
PHYSICAL REVIE%' A VOLUME 49, NUMBER 4 APRIL 1994

Exact quantum Monte Carlo calculation of the H-He interaction potential
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An exact quantum Monte Carlo method is used to calculate the H-He interaction potential under the
Born-Oppenheimer approximation. The method used is exact in that it requires no mathematical or
physical approximations beyond the Schrodinger equation. As in most Monte Carlo methods there is a
statistical error which is readily estimated. For the equilibrium internuclear distance of 7.0 bohr the cal-
culated electronic energy is —3.403 7459+0.0000016 hartrees and the corresponding well depth (e/k) is
6.810.5 K. The calculated potential is consistent with low-energy scattering cross-section measure-
ments [J.P. Toennies, W. Welz, and G. Wolf, Chem. Phys. Lett. 44, 5 (1976)] and with low-temperature
diffusion measurements [Hardy et al. , Phys. Rev. Lett. 45, 453 (1980)].

PACS number(s): 31.20.Di, 35.20.Dp, 02.70.Lq

I. INTRODUCTION

The weak van der Waals attraction in the H-He system
is one of the weakest of all for pairs of neutral atoms.
The depth of the well in the potential-energy curve is
smaller than that of the He-He system (depth e/k =11.0
K at an internuclear distance R of 5.6 bohr [1]) and
close to that for the H-H (b X„+) system (6.46 K at 7.8
bohr) [2].

Information on the H-He interaction potential is avail-
able from only a few experiments. High-energy scatter-
ing experiments [3-6] have given total cross sections and
information about the repulsive part of the potential-
energy curve. The most precise of these experiments is
that by Gengenbach, Hahn, and Toennies [6]. Low-
energy scattering experiments have given total cross sec-
tions and the attractive part of the potential. The only
such measurements available are by Toennies, Welz, and
Wolf [7]. They observed an atomic Ramsauer-Townsend
effect for both H-He and D-He, from which they estimat-
ed the depth of the well. Additional experimental infor-
mation is available from measurements of the diffusion
coefficient of H in He gas at very low temperatures by
Hardy et al. [8]. The low-temperature scattering data of
Toennies, Welz, and Wolf were interpreted by a potential
with a well depth of e/k=5. 3 K at 8 =7.0 bohr.
Later, Jochemsen, Berlinsky, and Hardy [9] showed that
the scattering data as well as the low-temperature
diffusion measurements were consistent with three similar
potentials (empirical, semiempirical, and ab initio) having
well depths of E/k =6.79 to 7.16 K.

Our interest in the H-He interaction has been stimulat-
ed by recent studies of H atom sticking to He surfaces
[10]. Sticking is expected to be strongly dependent on the
interaction potential.

We report here quantum Monte Carlo calculations for
the clamped nucleus, nonrelativistic H-He system which
yield an interaction potential of high accuracy. The cal-
culations are "exact" in that there are no mathematical
or physical approximations beyond those of the
Schrodinger equation; but, as in most Monte Carlo calcu-

lations, there are statistical errors which are easily es-
timated. The method was recently applied to the deter-
mination of a potential-energy curve for the He-He sys-
tem [1] which was found to be consistent with the best
analytical-variational treatments and with a variety of ex-
perimental measurements. In the succeeding sections we
describe the calculation method, present the results for
H-He, and compare them with available experimental
measurements and prior theoretical predictions.

II. PREVIOUS CALCULATIONS

Theoretical treatments of the H-He system closely
parallel the more numerous treatments of the He-He sys-
tem. As for the He-He system, the very high accuracy
required and the extreme importance of basis set super-
position errors render the calculations very difficult. A
summary for the H-He system is given in Table I
[11—25]. The list begins with a very simple self-
consistent-field (SCF) calculation by Gentile [11] in 1930
which predicted repulsion between the atoms. The addi-
tion of an attractive dispersion energy term to the energy
from a two-term configuration-interaction (CI) calcula-
tion by Mason, Ross, and Shatz [12] in 1956 results in the
first prediction of an attractive well. In the 1960's several
different SCF and CI calculations were made with larger
basis sets, but they gave no indication of an attractive
well.

In the 1970s somewhat larger CI and multiconfigura-
tion self-consistent-field (MCSCF) calculations produced
the first fully ab initio predictions of the well. Five sets of
calculations gave successively more accurate predictions.
The last is that by Das, Wagner, and Wahl [22] yielding a
well depth of 6.5 K at an internuclear distance of 6.8
bohr.

More recent theoretical work includes a simple model
incorporating dispersion by Gayet, McCarrol, and Vali-
ron [23] and a Hartree-Fock dispersion treatment by
Scoles [25] giving a remarkably accurate prediction of a
depth of 7.2 K at 6.7 bohr. An electron-gas model by
Brual and Rothstein [24] is also remarkably accurate
with a prediction of a depth of 6.4 K at 6.9 bohr.
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TABLE I ~ Theoretical treatments of the H-He interaction potential.

Authors Year Method Results

Gentile

Mason, Ross,
and Shatz
Michels and Harris

Taylor and Harris

Barua and Chatterjee

Bender and Davidson

Fischer and Kemmey

Miller and Schaefer

Das and Ray
Das and Wahl

Davison and Liew

Das, Wagner,
and Wahl
Gayet, McCarrol,
and Valiron
Brual and Rothstein

Scoles

Present work

1930

1956

1963

1964

1966

1970

1970

1970
1971

1972

1978

1978

1979

1984

1993

SCF
very small basis
CI 2 terms
+dispersion
CI

CI

SCF

CI 31 terms

SCF

CI 321 terms

CI 5 terms
MCSCF 7 terms

CI 19 terms
GVB
MCSCF 7 terms

model+ dispersion

electron gas
model
HR+ dispersion
semiempirical
QMC

repulsive only

—2.57 K at 7.65 bohr
E( Do )= —3.347 hartrees
1-4 bohr, repulsive
E( ao )= —3.375 hartrees
1-8 bohr, repulsive
E( ~ ) = —3.392 hartrees
1-3 bohr, repulsive
E( ao ) = —3.347 hartrees
3 bohr only
E( ~ )= —3.4008 hartrees
1-5 bohr, repulsive
E( 00 ) = —3.362 hartrees
—36 K at R =7 bohr
E( ~ ) = —3.393 268 hartrees
—3.4 K at R =7.0 bohr
—5.3 K at R =7 bohr
E( ~ ) = —3.361672 hartrees
—11.1 K at R =6.8 bohr
E( Dc ) = —3.37676 hartrees
—6.5 K at R =6.8 bohr
E( ~ )= —3.361673 hartrees
—4.2 K at R =7.1 bohr
—4.9 K at 6.9 bohr
—6.4 K at r =6.8 bohr

—7.2 K at R =6.7 bohr

—6.8+0.5 K at R =7.0 bohr
E( ~ )= —3.403 7243 hartrees

III. METHOD

In this work we have used the Green's-function Monte
Carlo method with an eScient cancellation scheme pro-
posed by Anderson, Traynor, and Boghosian [26]. It is
based on a cancellation scheme first proposed by Arnow
et al. [27]. Here we describe it briefly. First one recasts
the Schrodinger equation in its integral form given by

V X'
%(X)=f dx'Go(X, X') 4(X'), (1)

where X[x&,x2, . . . , x3&] is the 3N-dimensional vector,
and V contains the interelectron and the electron-nuclear
potential. The form of the Green's function Go(X,X') is
known exactly [28] and is given by

G(X,X')=,„„Z,„„,(~X—X ~)Z~X —X ~'""-',
3N /2

(2)

One starts with a collection of representative particle
wave-function samples [PSIPS (psi particles)], usually
drawn from a good trial wave function, and samples the
move by the Green's function. In order to get a large
positive-to-negative ratio of the PSIPS a cancellation
scheme is used in which the weight of a particular PSIP
may be wholly or partially cancelled by a nearby PSIP
with opposite sign. By cancelling the positive and nega-
tive PSIPS according to their weights, it is possible to
maintain a steady large ratio of positive-to-negative
PSIPS. The energy is evaluated with the use of impor-
tance sampling, according to the formula

HIT
d X%%,

T

Idx'Il+T

TABLE II. Optimized parameters of trial wave function for
R» =7.0 bohr.

G(IRI)= 15 15 6+ +—exp( —R) . (3)

where E,(~x—X'~) is the Bessel function of imaginary
argument. In particular, for the case of three electrons
the above expression reduces to

1/2

bl
b2

b3

b2„
b 12

b3

—0.060 79
—1.00000
—0.041 07
—0.14406

0.11250
0.166 74

C IB

C2B

C3B

C2

C12

C32

0.19448
0.00001
0.134 72
0.223 71
0.315 89
0.414 20
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TABLE III. Calculated H-He interaction energies.

~AB

(in bohr)

5.0
5.5
6.0
6.5
7.0
7.5
8.0
9.0

10.0
11.0
15.0

Present work
(in hartrees)

—3.403 5064+0.000 0142
—3.403 6734+0.0000050
—3.403 7386+0.000 0030
—3.403 7445+0.000 0015
—3.403 7459+0.0000016
—3.403 7399+0.000 0015
—3.403 7382+0.0000006
—3.403 7306+0.000 0006
—3.403 7276+0.000 0007
—3.403 7250+0.0000006
—3.403 7246+0.0000003
—3.403 7243+0.000 0001

WA(»3)ea(1 O'J(2»1)1 (6)

where the two spin-up electrons are denoted 1 and 2 and
the spin-down electron is denoted 3. The helium and the
hydrogen nuclei are denoted A and B, respectively. The
term gz(1, 3) is a Hylleraas wave function containing 189
terms due to Schwartz [30] given by

g„(1,3)=exp( —ks/2) g CI „s't"u
l, m, n

where s=r, z+r3„, t=r1„—r3&, u=r13, and k =3.5

and the Monte Carlo estimate of the energy is given by

H%T
Xisi wi +Ti

E
~i i i+Ti

where s; and tu, are the sign and the weight of the PSIP
with an approximate or trial wave function O'T;.

The trial wave function is constructed as an antisym-
metrized product of a ls wave function for hydrogen and
a Hylleraas ls wave function [29] for helium,

4=[/„(1,3)f s( 2)f~(1,3,2)

+ b32r32

1+C32P32
(9)

The expressions for g„(2,3), its(1), and pz(2, 3, 1) are
obtained by interchanging 1 with 2 in the above expres-
sions. The coeScients b; and c,j were optimized to ob-
tain the minimum variance in local energies [31]. The
optimized coefBcients for r„B=7.0 are listed in Table II.

In our present calculation the ratio of positive PSIPS
to negative PSIPS was very high (about 100 to 1). The
preliminary testing and development of the code was
done with an IBM RS/6000 machine. Production runs
were carried out with a Cray C-90 using a code adapted
to the vector capabilities of the machine to obtain speeds
of about 350 mega6ops. One can calculate the trial wave
function and its derivatives for many PSIPS independent-
ly of each other. Since this part of the calculation, espe-
cially with a Hylleraas wave function, is a major part of
the program, it makes a significant difference in running
the code on a vector machine like the C-90.

IV. RESULTS

Energies were determined for eleven internuclear dis-
tances as well as for completely separated atoms. Results

with 1=0,—,', 1, 3,2, . . . , etc., m =0, 1,2, . . . , etc. ,
n =0,2,4, . ..,etc.

The term gs(2) contains the hydrogen orbital for elec-
tron 2 centered at 8 and the term QJ contains Jastrow
terms for electron-electron and electron-nucleus correla-
tions. These terms are given by

b2Br2B
fs(2) =exp

,

&+c2B~2B

and

b 1BP1B b 3BP3B
QJ(1,3,2) =exp +

C1B~1B C 3B~3B

+ 2A P2A 612112+
2A 2A 12 12

TABLE IV. Comparison of H-He potential energies from several sources.

PAB

(in bohr)

5.0
5.5
6.0
6.5
7.0
7.5
8.0
9.0

10.0
11.0
15.0

Present work
(in K)

68.8+4.45
16.10+1.56

—4.48+0.94
—6.36+0.46
—6.80+0.53
—4.90+0.49
—4.36+0.20
—1.95+0.20
—1.03+0.23
—0.20+0.20
—0.06+0.10
—0.02+0.02

R2
(Ref. 9)
(in K)

89.2
26.9

1.45
—6.34
—6.76
—5.55
—4.23
—2.06
—1.05
—0.57
—0.08

HFD-B
(Ref. 9)
(in K)

82.1

18.0
—2.27
—6.94
—6.68
—5.27
—3.87
—1.98
—1.04
—0.58
—0.08

DWW
(Ref. 22)

(in K)

94.0

—0.3
—6.0
—6.6
—5.4
—4.1
—1.9
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FIG. 1. Calculated interaction potential as a function of in-
ternuclear distance.

Internuclear distance in bohr

FIG. 2. Comparison of present results (diamonds with error-
bars) with empirical potentials due to Jochemsen, Berlinsky,
and Hardy (plus signs) and due to Scoles (squares with dots).

are listed in Table III. Error bars are estimated from the
variances in the calculated energies for repeated calcula-
tions.

The potential energies relative to the exact value for
separated atoms are listed in Table III and plotted in Fig.
1. Also listed in Table IV are values for three potential
curves found by Jochemsen, Berlinksy, and Hardy [9] to
be consistent with scattering and diffusion measurements.

V. DISCUSSION

Since Jochemsen, Berlinsky, and Hardy [9] made a
careful analysis of the scattering and diffusion phenome-
na and predicted for several potential-energy curves, it is
convenient to discuss our results in terms of theirs.
Jochemsen, Berlinsky, and Hardy found that three
potential-energy curves gave excellent predictions of the
experimental observations of Toennies, Welz, and Wolf
[7] and Hardy et al. [8]. The three potentials are the fol-
lowing: R2, an empirical potential formulated by
Jochemsen, Berlinsky, and Hardy (Fig 2) [9] to fit the ob-
served data; HFD-B, a semiempirical potential resulting
from a Hartree-Fock dispersion calculation by Scoles [9];
and DWW, the ab initio potential from the MCSCF cal-
culations of Das, Wagner, and Wahl [22]. Values for
these three potentials are listed in Table IV along with

our present results.
The R2, HFD-B, and DWW curves are in good agree-

ment with each other and with our quantum Monte Car-
lo results. The differences in energies are less than one or
two of our standard deviations except at the smallest in-
ternuclear distances. Thus, our calculated potential is, in
turn, consistent with the low-energy measurements of
Toennies, Welz, and Wolf [7] and the low-temperature
difFusion measurements of Hardy et al. [8]. We note that
the lowest total energy obtained in analytic variational
calculations that by Das, Wagner, and Wahl [22] is 0.042
hartree, or 12000 K above the exact total energy. The
quantum Monte Carlo energy is 12000 K lower, but the
well depths from the two calculations are within 1 K of
each other.
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