
PHYSICAL REVIEW A VOLUME 49, NUMBER 4 APRIL 1994

Completion of a hybrid-theory calculation of the Ilg resonance in electron-N& scattering
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A calculation of e-N2 scattering in the vicinity of the 2.4-eV (H~) resonance has been completed. The

main element of the calculation is a 15-term vibrational close-coupling expansion, reduced to coupled
two-dimensional partial differential equations (PDE s), and solved using the noniterative PDE technique.

The potential consists of static, exchange, and polarization parts; each part has been (previously) derived

in a manner appropriate to its importance in the scattering equation. Results for the absolute total cross

section, both in magnitude and shape of the substructure in the resonance region (1.5 & k & 3 eV), are in

excellent accord with experiment. Angular distributions are also calculated and found to vary

significantly in shape for different energies in the immediate vicinity of the center of the resonance

(2.05&k &2. 15 eV), indicating the need for differential measurements at a finer grid in energy and

therefore requiring even better energy resolution. A comparison with other calculations and a discus-

sion of some theoretical aspects are also included.

PACS number(s): 34.80.Bm, 34.80.Gs

I. INTRODUCTION

The purpose of this paper is to report a calculation of
electron scattering from molecular nitrogen (e-N2) using
the noniterative partial differential equation (PDE) tech-
nique [1]. This calculation is confined to the energy re-

gion around the 2.4-eV resonance; it consists of a 15-state
vibrational close-coupling expansion for the resonant

(Ils) partial wave combined with fixed- (plus adiabatic-}
nuclei amplitudes for the other (contributing) partial
waves. The underlying method is the hybrid theory [2).
We shall concentrate on the angular distributions for the
lower vibrational states (v =0, 1,2), showing that their
shapes change very rapidly from one energy to the next
as one traverses the energy region in the center of the res-
onance. Thus, despite the fact that several differential
scattering experiments have been reported (to be dis-

cussed below), they do not have the energy resolution,
nor have they attempted to explore the variation in the
angular distributions in this narrow energy region in de-
tail. It is one of our aims to motivate such experimental
investigations.

Several important developments in our calculations
have been made since the introduction of the hybrid

theory [2], which we have reported piecemeal since then.

Briefly the most salient of them are as follows: the noni-

terative PDE technique itself [1], the reduction of the
scattering equation to two-dimensional (2D) form, which
was first outlined in [3], in addition to which —it turns
out —the 2D technique could also be applied to the
derivation of the polarization potential [4], as well as to a
method for exactly including exchange in the static-
exchange approximation [5]. And finally the direct (i.e. ,

nonexchange) static potential could be calculated [6] us-

ing a much better multiconfiguration self-consistent-6eld
(MCSCF} approximation of the N2 ground state than the
self-consistent field (SCF) approximation, used originally

[2—5]. Some interim results using a 10-state vibrational
expansion were reported in Ref. [7].

II. THEORETICAL ASPECTS

We start with an antisymmetrized ansatz for the total
wave function of the e-N2 system [2,7]:

15
qt' '= y (

—1) 'F' '(x R)e (x" R} .
N2 ~~ N2

i=1
(2.1)

Here x; are the coordinates (space and spin} of the ith
electron and x" is the collection of coordinates of the

remaining (14) electrons. The factor ( —1) ' is the parity
of a cyclic permutation (p; } of the sequence 1,2, . . . , 15,
thus making 4' ' completely antisymmetric.

We first summarize the analysis, mostly of [5], whereby
the basic integro-PDE is derived. (Note, however, that
we are here using Rydberg units as opposed to a.u. , used
in Refs. [5,6].) Insertion of (2.1) into the Schrodinger
equation, and premultiplication by the target ground
state, 4N, yields the (static) exchange approximation.2'

We first consider the ground (Xs ) to be represented by a
single determinant (i.e., SCF approximation):

cIiN =det(lo 2cr lcr„2cr„30„lir„„lm.„;X+).
2

(2.2)

Labeling the different orbitals f [a= lo, , ln„],we.
recognize that each g is an explicit function of the coor-
dinates of a single electron and an implicit function of the
internuclear separation R:

g (x;)=P (r;;R)g (spin) . (2.3}

When one includes the R dependence of P and F' ', one
derives from the Schrodinger equation, in the usual way

[7], a 3D PDE for F'
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7

[ V—+H„;b+V(r, R} E—]F' '(r)= g W(

V„„;,(rR) = (4 V, ,)@ )

and W are the (static} exchange kernels

Rrl, '(r;R)=(P,(r';R), F' '(r', R))),
2

The energy appearing in (2.4} is

E =k„+e„

(2.5)

(2.6)

(2.7)

and H„;b(R) is the vibrational part of the target Hamil-
tonian, from whose internuclear potential vibrational
wave functions [y„]and energies [e„]are evaluated. (In
this calculation the latter are obtained numerically from
the MCSCF potential-energy curve reported in Ref. [6]).

For the static potential (2.5) we use a MCSCF approxi-
mation [6] of 4N . A MCSCF wave function is a sum of

2

determinants, whereas the rhs (i.e., the exchange part) of
the scattering Eq. (2.4) assumes that 4N is a single deter-

2

minant (i.e., SCF approximation). Thus (2.4} constitutes
an admittedly unbalanced approximation, which never-
theless seemed well justified [6,7], because (a) the ex-
change terms usually have a quantitatively smaller effect
than the direct terms, and (b) when written as in (2.4},the
exchange terms can be rigorously reduced to a coupled
set of ordinary (i.e., nonintegral) PDE's [6]. This comes
about by expanding 8' ' in vibrational states y„of N2..

N

F' '(r R)= g F„' '(r)y„(R),

N„

(r'R)= y W (r)y (R),
v=0

(2.8)

and, using the well-known property of the Coulomb po-
tential as the Green's function of the kinetic energy,

V, = —4m5(r' —r)1
(2.9)

allows the scattering equation (2.4) to be reduced to cou-
pled, but nonintegral, PDE's [7]:

[V +k ]F' '(r)= g ——V„„(r}F' '(r)
v'=1

+y y(a)(r) W(m, rr) (r)

(2.4)

where V(r, R) is (to begin with) the static potential be-
tween the scattered electron and the target (Nz):

The double indexed quantities above are vibrational ma-
trix elements of the unsubscripted quantities:

V„„,(r) = (y„(R)i V(r;R) iy„,(R)),
(I}(„„'(r)=(y,(R)i(() (r;R)iy„.(R)) .

(2.11)

Equations (2.10) can be further reduced to 2D PDE's by
exploiting the cylindrical symmetry of the various func-
tions. As derived in Ref. [5] they take the form

[h(m)+k„]f( '(z)= g V„„.(z}f„' '(z)
v'=1

7
y(a)(z}w())),a) (z

a=1

b, (m —m )w', '(z) = ——g P'„„'(z)f„'. '(z),4
7

(2.12)

where w,' ' ' are reduced exchange orbitals defined in [5],
and z =(r, 8) and b, (m) is the 2D Laplacian

() 1 8 (1 m
(II),(m) = +— + cot8

Br r 88 sin 8

(2.13}

As stated above, V,„should be derived from static po-
tential seen by the scattered electron Eq. (2.5). We have
shown [6] that the use of a MCSCF 4 in (2.14) leads to a
slightly less attractive potential than one obtained from a
SCF approximation. That result is in qualitative accord
with that found by Rumble, Stevens, and Truhlor [8].
Very recently, however, Meyer, Paul, and Riss [9] have
carefully examined the II~ resonance in the static ex-
change approximation and have found that the resonance
using a MCSCF ground state, when the consistent ex-
change terms are included, corresponds to a slightly more
attractive elect than the corresponding consistent ex-
change approximation with a SCF ground state. Their
conclusion (which we found quite surprising but are
forced to agree with; see below) is that the use of SCF or-
bitals for exchange in Eqs. (2.10}and (2.11}is sufficiently
inconsistent with the use of a MCSCF wave function in
calculating the direct term, that it gives the opposite
effect from what is obtained by using the MCSCF wave
function throughout [()].

We now describe how, in this calculation, we deal with
this problem. Briefly we make our polarization potential
more attractive so as to overcome the under attraction of
the exchange potential as we have included it: To our
static potential we add a polarization potential, as de-
scribed in [6]

—V W„' ' '(r)=8m. g()))',.„'.,(r)F„'- '( ),
FF

where

(2.10) V(r, R)~ V„„;,(r, R)+ V, (r, R),

where

V~)(r, R)= [1—exp[ (r/ro) ]]V', ) )(r,R) . —

(2.14)

(2.15)
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Vppf is calculated using the polarized orbital procedure
[10],generalized to molecular targets [4], but —as seen in
(2.15)—the latter is diminished in magnitude by a tuning
factor, I 1 —exp[ (r—lru) ]], in which ro was adjusted to
give the II resonance at the correct (i.e., experimental)
energy.

We found specifically in [6] that a value of ra=2. 430
was required, when using V„„;,(MCSCF), whereas

ra =2.934 was required for a SCF wave function. (There
is an unfortunate typographical error in [6], which reads
ro =2.394 for the latter. )

In detail, as one can see from (2.15), a smaller value
of ro means a smaller effect of the cutoff
[1—exp[( —rlru) ]]; and since V'oi ) is attractive, the
smaller value of ro has the effect of rendering the polar-
ization potential more attractive than it was when it was
tuned to a static plus exchange potential based on the
SCF target wave function. We will not say more about
this alteration here except to repeat that —although it is
consistent with Meyer, Pauli, and Riss [9]—it is based on
experiment (hence ro is phenomenological), and for that
reason we have considerable confidence in the angular
distributions, particularly in the iminediate vicinity of the
dominant fine-structure resonance, which will be present-
ed in the next section, and which is the main objective of
this paper.

III. RESULTS AND COMPARISONS

In this calculation we have added (to the resonant
'III partial wave) the nonresonant partial waves

( 'Xs, 'X„,'II„,'b I ), calculated in the fixed-plus
adiabatic-nuclei approximations, as discussed in Ref. [6].
Let us first show and discuss the total cross section o z
(the sum of all energetically allowed vibrational channels,
summed and averaged over rotational states in the usual
way). The resonance with its famous substructure [11],is
usually compared, as it is here, with the experimental re-
sult of Kennerly [12]. The theoretical curves shown are
our previous 10-state result [7] (dashed curve}, our
present 15-state result (solid}, compared to experiment
and the Schwinger multichannel calculation of Huo et al.
[13,14] (see Fig. 1).

With reference to our calculations the comparison of
the 10- and 15-term results gives a good idea of the con-
vergence of the close-coupling expansions: we would say
that our calculations are well converged to just beyond
the first resonance (k & 1.95 eV), reasonably well con-
verged to just beyond the second ( -2.2 eV), and approxi-
mately converged to -2.5 eV. Of particular note, there-
fore, is the fact that ours is the only calculation which de-
scribes the magnitude of the first peak (o r =27 A at
k = 1.95 eV} and gives the ratio of the first two peaks ac-
curately. The calculation of Huo et al. [14] is almost as
satisfactory, while their adjoining paper [13] gives the
whole sequence of vibrational excitation cross sections
whose shapes are in remarkable accord with experiment
[15].

The ability of such theories [13,14] to achieve a de-
tailed description of the entire substructure goes back to
the physical ideas underlying the boomerang model (so
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called because the nuclei execute only a single vibrational
cycle during the limited lifetime of the Ni ion; cf. [16]),
which have been given their most rigorous justification in

the R-matrix calculations of Schneider, LeDourneuf, and
Vo Ky Lan [17]. More discussions of those theories and
calculations (Ref. [18], for example) will be included in

the latter parts of this paper.
In this (hybrid-theory) calculation we shall concentrate

on angular distributions. Figure 2 shows the elastic
differential cross section at 1.50 eV, just below the onset
of the IIg resonance. Also shown are various other
theoretical [2,14,19] and experimental [20,21,22] results.
Both similarities and differences are evident. The results
continue into the heart of the resonance region (k =2. 1

eV): Figs. 3 and 4. We have divided those results into
two parts: in Fig. 3 we show our present results at three
energies surrounding 2.10 eV; one sees how significantly
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the shape varies over 0.1 eV. That is particularly
relevant to the fact that the latest experitnent [22] only
claims an energy uncertainty of just that amount. Never-
theless the discrepancy between all these results and the
original hybrid calculation [2] is clear. (In this and future
comparisons with experiment in this narrow energy re-
gion around 2.1 eV it is to be emphasized that it is not
the absolute energies but rather the energy differences
that are essential. Thus "2.10 eV" means the experimen-
tal energy at the second (major) peak in o T, and the other
two energies correspond to energies 0.05 eV below or
above it.)

Figure 4 contains the same experimental information
but here compared to the present calculation and that of
Huo et al. [14]at 2.10 eV. The similarity of the calculat-
ed results, both of which provide absolute values of the
cross section, is the most striking feature. (It should be
noted, however, that a SCF target representation was
used by Huo et al. [4]). The agreement between calcula-
tions suggests that the recent experiment [22] is dominat-
ed by the particular energy in the composite beam which
gives the dominant cross section at the particular angle.

Comparison of experiment and theory at 3.0 eV is
shown in Fig. 5. The similarity of the recently calculated
results continues, but —referring back to Fig. 1—we em-

phasize that at 3 eV one is definitely pressing the outer
edge of reliability of the present calculation. The other
interesting, but enigmatic, feature of the latest experi-
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our present calculation (Fig. 6) is definitely favored by the
experiment of Brennan et al. [22], whereas in the vicinity
of the dominant peak (k =2. 1 eV, Fig. 7), that is only
true in the middle of the angular range. Note that a
difFerent set of experimental results from Brunger et al.
has also been included [23]. It is clear that differences be-
tween the experiments can easily be explained by a slight
difference (-0.05 eV) in their energy calibrations. At
the highest energy, 3 eV the graph also includes results of
an R-matrix calculation [24] and yet another experiment
[25]. Here the similarity of the present results with those
of the R-matrix calculation is the most notable feature,
particularly at middle angles, where they agree best with
the experimental results of Ref. [23].

Finally we show in Fig. 9 the angular distribution asso-
ciated with the excitation of the second vibrational state
in the vicinity of the dominant peak. Here the two exper-
imental results [22,23] are in agreement with each other
within their experimental errors, and they agree best with
our present result at the experimental energy (2.10 eV),
rather than at its fringes (2.05 and 2.15 eV).

IV. DISCUSSION

This completes the presentation of results of this calcu-
lation. (More results are available on request. ) Although
the method (the hybrid theory) is ab initio in principle, it
contains here one phenomenological parameter, the po-
larization cutoff r0 [cf. Eq. (2.15)]. The main practical
purpose for doing this is to provide reliable cross sections
for (several space) applications. It will be recalled that
our (hybrid) theory was developed in the context of stable
auroral red (SAR) arcs [2]. The numerical results of that
calculation were collected as a NASA document [26].
The present (more accurate) cross sections are additional-

ly intended for the understanding of secondary electron
flux in the F region of the ionosphere. The specific ques-
tion concerns whether or not there is a dip in the electron
distribution function [27]. Relevant ionospheric calcula-
tions are now ongoing at the Goddard Space Flight
Center [28], using our cross sections and those of others,
principally Huo et al. [13,14].

From a more fundamental point of view the present re-
sults are intended to provide a better comparison, partic-
ularly with experimental angular distributions in the res-
onance region. As we have seen from the comparisons in
the preceding section, there is still insuScient agreement
among experiments themselves to provide a definitive
check at this time. In addition future experiments will

require even finer energy resolution, at a finer energy
grid, to be compelling in this regard. This having been
said, it is important to acknowledge that great progress in
experimental angular distributions has already been
made, culminating in the recent work of Brennan and
Brunger and co-workers [22,23].

With regard to calculational methodologies,
specifically hybrid vs R-matrix type theories, we
remark —in addition to what was said above and else-
where [29]—that is is clear the latter are capable of giv-

ing the greater overall accuracy, as is exemplified by the
results of Refs. [13,14,17]. (In further detail, for example,
other ab initio calculations [30] show that the II reso-
nance is dominated by shorter-range correlations rather
than the long-range polarizability. ) However if
insufhcient correlation is included, the R-matrix method
can yield noticeable inaccuracy (cf. [18],for example).

The essential point, however, is that the basic tenet of
the hybrid theory is common to both approaches [2,29]:
it is the fact that if the interaction time of the resonance
is comparable to the vibrational time scale of the target
molecule, but short compared to rotation, then in one
way or another a dynamical treatment of vibration, but
not rotation, is required. That treatment can be either a
dynamical coupling of the incident particle with the vi-

brational motion of the target, or a recalculation of the
Born-Oppenheimer problem of the (N+1)-electron sys-
tem followed by a calculation of the vibrational spectrum
in the (necessarily complex) potential energy well of the
compound system. In both cases the rotational motion
can be ignored in the dynamics and only be included adi-
abatically at the end. (In addition, the adiabatic part, be-
cause it is rotation, can and has been done analytically;
cf. the second references of [34].)

The drawback of the present methodology is due to the
slow convergence of the vibrational close-coupling expan-
sion. In principle that can be overcome by going to a (3D
PDE) approach in which the internuclear separation (R)
becomes the third dynamical variable. Such a (3D PDE)
theory has already been outlined [31], and the nonitera-
tive PDE method [1] has been generalized to 3D and
higher dimensional equations and applied to a soluble
model [32].

The implementation of the 3D PDE approach for the
real e-N2 problem is in progress, however its completion
will not be easy; in particular, the detailed substructure
that such a calculation will reveal will depend critically
on the range and mesh size with which the R variable can
be covered.

Perhaps the most exciting potential application of the
3D PDE technique, also discussed in [31],is the fact that
it can be applied to scattering from (in principle) arbi-
trary polyatomics in the fixed-nuclei approximation [33].
Augmented by the adiabatic-nuclei approximation [34],
such a method would be an invaluable tool in studying
scattering processes in galactic environments, such as the
Orion nebula, where it is known that exotic molecules
can form (cf. [35], for example) which may not be amen-
able to laboratory experimentation, so that theoretical
calculation provides the only reasonable alternative.
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