
Oppenheimer states, does not form a finite matrix repre-
sentation for the rotations defined around the molecular
center. In the asymptotic limit the electronic wave func-
tions evolve into atomic states j~Qj,j b ), and these states
define a representation of the product group of rotations
around each atomic center. In the case of complex atoms
these states do not, in general, comprise a representation
of rotations around the molecular center. In other
words, a finite set of BO states or the atomic states which
evolve from them in the separated atom limit does not
transform into each other under the action of operator
U(R) on them, and we argue that relation (114) is neces-
sarily incomplete. The comparison with the theory of
Singer, Fried, and Band is further complicated by the fact
that they use quantum number j to identify irreducible
representations (Wigner matrix) of the rotation group,
which is used to transform the molecular states from the
body to space-fixed frame. However, in their discussion,

j is associated with the two-center rotation operator, not
the operator which generates rotations about the molecu-
lar center.

Our procedure depends on the fact that the expectation
values of the dipole operator (14) vanish in the separated
atom limit of the Oz system. Otherwise the transforma-
tion from the molecular to atomic gauge does not elimi-
nate all o8'-diagonal asymptotic couplings. In cases
where the dipole coupling does not vanish, the present
theory must be generalized.
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APPENDIX A: DISCRETE SYMMETRIES
OF ATOMIC AND MOLECULAR STATES

We construct two-center atomic states out of sums and
products of atomic orbitals. We treat the oxygen atoms
in the frozen-core approximation and consider only the
2p electrons for each atom. In the space-fixed frame we
define electronic coordinates associated with each atomic
center a, b, respectively,

r- =r ——
ia i

Rr =r.+-
jb j 2~

i =1,4,

j=5,8,
(Al)

i =1,4

lb= g rjb Xpj,
j=5,8

for centers a, b, respectively. We form the product

ILA& —= (
—1) '

I, Ib L
X g &2L+1

m m
m, mb A

a b

(A2)

X 1I)1 m ( r „,. . . , r 4, )ltll m (r 5b, . . . , r 8b ),
a a b b

(A3)

where the functions pl, $1 are eigenstates of
a a b b

z l„z Ib, l„lb, respectively The .states ~LA) are eigen-
states of L and L„where L=l, +Ib. It is also useful to
express states (A3) in the form

~LA) =exp( iP z—R ) LA)o, (A4)

where exp( iP zR—) is an electron translation operator,
P is defined in (14), and ~LA )o is given by Eq. (A3) with
the arguments of the orbital functions r,„rjb replaced by
the coordinates r, , rj, respectively. States ~LA)o are in-
dependent of the nuclear coordinates (R,8,$), and one
can use Eq. (31) to define states ~j Qj,j, )o which are also
independent of the nuclear parameters.

We introduce the molecular inversion operator m

defined so that

m r,.~= —r;, i=1,8 .

Using Eqs. (Al) and (A5) we find

Rmr ~= —r ——= —r =mria i 2 ib b ib b

R

(A5)

(A6)

where &„~b are the atomic parity operators associated
with centers a and b, respectively. Now

where the molecular coordinates r; are defined in Eq. (2),
the atomic centers are located on the z axis, and R=zR.
We take for the orbital atomic wave functions, eigen-
states of the angular mornenta,

I, = g r,, xp, ,

m (rla? ', r4a )kl m (r5b, . . . , rsb ) —ltll m ( rib, . . . , r4b )ltll m ( r5a, . . . , r8a )
a a b b Q Q b b

41 (r lb 4b)ltd/ m ( 5a~ ' ' ' 8a)
b b

(A7)

where we have used the fact that the atomic orbitals are odd-parity states and there is an even number of electrons at
each atomic center. Therefore,
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I, ib L
NlLA&=( —1)' ' g &2L+I A (()I m (&ib ~ "4b)A, m ("ra~ "sa}

mamb

I, Ib
=( —1) ' ' g &2L +1(—1) '

mamb

Pgl m (rsb& . . ~ r8b )Pl m (rla» r4a }
mb —A a b b a

=( —1)'PIL»,
where P =P ~ is an electron permutation operator defined so that

Pr, P =r5, Pr2P =r6, Pr3P =r7, Pr4P =ra,
and we used the fact that I, =ib = 1, and P = l. In the same manner we construct the spin function

S
lSX&=(—1) ' g &2S+I X g, (1, . . . , 4)g, (5, . . . , 8),

mamb

Sg Sb

and

sg sb S
PlSX&=( —1) ' ' g &2S+I X g, (5, . . . , 8)g, (1, . . . , 4)

mamb

=(—I)'lsx &

where g are spin functions and s, =sb = 1. The inversion operator ir' does not affect the spin coordinates, therefore

elsx&=lsx&

(A8)

(A9)

(Alo)

(Al 1)

(A12)

since s, =sb = 1. Thus

e(lLA &e lsx & )=( —1)'(P lLA & )e lsx &

=( —1)"P(lL.A&elsx&) . (A13)

o, (xz)x;,o, (xz) =x;, ,

o, (xz)z;, o, (xz) =z;, ,

o, (xz)y;, o, (xz) = —y;, ,

(A17)

y ( —1 f'lLA&e lsx &,
1

(A14)

Finally we construct, as required by the Pauli principle, a
total antisymmetrized atomic state. Although the p elec-
trons in the oxygen atoms are equivalent, we are con-
cerned with the ground P state terms only, and, there-
fore, we simply express the symmetrized states by

o(xz)=o, (xz)oh(xz) . (A18)

We may relate products of the atomic parity and
reflection operators with rotations about the atomic
centers, i.e.,

for i = 1, . . . , 4 and analogous relations for reflections of
the coordinates rjb. Therefore,

where the sum over p; represents all possible electron per-
mutations. Using Eqs. (A13) and (A14) we get

+ILASX &, =(—1)'"II.ASX &„. (A15)

Throughout the text proper symmetrization of the states
lL AS X & is implicit and the subscript A is dropped.

We also consider the reflection symmetry of the atomic
and molecular states with respect to reflection in the x-z
plane of the laboratory coordinate system. We define the
molecular reflection operator o (xz) so that

cr (xz)x;o(xz)=x, ,

o (xz)z;cr(xz }=z, , (A16}

o (xz)y;o(xz)= —
y, ,

for all i. In our coordinate system R=zR and so the
molecular reflection operator cr(xz ) is equivalent to prod-
ucts of atomic reflection operators o, (xz),o b(xz), which
are defined by the relations

R, (n, m ) xR, (m, m )= —x;, ,

R, (n., n. )y;,R, (n., n. ) =y;, ,

R, (n, n )z;,R, (m, m) =.—z;, ,

for i =1, . . . , 4, and the analogous relations for the
operator Rb(m, n) Using (A18.), .(A. 19), and 6 =8& =1,
we get

o (xz ) =8,&bR, (m, n}Rb(n, n}. . . . .

Therefore,

(A20)

8,o, (xz) =R, (m, ~)

—=exp( il, m )exp—( il, n )exp—(il, n },
(A19)

8brrb(xz ) =Rb(~, m )

=—exp( ilb n. )ex—p( ilb m )ex—p(ilb ~),
z z

where we used
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Ib L
cr(xz)}LA) =(—1) ' g 2L +1

A R, (rr, n )Rb(m, rr)P& (r&„.. . , r4, )PI (r5b, . . . , rsb),
mamb

(A21)

where we have used the fact that $1,$1 are both odd atomic parity eigenstates. Now,
a a b b

R, (m, vr)P. I =+exp[in(m, —m')]X ~l, m')(m'I, ~exp( i—nl, )~l, m, )
m'

=+exp[i~(m, —m')]X ~l, m')d ' (n. )=( —1}'
m'

where we replaced the matrix element of a rotation operator with a reduced Wigner function [26].
Also,

(A22)

Rb(n, a)PI =( —1) ' (A23)

Combining Eqs. (A22) and (A21) we get

lb L
R,RblLA) =( —1) ' '

Q 2L+1
A (

—1)' ' '
P( ~ (r)„.. . , r4, )$( ~ (rg„, . . . , rsb)

m mb

=( —1) ' ' g &2L+1
m mb

l. l, L

m Plb

L+ma+mb
( 1) pl, (rlo ' ' ' r4 )pl (r5b ' ' ' rsb)

=( —1)'-'~L —A), (A24)

or

o(xz)~LASX) =( —1) iL —ASX) .

U(m, n )iASXL ) =( —1)
~

—AS XL ) . (A29)—

(A25) Also,

e}ASXL & =( —1)'+'~ASXI. ),
o(xz)~ASXL ) =( —1)

~
ASXL ) . —(A26)

Although the spin coordinates do not change under spa-
tial transformations, the operator

Uz(n, vr) =exp( —iS,m
. )exp( —iS m. )exp(iS, ~) (A27)

rotates spin states similar to the way the spatial operator
R (m, m ) rotates spatial functions. Following similar pro-
cedures outlined above we find

U (vr, vr)~ASXL ) =( —1) ~AS XL ) . —(A28)

Using definition (103) and Eqs. (A26} and (A28) we get

Although the atomic states ~LASX) are not, in general,
eigenstates of o (xz ), they do form a representation of the
molecular reflection operator o (xz ).

In the main text and in Appendix B we show that the
molecular eigenstates of Hao(R, r) can be put in a one-
to-one correspondence with the atomic states ~LASX),
and since HBo commutes with 8 and cr(xz ) the molecular
states also form a representation for these operators. We
choose the phase convention so that relations (A15) and
(A25) also hold for the molecular Born-Oppenheimer
functions which merge into ~LASX) in the separated
atom limit, i.e.,

U(n, a)j (R )Qj,jb ) =( —1) ' ' j~(R )—Qjbj, ),
(A30)

where we have used Eqs. (31) and (A29) and symmetry
properties of the 9-j symbols.

APPENDIX B: ASYMPTOTIC
ATOM-ATOM INTERACTION

We define atomic states
~ l, m, ), ~ lb mb ), which are

eigenstates of I„z-l, and lb, z-lb, respectively. For P
states l, = lb = 1, and for the sake of brevity we label them

by azimuthal quantum numbers only. Using the mul-

tipole expansion (20), and after some angular momentum
algebra, we obtain for the asymptotic element of the in-

teraction potential

54 &r'&'
(m, .mb ~ Vz~rn, mb ) =

&
R(m„m, ;mb, mb ), .

R

(B1)

where r is the expectation value for a single p electron of
oxygen, and R is a sum of products of 3-j symbols
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R(m„m, .;mb, m&}=(—1) '

1 2 11 1 1 1

p2 pl a p2 p] m ' p) p p]I I I
P) P) P2 P2P3 P3

1 1
Xgg(L=2, p) g g g ( —1) '

1 1
X I

p3 p

The matrix element of V5 can be

54 (r'&'
(m, .mb. I VSIm, mb) =

Now define the states

1 1 1 1 1 2 1

, P3 P mb~ P3 P P3

1 1 2

p mb mb pm, .

expressed more simply by introducing a 6-j coefficient in the form

1 1 2 1 1 2

111 &g( = I""" —mma

(B2)

(B3)

1 1 L
ILA&=( —1)'&2L+1 g A Im. &lm&& .

mamb
mb m,

Then
'2

q22 1 1 2
(L'A'I V, ILA ) =

(B4}

Xg g(2,p)+(2L+ 1)(2L'+ 1)

Now

and

1 1 2

1 1 1

~+~x y
~a '&a' I b'I b'

4n' 4!
(2—p)!(2+p)!

1 L 1 1 L' 1 1 2 1 1 2

Pb Pa ~ Pb' Pa' ~ Pa Pa' P Pb Pb' P

(B5)

(B6)

Hence

2/2 4(I.'A'I V, IL, A) = " ' "
X(L.'A', I.A),

5 36

where

41 1 1 L 1 1 L'
X(L'A', LA) =g ' g (2L+ 1)(2L'+ 1)

2—p!2+pl„ „

(B8}

X( —1)
1 1 2

pa pa' p —A+p, —p, .+A' p

Numerical evaluation yields, for the nonvanishing contributions,

X(2222) =—' X(2121}=——,, X(2020) =— (B10)

APPENDIX C: ASYMPTOTIC BEHAVIOR OF THE NONADIABATIC COUPLING

We express the components of the vector potential (42) in the form

~e—=Q~ cosP —Q„sing,
=K, (cos8—1)—sin8(+„cosP++ sing ),

(Cl}
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where K;—:( y(R )IK,. Iy'(R ) ) is the matrix, with respect to the BO states, of the ith component of the total electronic
angular momentum K. In Eq. (50) we introduced a transformation matrix T whose elements are

[T(8$)]r r
= (JQJ,Jb I TIJ.JbQ J )

—:(jQj,jb Iexp( iP—j, )exp( i 8—j )exp(i', )jl,jbQ J ) .

Because atomic states Ij Qj,jb ) form a representation for j, we may express T in the form

T=exp( i—Pj )exp( i—8j„)exp(if', ),
where j is the matrix representation of j with respect to the atomic states. T transforms the components of A into

~'=T A T '+iTV T

(C2)

(C3)

(C4)

We use (C3) to evaluate the angular components of the derivative term in Eq. (C4) and get

iT T '=T[ —j„cosP+j sing]T

iT T '=Tj T ' —j
= T[j ( 1 —cos8) +sin 8(j cosP+ j sing ) ]T (C5)

where we made use of elementary properties of the rotation matrices. Combining the first term in (C4) and (C5), we get

Ae=T(Q —j )T 'cosP —T(Q, —j )T 'sing,

+&=T(Q, —j,)T '(cos8 1)——sin8T[(K„—j )cosP+(Q —j )sing]T
(C6)

Following the discussion in Sec. III we replace the matrix elements of the total molecular angular momentum K with
the matrix elements of the two-center total angular momentum j, or

(y(R )IKly'(R )) =(y(R )Ijly'(R ))=[j]»+[bj(R )]» (C7)

where we have expressed it in terms of its asymptotic atomic limit [j] .=—( y I jly ), and a remainder term ~b, '(R ). The
latter term gives the purely molecular contribution to the matrix element. Inserting (C7) into (C6) we obtain

As= T~A~(R ) T 'cosP Thj (R )—T 'sing,

~=—sin8T[~h' (R )cosP+4j~(R )sing]T
(C8)

The quantities ~b, (R ) may be evaluated, for large values of R, using perturbation theory. According to the multipole
expansion (19), the leading-order correction to the atomic-state electronic wave functions, due to the atom-atom in-
teraction, falls off no slower than R in the asymptotic region. Therefore, the elements of b,j(R ), and, Az, A&, fall off
no slower than R at large R.

To evaluate the asymptotic limit of the radial component of the vector potential, we could transform the radial com-
ponents, in the molecular gauge, into the atomic gauge by a similar procedure used above for the angular components.
Instead, we evaluate it directly in the atomic gauge from the definition

R. A',
,, (R)=i(y, l(R VR)ly, ), (C9)

where now P are atomic states (49), and the bracket notation implies integration over all electronic coordinates. Tak-
ing the asymptotic limit we replace states P~ by their asymptotic form (79) to get

lim R.A', (R)=i (jbj,.Q'j'IT(R}U (R}(R vR)U(R)T (R)jlQjjb )

=i (jbj, Q'j'Iexp( , iP zR )exp(i—P R.)(R VR)exp( iP R)exp(iP—zR. )jIQj,j„), (C10)

where we used Eq. (84). These matrix elements are expectation values of the derivative operators with respect to the
translated states

Ij Qj,j b )o =—exp(iP. zR )Ij Qj,j b ),
which are independent of R, 8, {{)[see Eq. (A4), and the discussion below it]. Therefore, we rewrite Eq. (C10),

lim iR A~ y.(R—)= (oJb,J. Qj' lepx(iP R) R VRxe(p. iP R. )ljQJ J—b)0.
gazoo

=o(jbj. Q'j'IR (VR iP)jlQj.jb)a=0

(Cl 1)

(C12)
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where we used the fact that the matrix elements for the dipole operator P vanish, and that states
~jnj, jb &o are in-

dependent of R.
Finally, we evaluate the asymptotic limit of the nonadiabatic scalar potential matrix. In the atomic gauge its matrix

elements are given by

B' .(R)= g Ar «(R). A«r. (R),
kQyy'

where the matrix elements

Ar «(R)

(C13)

are defined above, and index k denotes atomic states not included in the channel set. We rewrite expression (C13) as
[24]

B'(—R)=iVR A'+ A' A'+C'(R),
C' (R}—= &y, l&' ly, & .

(C14}

The first two terms are evaluated using the asymptotic expression for +' discussed above. To evaluate the last term we
repeat steps (Clo) through (C12), to get

»m C', ,, «)=o&jbj. n'J'~(~R —ip) i~nJ.Jb&o .
g~ ao

(C15)

Because this expression contains a term quadratic in the dipole operator P, it does not vanish in the asymptotic limit.
However, the nonvanishing terms contribute only to the diagonal components of 8 and so they give rise to additional,
but small, corrections to the asymptotic energy shifts.

APPENDIX D: INTEGRAL OF PRODUCTS OF WIGNER COEFFICIENTS

We need to evaluate

fdn ~in (84) YI m (84'}D'n, n, (4' 8 0'»—n n (4 —8 —0) .

We use the identity [26]

(Dl)

' 1/2

Y (8$}
21+1

exp(imam )d' o(8) (D2)

and definition (53}to rewrite Eq. (Dl),
I/2

f dP f sin8d8exp[ig(m'+n' —m n)]d'0(—8)d' 0(8)djn„(8)dj„„(—8) .

We use the Clebsh-Gordon series [26] to express the product d' 0(8)d Jnn (8) in the form

Q 1 j Qd' (8)d„„(8)=g[Q] n () n n d~ „(8) .
m q

(D3)

(D4)

Similarly, we get

j' Q 1'j' Q8}=&[« ~ n q o n n-
Qq

q
(D5)

Using the selection rule m +0—m ' —0' =0, and the identity

f d8(sin8)d~ .(8)d~ ~ (8}= (D6)

we get

fdn Ylm(8$)Y(. ,(8$)DJo n ($,8, $)DJn n (P, —8, —P—)

Q 1 j Q 1' j' Q 1' j' Q
nq on n—n q on n-m q & &

m
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