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Two-photon transitions in atomic hydrogen: An alternative approach
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We present an efficient analytic approach for the evaluation of two-photon transition rates in a hydro-
gen atom. The method is a variation of the Dalgarno and Lewis method [Proc. R. Soc. London Ser. A
233, 70 {1955)]for the evaluation of the second-order Stark effect in a hydrogen atoin.

PACS number(s}: 31.15.+q, 32.80.Wr

The problem of gauge invariance in multiphoton tran-
sitions was illustrated by calculating the two-photon tran-
sition rates in hydrogen atoms in length and velocity
gauges [1]. These explicit calculations demonstrated that
the gauge invariance can be maintained only by using a
complete set of intermediate states. This clearly indicates
the need for an accurate evaluation of the sum of the con-
tributions from various intermediate states.

Different methods [1,2] can be used to evaluate the
sum over the intermediate states very accurately. In the
present work we repeat the calculations of Ref [1] u. sing
a differential-equation approach. This method is an ex-
tension of Dalgarno and Lewis [3] treatment of second-
order Stark effect in a hydrogen atom. This procedure
has already been used for the evaluation of logarithmic
mean excitation energies for hydrogen and helium [4].
In this approach the sum over the intermediate states is

completely absent. It is also an elegant method and can
be generalized to other systems.

The two-photon transition rate 8',f from an initial state
~i ) to a final state

~f ) in the dipole approximation can be
given as

8'j~ iS, i 5(irico, +fico2 EI; ), —

where

—ii ) = [HcF F—Ho A'co&—F( ) ] i t),
a
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where Ho=p /2m e /r —is the unperturbed hydrogen-
atom Hamiltonian. From Eq. (3) we have

I —i = [E +E, —irtco](IiF'"ii ) .
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Using a similar equation for I' we get
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& y f r&z&

&)a a

Using ii ) =g;(r), F ' =F ' (r) satisfies the equation

[Hc(F i ')
l(&;(r ) ) —F(')Hog, (r ) —ficoiF(') P;(r ) ]

e z= —t&(;(r) . (7)
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Further considering the transitions from ground state
li;(r)=l(i, (r) and usin~ F ' (r)=f '(()r)z a/and using
Eq. (7), we find that f(' (r) satisfies the equation
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where p=r/a and (e /2a)vi=lco, . A similar e uation
can be obtained for f (r) where F (r)=f (r)z/a
with v, replaced by v2 in Eq. (8). Thus in general we need
a solution for an equation of the form

pf"(p)+(4 2p)f'(p)+(vp 2)—f(p) = —
p . —

(2)

where a is the Bohr radius and for simplicity we take
both the beams polarized alon the z axis. The factor
e /2a is introduced to make; dimensionless. The rate
calculation involves the evaluation of the discrete and the
continuum intermediate sum.

Our method depends on finding operators F ' and
F~ such that

—ii)= [H F ' F' Ho fi—co,F ' ]~i), —
Q e 2

(10)
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This equation and the solution to this equation have
been extensively used in Ref. [4] for the evaluation of log-
arithmic mean excitation energies in hydrogen atoms.
But we use a difFerent integral representation for the solu-
tion. With this representation we can easily exhibit the
singularities of the solution as a function of v. The solu-
tion to Eq. (9), which is finite at p=0 and does not go to
infinity faster than e~ as p~ ~, can be given as

1, 2f (p) =——& (p, q, p) —1
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where A, =v'1 —v, p =2+1/A„and q =2—I/A, . The
function 8 (p, q, p) defined by the equation exists only for
q & 0. That this is a solution can be explicitly verified by
substituting Eqs. (11) and (10) in Eq. (9) and assuming

q )0. Similar to the definition of I function using the
contour integral, a contour with branch point at z =A,
can be envisaged for this function also. This can be used
to define this function for q &0 also. But we approach
this problem from a practical computational point of
view. Assuming q )0 from Eq. (11) after performing a
partial integration we get

1—8 (p, q, p) =
q

1+pB (p, q + 1,p)

1+1,
8 (p —l, q+1,p) . (12)

Just as the relation I'(q)=I (q+1)/q can be used to
analytically continue the I function for q & 0, we use the
recurrence relation given in Eq. (12) to define &(p, q, p)
for q &0. By repeatedly using the recurrence relation

given in Eq. (12) we see that the solution has simple poles
at q=O, —1, —2, . . . , —~. These values of q corre-
sponds to v=(n —1)/n, where n =2,3, . . . , oo. In oth-
er words at these values of v the incident photon energies
are in resonance with the intermediate states. This is
what we expect and our solution has got this important
property. At these values of v, p, and q are integers and
the integral in Eq. (11) has a closed expression. Thus one
can obtain an expression for the residues in a closed form.
Another important property of our solution is the form
of the limiting solution when v~0. After using the re-
currence relation in Eq. (12) twice this limiting solution

f (p) is found to be (1+p/2)/2. This is exactly the solu-
tion for the problem of second-order stark effect in a hy-
drogen atom [3].

From Eq. (6), using f&(r)=R„I(r)Fi (8,$) for transi-
tions to the I =0 state, we get

g)tls (2/3 )d lls

where

' 1/2
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Using Eq. (11) in Eq. (14) we obtain

dPs= '
3
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4 1 2 I'(5)
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where A&=+1 —v|,pi =2+1/A|, q|=2—1/A|, and%(p|, q&, vi) is given by

(15)

8( ) I (5) ld + i i F(1 n, 5, 2,—2/(1+nz))
1+A. , 1 —A

1 (z +1/n)
(16)

TABLE I. Dimensionless two-photon transition-rate ampli-
tudes for 1s-3s transition in a hydrogen atom for a number of
values of v&.

TABLE II. Dimensionless two-photon transition-rate ampli-
tudes for 1s-3d transition in a hydrogen atom for a number of
values of v&.

Vi

0.3750
0.6750
0.6875
0.7000
0.7125
0.7250
0.7375
0.7475
0.7650
0.8000
0.8250
0.8500
0.8750
0.8860

d3$
1s

—3.2354
—1.6693
—0.696 28

0.984 70
4.158 29

11.2162
34.2263

226.8138
—58.2000
—38.3099
—46.579 66
—74.4204

—219.9846
—1117.238

0.3750
0.6750
0.6875
0.7000
0.7125
0.7250
0.7375
0.7475
0.7650
0.8000
0.4250
0.8500
0.8750
0.8860

0.7020
0.6353
0.5687
0.4515
0.2295

—0.2604
—1.8352

—14.8543
4.2968
2.5551
2.2368
1.1822

—8.5601
—84.9263
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and similar expressions can be obtained for %(p~, q~, vz) by replacing v, with vz. Because of energy conservation

vz = 1 —I /n —vi. As we mentioned earlier the integral in Eq. (16) exists only for q &
)0. For q, (0 we have to use the

relation given in Eq. (12). For transitions to I =2 states we have

S d= (16/45)l/2d nd (17)

where

1 (n +2)!
15n ~ (n —3)!

1/2

f dp e ~"+'~"'p [f{')(p)+f { )(p)]F(3—n, 6, 2p/n )
0

(18)

In Eqs. (13) and (17) we have factored out some numeri-
cal factors, which is twice the contribution of the angular
integral in Eq. (6). With this our results can be directly
compared with that of Ref. [1]. The integration of Eq.
(16) has to be performed numerically. Similar results can
be obtained for transitions to l =2 states also.

In Table I, we present the values of d ~', for the 1s-3s
transitions. These values are exactly the same as in Ref.
[1]. We also report in Table II the values of d „for the
1s-3d transitions for the same values of v, as in the 1s-3s
transitions.

The conclusions are the same as those in Ref. [1]. But

the calculations here involve a simple one-dimensional
numerical integration. This can be generalized to other
complex systems also. Given an unperturbed Hamiltoni-
an we need not solve for a complete set of eigenstates to
calculate the transition rates. What we require is the ini-
tial and the final states. With this Eq. (7) can be solved
numerically to obtain F. Using this F the transition rate
can be calculated using Eq. (6).
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