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Gauge-invariant approach to the calculation of transition probabilities for many-electron atoms
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Based on field theory, we use a Green s-function formalism to derive an order-by-order approximation

to the transition probability of many-electron atoms. The nth-order approximation is obtained by cut-

ting the kernel in the Dyson equation at the nth order of the electron-electron interaction. From the

perturbative point of view, each order of approximation is equivalent to the sum of an infinite subset of
Feynmann diagrams. The transition probability in each order of approximation is shown analytically to
be gauge invariant. Numerical calculations have been done for several atoms. The results of the

second-order approximation are, in addition to being gauge invariant, in good agreement with experi-

ment.

PACS number(s): 31.10.+z, 32.70.Cs, 31.20.Tz

I. INTRODUCTION

For atomic systems, the calculation of transition prob-
abilities is normally more difficult than the calculation of
energy levels, mainly because one needs wave functions to
calculate transition probabilities. In solving the eigenval-
ue problem, the eigenvectors (wave functions) are gen-
erally less accurate than the eigenvalues (energy levels}.
It is also easier to determine what kind of corrections
should be taken to improve the energy levels. In particu-
lar, the perturbative corrections of energy levels can be
calculated straightforwardly, but those of wave functions
are less obvious and more di%cult to realize. For atoms
of a few electrons, there exist some methods which can
produce very good wave functions [1,2]. The calculation
of a transition probability is then as straightforward as in
a one-electron system. For atoms with more electrons,
the wave functions can only be obtained under some kind
of approximation, and an e8'ective vertex with adjustable
parameters has to be employed in order to obtain a satis-
factory transition probability [3]. A many-
body-perturbation-theory calculation for the transition
probabilities is also possible. However, current experi-
mental accuracy requires a higher-than-second-order cal-
culation, in which case the many-body perturbation
theory becomes tedious and difficult to check [4]. For a
particular system, a very large number of configurations
(multiconfiguration Hartree-Fock method) can be used to
obtain satisfactory results [5].

In Ref. [6], Feldman and Fulton propose a systematic
approach for many-electron atoms, based on the field-
theoretical formalism. This formalism is suitable for
atoms with a nondegenerate core plus or minus one elec-
tron. Thus, there are many atoms and ions which can be
treated by the formalism. The approach has two proper-
ties that make it worth exploring. First, like many-body
perturbation theory, the approximations made within the
formalism can be improved "order by order. " Second,
the transition probability in each step of approximations
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can be shown to be gauge invariant. The first-order ap-
proximation in this approach is equivalent to the
(frozen-core} Dirac-Pock (DF) approximation. The tran-
sition probability in the DF approximation has been ex-
plicitly shown to be gauge invariant if a nonlocal term de-
duced from the formalism is included [7]. A few numeri-
cal results for the first-order approximations have been
given [8,9]. The second-order approximation, which is
called the Brueckner approximation, has been described
in Refs. [10] and [11]. In this paper, we give an explicit
proof of the gauge invariance of the transition probability
in the Brueckner approximation. We choose some transi-
tions in the cases of Lithium and Boron for numerical
demonstration for the gauge-invariant (GI) property of
the Brueckner approximation. Our results for transition

amplitudes are also in good agreement with experimental
values.

II. BRUKCKNKR APPROXIMATION

The formulation of the Brueckner approximation is
straightforward from the point of view of the Green's-
function formalism for many-body problems. Details
about the Green's-function formalism in this context can
be found in Refs. [6], [12], and [13]. Here we briefly de-
scribe the Brueckner approximation and then prove ex-
plicitly that the transition amplitude obtained from the
approximation is GI. The Brueckner approximation has
also been explained in Refs. [10]and [11].

We start from the definition of the two- and three-
point Green's functions:

G (12)—:—i (N, Oi T [0'(1)%' (2)]~N, O),
I „(123)—= —(N, Oi T [%(1)j„(3)+t(2)]iN, O),

where iN, O) is the ground state of an N-electron nonde-
generate core, 4 is the electron field, j„ is the current
density, T stands for the time-ordered product. The
numbers 1, 2, and 3 stand for space-time four-vectors,
e.g., 1=—(1,t, ):—(r, t, ). The above two- and three-point
functions satisfy the self-consistent integral equations
[6,12] (Dyson equation}
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G(12) =
1

V{12)=
1

FIG. 1. Feynman diagrams of the two-point Green's func-
tion, G(12), and the electron-electron interaction, V(12).

Z,"-'(12)=

XP}(12)=
1

G(12)=Go(12)+ Jd3 f d4GO(13)X(34)G(42} (3)

FIG. 3. Feynman diagrams of the second-order kernel in Eq.
(3), g(2) —y(Z) +y(2)

1 2

and

I „(123)=G ( 13}u„(123)G(32)

+ f d 4 Id 5 d 6 G ( 13}G(42 }K( 3456)I „(563 ),

respectively, where Go is the two-point function under
the independent-electron approximation. The local ver-
tex u„ is given by

u„(123)=ie5(1 —3)5(1—2)y„, (5)

Diagrammatically, if we represent G(12) and V(12) as a
solid line with an arrow and a dotted line, respectively
(Fig. 1), then we have diagrams for kernels up to second
order [6] shown in Figs. 2 —5. The corresponding alge-
braic expressions can be read o6' the diagrams. For ex-
ample, the second diagram of X' '(12) and the first dia-
gram of E"'(1234)are given respectively by

X2 '( l2) = Id 3 Id4 G (13)G(34)G (42}V(14)V(32),

and

ICI"(121'2')= V(12)5(1—I')5(2 —2') . (9)

where y„ is the standard Dirac gamma matrix. The ker-
nels X and K can be given perturbatively in the order of
electron-electron Coulomb interaction V:

X =XI"+X"'+O( V'),

x =I(.'"+z"'+o( v') .

The wave functions of one-particle (or one-hole) orbitals
can be obtained from Eq. (3) by taking residues on both
sides in energy space. The transition amplitudes between
two one-particle (or one-hole) orbitals satisfy a self-
consistent equation which can also be obtained by taking
residues on both sides of Eq. (4) in energy space.

A systematic approximation to wave functions and
transition amplitudes can be made by cutting the kernels
X and K order by order in Eqs. (3) and (4) respectively. '

The choice of an approximate kernel for K, denoted by
E, has to be based on what approximate kernel for X,
denoted by X, is used in order to have gauge-invariant
transition amplitudes. For example, if we take X=X'",
Eq. (3) yields the DF equation. The corresponding GI
transition amplitudes can be obtained by taking E=E"'
in Eq. (4). We see that the DF approximation is the first-
order approximation in this formalism. The next-order
approximation is to take X=X' "+X' '. The eigenvalue
equation satisfied by the wave equations under this ap-
proximation is called the Brueckner equation [11]. In
what follows, we will prove that the corresponding GI
transition amplitudes can be obtained by taking
rC =-Z("+IC(2' in Eq. (4).

The proof of GI of transition amplitudes in the
Brueckner approximation follows very closely the proof
for the DF approximation given in the Appendix of Ref.
[6]. The extension from the DF to Brueckner approxima-
tions is much like what Feldman and Fulton had done—
also in Ref. [6]—in extending the proof of gauge invari-
ance of transition amplitudes in the random-phase ap-
proximation to include up to second-order kernels. In
the Brueckner approximation, Eq. (3) is given by

GB,(12)=GO(12)+f d3 f d4GO(13)[X"'(34)+X' '(34)]GB,(42) . (10)

Multiply the equation from the left by Go
' and from the

right by Gii,
' and we have (in the form of the Fourier

transform)

Ga, '(12,co)=Go '(12,co) —[X'"(12,co)+X' '(12,~)]

=(co Ho) [X"'(12,co)—+X' '—(12,co)]

=co H Br

K'I" (121'2') =

2 2'

1
K(') (121'2')

2 2'

where Ho and HB, are the effective Hamiltonians in the
zeroth- and second-order approximations, respectively.
The Brueckner equation can then be written as [see Eq.
(5) and Ref. [11]]

ZI(&(12) = Z',"(12)=

FIG. 4. Feynman diagrams of the first-order kernel in Eq. (4):
X("=X',"+Z l,".

FIG. 2. Feynman diagrams of the first-order kernel in Eq. (3):
y(1)—y(1)+y( I )

1 2

1It is also possible to cut partial diagrams at each order. See

footnote 2 below.
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KI (121'2') =

2 2'

KP (121'2') =

2'

KP (121'2') =

-2'

FIG. 5. Feynman diagrams of the second-
order kernel in Eq (4) K' '=K' '+K' '

Kg}(121'2') =

2'

KP (121'2') = 1

2:2'

K) (121'2') =
2

fd2 Ga, '(12,co)ga, (2)=f d2[co —Ha, (12,co)]Pa,(2)

=0,
where Pn, is the Brueckner wave function.

We define the irreducible vertex A„(123)as

(12)

I'„(123)=fd 1'fd2'G(11')A„(l'2'3)G(2'2) . (13)

The transition amplitudes between one-particle states P

and P„are given by [6]

(~)=fdl f d2 fd3yt (1}A„(123)P„(2)A"„Lsr(3),

(14)

where A"„L~ is the photon amplitude with definite angu-
lar momentum L, projection M, and energy co. From
Eqs. (3) and (4), the Fourier transform of the irreducible
vertex A„under the Brueckner approximation satisfies
the following equation [6]:

Ap ( 12z, coi, co2 }

=u„(12z)+f d3 fd4f dco'G(13, co')G(42, co' co, —+co)V(12)A„'(34z,co', co' co, —+co)

—fd3 fd4f dcoG(53, co)G(4 ,5c'oco, +c—o~}V(15)5(1—2)A„'(34z, co', co' —co, +co~)

+fd3f d4f d5 fd6f dco' fdco"

X I 6(56,co, —co'+ co" )G(65, co" ) V( 15 ) V(26)6( 13,co') G(42, co' —co i+co~)A„'(34z, co', co' —co i+ co2)

+6 (12,coi —co'+co" )G(65, co")V(15)V(26)G(53, co')6 (46, co' —coi+co2)Aq'(34z, co', co' —co, +co2)

+6 ( 12,co2+ co' —co" )6(65,co" ) V( 52) V( 16)G ( 53,co') G(46, co' —co i+ co2)A„'( 34z, co', co' —co i +co2 }

+G(15,co~+co' co")G(62,—co")V(52) V(16)G(53,co')G(46, co' —co, +co2)A„'(34z, co', co' —coi+co2)

+G(15,coi —co'+co")G(56,co")V(16)V(25)G(63, co')G(42, co' —coi+co2)A„'(34z, co', co' —coi+co2)

+G (65, —co, +co'+co" )G(52, co")V(15)V(26)G(13,co')G(46, co' —co, +co2)A„'(34z, co', co' —co, +co2) J . (15)

The first term on the right-hand side of Eq. (15}is the lo-
cal vertex; the second and third terms come from the
Srst-order kernel E'"; the other terms come from the
second-order kernel K' '. Note that A„'(123,coi, co2) de-

pends on the photon energy m, the difference of co& and
co2, only and not on co, or co2 independently. This can be
checked easily by showing that A„'(12z,coi+co, co&+co}
has the same expression as A„'(12z,co„co2). The integra-
tions over co' and co" in Eq. (15} can be carried out to
write A„ in terms of summations over one-particle and
one-hole Brueckner wave functions. The complete expres-
sion for transition amplitudes in the Brueckner approxi-
mation resulting from integrations over m' and co" is
given in Eqs. (2) and (4) of Ref. [10]. We can put this ex-
pression in the following form [11]: —5(1—z)Go '(z2, coq)] . (17)

Aa'„(co) = fd 1 fd 2 fd 3 pt '(1)Aa'(123)p„'(2) A"„LM(3)

=u „+Z"„'(A)+Z„"„'(A). (16)

In Ref. [11] where alkali-metal atoms are considered,
the local term u „and the random-phase-
approximation —type contribution Z"„' are included self-
consistently, while the second-order contribution Z' „' is
treated as a perturbation. In this paper we solve Eq. (16)
self-consistently using the finite basis method.

Let k" be the four momentum of the photon. The
"gauged" local vertex k "u„ is given by [6]

k "u„(12z)=e [5(z—2)Go ' (1z, co i )
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%'e now show that the gauged effective vertex in the
Brueckner approximation k"A„' can be expressed by
(generalized Ward-Takahashi identity)

k "A„"(12z,co„co~)=e [5(z—2)G~, '
( lz, co, )

Eq. (15) is satisfied self-consistently. When saturated with
k", the local term on the right is given by Eq. (17). The
two 6rst-order terms give

—e [5(z—2)X'"( Iz, co, }—5(1—z}X "(z2,cubi) I .

—5(1—z)G~, '(z2, cu2)] . (18) The last six second-order terms yield

We saturate both sides of Eq. (15) with k" and use ex-
pressions of Eqs. (17) and (18) for k "u„and k "A„' which
appear on the right-hand side of Eq. (15) and show that

—e [5(z—2)X' '( lz, co, ) —5(1—z)X'2'(z2, co, )] .

Putting a11 these results together we have

k "AB'(12z,co&, co&) =e5(z —2)[Go '( Iz, cubi)
—X"'( Iz, co, )

—X' '(Iz, cu&)]

e5—(1—z)[Go '(z2, coz) & (» cup) & (» cup)]

=e [5(z—2)G~, '(Iz, cu, )
—5(1—z)Gq, '(z2, co))] .

which confirms Eq (18)..
With the help of Eq. (18) the gauge invariance of tran-

sition amplitudes in the Brueckner approximation is
readily seen; if we replace the photon amplitude A "L~ by
photon four momentum k" in the expression of the tran-
sition amplitude [Eq. (16)],we have

fd 1fd2$, ' (1 )[k"A„'(12z,co;,co~)]P~'(2)

=e fd1[P, ' (1)G~,'(Iz, cu)]PI'(z)

—e fd2$;' (z)[Gq, '(z2, co~)P~'(2)] .

[because of Eq. (12)].

III. NUMERICAL DEMONSTRATION

We use. the 8-spline method [14] to solve the
Brueckner equation, Eq. (12). In order to be able to cal-
culate the transition amplitudes in the Brueckner approx-
imation, Eq. (16), we have to obtain the complete set of
Brueckner orbitals. In the ease of the DF approximation,
all orbitals with the same ic [lc=l( —I —1) if j�=—

—,
'

(1l—,')] satisfy the same DF equation and thus can be

solved simultaneously in the finite bases method [8]. For
the Brueckner equation there are energy-dependent terms
due to X' ' [Eq. (5) and Ref. [11]]. All wave functions
have to be solved separately. In Ref. [11],a specific ap-
proximation is made to generate an approximately com-

2Note that the gauge invariance of transition amplitude can
also be obtained by choosing a subset from the diagrams of the
kernel K if the kernel X in the Brueckner equation is cut con-
sistently. For example, choosing the kernel in the Brueckner
equation to be XI"+XI ', the kernel in the Eq (4) can be ch.osen
to be K',"+K'1 '+K2 '+K', ', or simply K'"+K'l ' (because the
e6'ects of K& ' and K3 ' cancel out).

piete set of the Brueckner orbitals. Namely, for all orbit-
als with the same x, a single energy level is chosen for
X' '(cu). We choose this energy to be the lowest one-
particle energy level for two reasons. First, we are con-
cerned with the transitions between the lowest one-
particle states of each ~. Thus these lowest one-particle
wave functions have to be solved as accurately as possi-
ble. Second, one sees that there is at least one one-hole
energy level present in the energy denominator [Eq. (5)
and Ref. [11]]. If the energy levels of one-particle bound
states are much less than any one-hole energy level (in ab-
solute value), the choice causes little error for bound
states. The approximation for choosing a single energy
level for X' '(cu) in solving the Brueckner equation is ac-
ceptable for alkali-metal atoms [11] and boron (see
below). But it is not always applicable in the latter atom,
as we mill discuss.

For the purpose of demonstration we study the transi-
tions 2p~2s, 2p~3s of Lit, and 2p~3s of BI. %e first
calculate the transition amplitudes in the DF approxima-
tion. Results are listed in columns 3 and 4 of Table I.
The 2p~2s transition amplitudes for Li I have been cal-
culated by Fulton and Johnson [7] using a different nu-
merical method. Our results agree with theirs. %e then
solve for the Brueckner orbitals using the approximation
described above. Once having the complete orbitals, we
integrate out the energies in Eq. (15) and write the transi-
tion amplitudes A '„(cu) and all the matrix elements
A„'(co) in terms of summations over one-particle and
one-hole states to form a set of coupled linear equations.
For the cases of Lit and BI with cores 1s and 1s 2s re-
spectively, we keep all matrix elements between wave
functions of orbital angular momentum smaller than
three. Results of transition amplitudes in length and ve-
locity forms agree with each other within 0.5% (see Table
I). For Li i—in fact, for all alkali-metal atoms [11]—the
second-order contributions are small in either gauge and
thus can be treated as a perturbation (column 7, Table I).
In the case of boron, which has a closed subshell instead
of closed sheB, treating the second-order contribution as
a perturbation would result in a 2.5 k di6'erence between
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TABLE I. Transition amplitudes in the Dirac-Fock and Brueckner approximations for Li I and Bi. I,v stand for length and veloc-

ity forms, respectively. The contribution comes from the first-order kernel and is conventionally called the random-phase-

approximation (RPA) contribution. For the Dirac-Fock approximation, column 4 is gauge invariant (GI). For the Brueckner approx-

imation, the transition amplitude is GI only when the contribution from the second order is included self-consistently. In the case of
Lit, the second-order contribution is small and can be we11 accounted for by perturbation (column 7). Transition amplitudes are

given in a.u.

Transition Form Local

Dirac-Fock

Local + RPA Local

Brueckner

Local + RPA 2nd GI Experiment

2$ ~2p)/2

2$ ~2p3/p

3s ~2p )/2

3$ ~2p3/p

3.364
3.430
4.758
4.850
2.488
2.525
3.519
2.572

3.350
3.350
4.738
4.738
2.492
2.491
3.524
3.524

Li (Z=3, core =1s')
3.335
3.404
4.717
4.815
2.439
2.477
3.449
3.504

3.321
3.321
4.697
4.697
2.443
2.442
3.455
3.454

0.0007
—0.0004

0.0009
—0.0006
—0.0002
—0.0004
—0.0003
—0.0006

3.322
3.321
4.698
4.696
2.442
2.442
3.454
3.454

3.305'

4.674'

2.48"

351

3$ ~2p)/2

3$ ~2p3/2

1.224
0.965
1.732
1.365

1.179
1.179
1.669
1.669

B (Z=5, core
1.148
0.894
1.625
1.266

s2s)
1.107
1.057
1.567
1.496

0.016
0.038
0.023
0.054

1.124
1.118
1.590
1.582

1.132'

1.601'

'Reference [15].
bReference [16].
'Reference [18].

the length and velocity forms. It is crucial to add an
infinite set of diagrams generated from the irreducible
second-order diagrams to produce GI value. Algebraical-

ly, this is equivalent to including Z' „'(A) in Eq. (16) self-

consistently. Our numerical results shown in Table I
indeed offer numerical evidence of the gauge invariance
of Eq. (15). In addition to being GI, our results are in

good agreement with the experiment [15,16] and con-
sistent with recent accurate theoretical values of Blundell
et al. [17]and of Weiss [1]. For Boron, our results agree
with recent experimental measurement [18] to within
1%. The accuracy as well as the agreement between the
two forms of the transition amplitudes is superior to all

previous theoretical results for boron [19].
As we have mentioned earlier, we choose a single ener-

gy level for X' '(co) in solving all Brueckner wave func-
tions with the same x. An essential requirement for ob-
taining good approximation to the complete set of the
Brueckner wave functions relies on the condition that the
absolute values of energy levels of one-particle bound
states are much smaller than those of any energy levels of
one-hole states. We can simply look at the DF energy
spectrum (since we use the DF orbitals to start iteration
in solving the Brueckner equation) to see whether the re-
quirement is satisfied or not for a particular atom or ion.
The requirement is satisfied for all alkali-metal atoms and
for BI. A counter example appears in the boron-
isoelectronic sequence. For Z =6 in this sequence (name-

ly, Cn), the DF energy level of the one-hale state 2s is
—1.695 a.u. The energy levels of one-particle states
2p &&2 and 2p3/2 are —0.865 a.u. and —0.864 a.u. , respec-
tively. The term containing the energy denominator of

the form [Eq. (5) and Ref. [11]]

v 2s 2p 1/2 2p 3/2

from X' ' critically depends on the eigenvalue c„. It is

clear that in the case of C II a single choice of c,„will not

yield a satisfactory spectrum for each ~.

IV. CONCLUSION

We have described a systematic approach to approxi-
mate the wave functions and energy levels of many-
electron systems with a nondegenerate core plus or minus
one electron. The formalism also gives the expression for
the transition amplitude between one-particle or one-hale
states. The expression has been shown to be gauge in-
variant (GI) analytically. The approximation scheme can
be formulated order by order to meet the required accu-
racy. The first-order approximation is equivalent to the
DF approximation. The second-order approximation is
called the Brueckner approximation. In this article, we
have used the 8-spline method to calculate the transition
amplitudes in the Brueckner approximation for the cases
of Lithium and Boron. The results of transition ampli-
tudes are in good agreement with experimental measure-
ment. The length and velocity forms agree with each
other to within 0.5%.

One of the applications of the Brueckner approxima-
tion to atomic systems is reported in Ref. [20]. Other
possible applications, such as the calculation of hyperfine
structure and parity-violating transitions, is currently un-
der exploration.
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