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Exchange-correlation potential with correct asymptotic behavior
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In this work we analyze the properties of the exchange-correlation potential in the Kohn-Sham form

of density-functional theory, which leads to requirements for approximate potentials. Fulfilment of these

requirements is checked for existing gradient-corrected potentials. In order to examine the behavior of
approximate potentials over all space we compare these potentials with exact Kohn-Sham potentials cal-

culated from correlated densities using a newly developed iterative procedure. The main failures in the

existing gradient-corrected potentials arise in the asymptotic region of the atom where these potentials

decay too fast and at the atomic nucleus where the potentials exhibit a Coulomb-like singular behavior.

We show that the main errors can be corrected by a simple potential in terms of the density and its gra-

dients leading to considerably improved one-electron energies compared to the local-density approxima-

tion. For Be and Ne it is shown that the electron density is improved in the outer region.

PACS number(s): 31.20.Sy

I. INTRODUCTION

In the past few years there has been considerable pro-
gress within density-functional theory [1] in the calcula-
tion of properties of electronic systems ranging from
solids to atoms and molecules. This progress is due to
the introduction of gradient-corrected density functionals
[2—5] that give an overall improvement to the exchange-
correlation energies of the local-density approximation
(LDA). For instance, the atomization energies of a stan-
dard set of molecules are improved by an order of magni-
tude compared to LDA [6], thereby correcting the over-
binding of LDA. There are also successful applications
of nonlocal corrections in transition metal chemistry [7]
and solid-state and surface physics [8]. (Although the
gradient-corrected potentials are still local, we follow the
conventional nomenclature of "nonlocal corrections" to
distinguish from the LDA. ) However, several other
features are not improved by the present day nonlocal
corrections. This is especially the case for properties that
are sensitively dependent on the behavior of the
exchange-correlation potential One can. , for instance,
prove rigorously [9,10] that the eigenvalue of the highest
occupied Kohn-Sham orbital represents the ionization
energy of the system. However, typical errors in LDA
for this quantity are 5 eV. This same error prevents the
calculations of bound state solutions for negative ions as
LDA gives an unbound outer electron with positive ei-
genvalue. The origin of this error can be traced to the in-
correct asymptotic decay of the LDA exchange-
correlation potential. This potential has an exponential
decay into the vacuum as can directly be seen from the
exponential decay of the density itself. On physical
grounds, however, (see for a proof [9]), the outer electron
should experience the mean field of the ion it leaves
behind, i.e., a potential that decays Coulombically like
—1/r. The LDA electron is therefore too weakly bound
and for negative ions even unbound. This breakdown of
LDA in the outer region of the atom or molecule is also

reflected in the exchange-correlation energy per particle

e„,(r}which can equivalently be seen as the potential due

to the exchange-correlation hole and which has an

asymptotic decay like —I/2r The .LDA in this case
gives again an exponential decay. In the electron gas this
quantity e„, is usually expressed in terms of the Wigner-
Seitz radius r, representing the mean electronic distance
which is proportional to p

' . If the local-density ap-
proximation is applied to the outer regions of atoms and
molecules r, grows exponentially and loses its meaning as

a mean interelectronic distance which should grow
linearly. If one believes (for intuitive physical reasons}
that the mean electronic distance determines e„, then the
bad representation of this quantity by LDA explains the
failure of LDA in this region.

One might now wonder if the present day nonlocal gra-
dient corrections give any improvement for this asymp-
totic failure of LDA. Somewhat surprisingly, this is not
the case. Although they give large improvements in ener-

gies they give little improvement in the asymptotic
behavior of the exchange-correlation potentiaL This is
immediately apparent from the fact, undoubtedly noted
by many density-functional theory (DFT} practitioners,
that the gradient-corrected potentials yield almost no im-

provement in the LDA eigenvalues, which are generally
in error by 5-6 eV. In this paper we discuss, apart from
the fairly well-known asymptotic behavior, other require-
ments which are to be fulfilled by the exact exchange or
exchange-correlation potential. Those requirements ap-

ply to limiting or special situations (r~ ~, r J,O), transi-
tion regions from one atomic shell to the next, limit of
homogeneous electron gas) and also comprise invariance
conditions (translational, rotational}. They are useful in
constructing approximate Kohn-Sham potentials. In Sec.
III we use the formulated requirements to examine some
of the presently used nonlocal functionals, in particular,
the Becke correction for exchange and the Perdew
correction for correlation. In order to investigate the po-
tentials at arbitrary r, we need the exact Kohn-Sham po-
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tential over all space. In Sec. IV we discuss a general
procedure to construct the Kohn-Sham exchange-
correlation potential from a given electron density p.
The procedure is simple and is applicable to both atoms
and molecules and to systems with an arbitrary number
of electrons. This procedure is used to generate exact
Kohn-Sham potentials from very accurate (highly corre-
lated) densities of Be and Ne. This alfords detailed in-
sight into the strengths and weaknesses of existing ap-
proximations. As a first step towards improved poten-
tials, we propose in Sec. V a model Kohn-Sham potential
which exhibits the correct asymptotic behavior and also
displays atomic-shell structure. This potential gives a
large improvement over the LDA eigenvalues and is in
fact capable of yielding good ionization energies as deter-
mined from the highest occupied Kohn-Sham orbital en-
ergy. It also improves the asymptotic decay of the elec-
tron density. In Sec. VI we present a summary and con-
clusions.

Any approximate exchange potential should satisfy Eq.
(5). It is then possible to define an approximate exchange
energy using the Levy-Perdew relation (6). We will re-
turn to this relation between potential and energy below.

There are no known scaling relations for the correla-
tion energy functional defined as

(7)

in which E„, is the Kohn-Sham exchange-correlation en-

ergy which can be defined, for instance, using the cou-
pling strength integration method [13—16].

Asymptotic behauior. An approximate functional or
potential also has to satisfy some requirements with
respect to asymptotic behavior. First of all it follows
from Eq. (2) using the sum rule property of the one-
particle density matrix y, that

(8)

II. NONLOCAL EXCHANGE-CORRELATION
POTENTIALS: REQUIREMENTS

In this section we will discuss some of the requirements
that approximate exchange-correlation potentials have to
satisfy. In connection with this we shall demonstrate in
the next section which of these requirements are lacking
with some of the presently used nonlocal potentials.

Scaling. The exchange energy within density-
functional theory may be defined as [11]

E,[p)= fp(r)e„(r)dr,

in which the potential of the exchange hole e„(r) or
equivalently the exchange energy density per electron is
defined as

(2)

Here y, is the Kohn-Sham one-particle density matrix,
constructed from a determinant of Kohn-Sham orbitals.
The exchange functional of Eq. (1) is a functional of the
density as the Kohn-Sham orbitals of which the one-
particle density matrix y, is composed are uniquely
determined by the density (an explicit scheme for doing
this is presented in Sec. IV). The exchange functional
satisfies the following scaling relation [12]:

(3)

Thus the potential of the exchange hole has a Coulombic
asymptotic behavior. The exchange potential has to
fulfill a similar type of relation [17,18]:

(9)

The asymptotic behavior of the potential due to the (cou-
pling strength integrated) Coulomb hole is not known.
We can only say that the correlation potential must decay
faster than a Coulombic potential at infinity. This fol-
lows from the asymptotic —I/r decay of the total
Kohn-Sham potential [19,10]:

(10)

and the similar behavior of the exchange potential of Eq.
(9). This result is consistent with the fact that the
Coulomb hole of the coupling strength integrated two-
particle density matrix integrates to zero electrons.

8'eak inhomogeneity. Further known properties of the
exchange functional follow from the gradient expansion
of the weakly varying electron gas [20] or from the semi-
classical expansion of the Kohn-Sham one-particle densi-

ty matrix [21]. This gives the following approximate
nonlocal correction to the exchange energy (for the spin
unpolarized case):

u„([p„];r)=Av„([p];Ar) . (5)

Using the scaling relation (3) one can prove the Levy-
Perdew relation [12]:

E„[p]= —fp(r )r Vu„(r )d r . (6)

in which pz is the following scaled density:

pi(r)=A, p(Ar) .

The exchange potential which is defined as the functional
derivative of the exchange functional satisfies the follow-
ing scaling relation [11,12]: [p]=f

P
(12)

in which C(p) is a local function of the electron density
[23].

Translational and rotational inuariance. Two require-
ments which must be fulfilled by any density functional
representing a physical quantity are translational and ro-

This is the nonlocal correction used in the XaP approxi-
mation [22]. For weakly varying densities there is a
known gradient expansion for the correlation energy.
The nonlocal correction is (up to second order) given by
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tational invariance. The question of translational invari-
ance, for instance, arises naturally in the discussion of the
asymptotic —llr behavior of the energy densities and
the exchange or exchange-correlation potentials, where r
should not refer to the distance from the arbitrary origin
of the coordinate system. Denoting a physical quantity
by A, translational invariance means

(13)

As this equation should be valid for any translation vec-
tor R it follows that

f Vp(r)dr=0 .
5A

(22)
5p(r)

This equation has also been noted without proof in Ref.
[11]. Equation (20) is then obtained by taking 3 =E„ in

the last equation. In particular, for A =E„,we obtain

with f u„,(r)Vp(r)dr=0 . (23)

p'(r) =p(r+R), (14) For the case of rotational invariance we require Eq. (13)
to be valid for

in which R is an arbitrary translation vector. This means
physically that A should not change when we translate
our coordinate system. If we define

a ([p);r)= [pl
A

pr
then it follows that

(15)

a([p'];r)=a([p];r+R) . (16)

This does not hold for arbitrary a ([p];r) but it does hold
if a is the functional derivative of a translational invari-
ant functional A. This equation is easily proved if one
uses

5A [p]=f 5p(r)a([p];r)dr

=f 5p(r+R)a([p];r+R}dr

=f 5p'(r)a([p];r+R)dr .

Comparing this equation with

5A [p']= f5p'(r)a([p'];r)dr

(17)

(18)

= A [p+R.Vp+O(R )]

=A [p]+f R Vp(r)dr+0(R2) .
5p(r)

(21)

yields Eq. (16) as both variations should be equal for any
variation 5p'(r)=5p(r+R). We will now take A =E„
and a =v . Noting the explicit r dependence in the
Levy-Perdew relation between E„and v„one might
wonder whether this relation is translationally invariant.
The exact exchange potential of course satisfies the
translational invariance equation (16). Then it follows
from the Levy-Perdew relation (6), if we insert p', that

E„[p']=E„[p]+Rfp(r)Vu„([p];r)dr . (19)

Translational invariance requires the last term in this
equation to be zero. As this should be true for any vector
R we obtain (after carrying out a partial integration)

fu„(r)Vp(r)dr=0 . (20)

Translational invariance thus gives an additional condi-
tion on the potential. The above formula is a special case
of a more general result which follows directly from Eq.
(13):

(24)

in which R is a rotation operation within three-
dimensional coordinate space. For the functional deriva-
tive of A we then have

a([p'];r)=a([p];Br) . (25}

f r X Vp(r)dr=0,A

pr
(26)

which can be proved by performing an infinitesimal rota-
tion instead of a translation in Eq. (21). This gives

v„, rrX pr r=0. (27)

We have now summarized some properties of the exact
exchange-correlation potential, which are at the same
time requirements to be fulfilled by approximate poten-
tials. We will concentrate in the remainder of this paper
on the potential rather than on the energy. One of the
reasons is that the potential, being a unique, local func-
tion of the position r, is more easily obtained, analyzed,
and modeled (see below}. Of course, even if one has ob-
tained a good model potential that very closely approxi-
mates the exact Kohn-Sham potential, the exchange-
correlation energy still has to be determined. This prob-
lem will be addressed in a subsequent paper.

III. THE NONLOCAL EXCHANGE
AND CORRELATION POTENTIALS

OF BECKE AND PERDEYV

Using the conditions formulated in the preceding sec-
tion we shall now discuss some of the currently used
exchange-correlation functionals and potentials that in-
clude nonlocal corrections. These are the potentials de-
rived from Becke's nonlocal exchange functional [2] and
Perdew's nonlocal correlation functional [3]. First we
discuss Becke's nonlocal exchange functional [2] which in
spin polarized form is given by

E„[p ]=g fp (r)f(x (r))dr, (28)

in which x =
~ Vp ~ jp ~ is a dimensionless quantity and

This equation is proven in the same way as Eq. (16). If
we take a =u„and use Eq. (25) we see that the Levy-
Perdew equation (6) is already rotationally invariant. In
general rotational invariance gives the following con-
straint on the functional derivative of A:
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o is a spin index. The function f is given by

Xf (x)= —P
1+6P» sinh '(x)

(29)

The form of Eq (.28) is chosen such that the exchange
functional satisfies the scaling relation (3). The function
f is chosen such that the potential of the exchange hole
e„(r) or equivalently the exchange energy density per
electron behaves asymptotically as —1/2r [Eq. (8)). To
enforce relation (8) the function f in Eq. (28) must satisfy
the following asymptotic relation:

1 xf(x)- —— (r —+ co x ~ co ),
6 ln(x)

(30)

which is easily verified if exponentially decaying densities
are inserted. If one also wants to obtain the gradient ex-
pansion result of Eq. (11) for slowly varying densities f
must satisfy

4 d~ d~=u (r)= —p' f —x " +x
5p(r) " 3 dx dx'

B~pB.B pB.p df d f
[Vpi

3 dx

Vp df
IVpl d»

(36)

v„(r)=—p'~ f —x " +x~
3 8x

df 2df
Qx2 r

We insert for the density the exponential p(r)=Ne
This exponential is exact in two regions of the atom:
near the atomic nucleus where we have a =2Z with Z the
nuclear charge and for the outer asymptotic region where
a=2& —2p, with p the chemical potential (negative of
the ionization energy). This gives

f(x)- —Px (x $0) . (31) (37)

ecke( r )
r

(32)

in which k is some constant instead of the exact [17,18]:

1v„(r)- ——.
r

(33)

In the following we will prove that any functional of the
form of Eq. (28) satisfying the asymptotic relation (30)
will not satisfy asymptotic relation (33). Such a proof has
also been given by Engel et al. [18] and is only presented
here for reason of clarity and completeness. We wi11,

however, also use the following short proof to make some
statements about the behavior of the exchange potential
near the atomic nucleus for exchange functions of the
form of Eq. (28).

For simplicity we use the spin unpolarized form but
everything goes exactly through for the spin polarized
case by just adding a spin index everywhere in the deriva-
tion. This is due to the fact that the exchange energy in
the spin polarized case is just a simple sum of contribu-
tions of a and P spins in which both contributions have
the same structure. We wi11 take the functional of the
form

E„[p]=fp
~ (r)f(x(r))dr,

with

IVpl
4/3

(34)

(35)

The second derivative of the function f is assumed to ex-
ist. The functional derivative of E„of (34) is then given

by

The form chosen by Becke is one of the simplest interpo-
lations off between these two limits and therefore his en-

ergy functional satisfies the important requirements of
correct r ~ 00 and x ~0 behavior as well as translational
and rotational invariance. However, the potential of the
Becke energy expression decays asymptotically as [24,18]

k=2= d

x =x(0)
(40)

This is an unphysical behavior of the exchange potential
near the nucleus. In practice, however (that is, for the
Becke functional), the constant k is very small compared
to the nuclear charge (a typical value for k is 0.02 for the
noble gases).

We will now discuss some properties of the Perdew
nonlocal correlation functional which is of the form [3]

E [p]=ff(p,pp)e g'~" ~
~3

dr .) v (Vp)'
(41)

P

In this formula f is a local function of p and p&, which

are spin densities, and g is a local function of the total
density. The form of this functional is adapted from the
correlation part of the Langreth-Mehl functional in such
a way that the functional reduces to the gradient expan-
sion expression of Eq. (12) for slowly varying densities.

In order to satisfy the asymptotic behavior of e„[Eq. (8)]

f must satisfy the asymptotic relation (30). If we now in-

sert the large x behavior of f [Eq. (30)] into Eq. (37) we

get, retaining only the terms of lowest order in 1/lnx,

1 1 1 1 1 1
u (r)- —— (ri co) .

3r 1n& 3r lnap ' a r

(38)

We thus see that the exchange potential has a —a '/r
behavior instead of a Coulombic behavior. Hence it fo1-

lows that the requirements of correct asymptotic
behavior of e„[relation (8)] and of u„[relation (33)] are
incompatible for exchange functionals of the form (34).

From Eq (37) w. e can also draw the following con-
clusion concerning the behavior for r ~0: If
df /dx ~„„~&~%0then

v„(r)-—(r $0),k
r

in which the constant k is given by
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IV. CONSTRUCTING THE POTENTIAL
FROM THE DENSll'7

We have demonstrated that the most widely used
gradient-corrected exchange and correlation potentials
suffer from incorrect asymptotic behavior at r~O and
r~00. In order to investigate these potentials over the
whole r range one needs the exact Kohn-Sham potential
at arbitrary position. In this section we present an itera-
tive scheme of obtaining the Kohn-Sham potential from a
given electron density p. This scheme is difFerent from
most other schemes used thus far [26,19,27] and in par-
ticular is not limited to two-electron systems but is appli-
cable to systems with any number of electrons. Recently
during the writing of this paper we have noticed that
work along similar lines has been carried out [28]. How-
ever, our procedure is somewhat simpler and as we tested
has the same convergence rate In contr.ast to Ref. [28],
in which calculations within a basis set were performed,
we use a completely numerical approach, obtaining a
basis-set-free representation of the potential.

We start from the Kohn-Sham equations

[ ——,'V +v, (r)]P, (r) =e;P, (r), (42)

in which v, is the Kohn-Sham potential. The Kohn-
Sham orbitals are required to satisfy

g lg;(r)~'=p(r), (43}

where X is the number of electrons in the system. Multi-
plying Eq. (42) by P;. and summing over i gives, after di-
viding by p,

1 1
u, (r)= g —P,*(r}'|}'P, (r)+e, ~P, (r)~' .p(r), . 2

(44)

We now define an iterative scheme using this equation.
We want to calculate the potential corresponding to the
density p. Suppose that at some stage in the iteration we

The corresponding potential decays exponentially to
infinity. This is not a bad feature as the correlation po-
tential should decay faster than Coulombically although
maybe one should expect a correlation potential decaying
as a—lr in which a is the polarizability of the system.
This term occurs in the exact exchange-correlation po-
tential [19) and describes the polarization of the system
by an asymptotic electron, which is clearly a correlation
effect.

Near the nucleus the Perdew potential also has a
Coulombic singular behavior. The origin of this unphysi-
cal singularity can be traced, as in the Becke potential, to
terms in the potential that contain the Laplacian of the
density, which due to the Slater-like behavior of the
atomic density near the nucleus leads to a Coulomb po-
tential. These terms also occur in potentials of other
nonlocal-density functionals such as the one from
Langreth and Mehl [5] and in the generalized gradient
approximation (GGA) of Perdew and Wang [25]. These
functionals consequently also suffer from this same
deficiency.

max 1 — &e,p'(r)
r p(r)

(46)

with e a given threshold. To achieve convergence one
should take care to keep the prefactor in the last term of
Eq. (45} in each iteration within an acceptable range:

1-5« 1+5, (47)
p(r)

for example, with 5=0.05. We noticed in the application
of this procedure that one has to make sure that the po-
tential is set to zero in infinity, otherwise one might fail
to converge. This is due to the fact that one can add an
arbitrary constant to both the potential and the one-
electron eigenvalues without changing the density. This
may also play a role in the practical application of the
procedure of Ref. [28] where explicit use is made of the
one-electron eigenvalues in the potential construction
procedure. The fixing of the potential in infinity is, how-
ever, easily carried out in our program, in which
differential equations are solved numerically. In that case
boundary conditions at infinity and at the nucleus im-
mediately fix the solution.

The scheme is not guaranteed to converge as there are
densities which are not noninteracting v representable
(however, many densities which are not u representable
by one determinant are v representable by a linear corn-
bination of determinants [29] which can be accomplished
in our scheme by using fractional occupation numbers).
However, if the procedure converges then its limit is
unique as guaranteed by the Hohenberg-Kohn theorem
applied to a noninteracting electron system [20].

We have calculated exact potentials for the beryllium
and the neon atoms as for these atoms accurate densities
from configuration-interaction calculations are available.
Both densities have been published by Bunge and Esquiv-
el [30,31] in a large basis of Slater functions. The use of
Slater functions is advantageous because they give a
much better representation of the density tail in the outer
regions of the atom than, for instance, Gaussian func-
tions do. For the calculation of the potentials from these
densities we used a modification of the Herman-Skihnan
atomic program [32) based on numerical integration. For
the results of Table I we have used our atomic and molec-
ular density-functional package based on Slater-Type or-
bitals (STO s) with which it is possible to carry out self-
consistent calculations using the Becke-Perdew potential.

have calculated orbitals ((); with eigenvalues e,' and densi-

ty p' and potential v'. In the next step we define the new

potential
N

v"(r)= g —P (r)V'P;(r)+ e', ~P;(r)~'
p(r },. 2

P 0(r)
'(r)

(45)
p(r)

Using this potential we calculate new orbitals and a new
density and define in the same way a new potential. This
procedure is continued until the density calculated from
the orbitals is the same as the given density. We use this
procedure until



2426 R. van LEEUWEN AND E. J. BAERENDS 49

In the local-density approximation we use for the correla-
tion potential the Vosko-Wilk-Nusair parametrization of
the electron-gas data [33]. For the open shell atoms dis-
cussed in this article we performed spherically averaged
spin polarized calculations. The exact exchange-
correlation potentials are displayed in Figs. 1(a) and 2(a}
for Be and Ne, respectively, and r times these potentials
in Figs. 1(c) and 2(c). Both potentials have the same
structure, a characteristic peak between the atomic shells
(in our case between the K and the 1. shell) and a
Coulombic asymptotic behavior. These features are most
clearly displayed in the plots of rV. The appearance of
the intershell peak has been observed before [19,27] and
can be understood from the work of Buijse, Baerends,
and Snijders [34]. In Ref. [34] it has been observed that
an important contribution to the Kohn-Sham potential is
the so-called kinetic potential Vk;„de6ned in terms of the
conditional amplitude 4:

Atom HF LDA NL(BP) Model Expt.

H
He
Be
Ne
Ar
Kr
Xe

0.500
0.918
0.309
0.850
0.591
0.524
0.457

0.234
0.571
0.206
0.490
0.381
0.346
0.310

0.280
0.585
0.209
0.496
0.380
0.344
0.308

0.440
0.851
0.321
0.788
0.577
0.529
0.474

0.500
0.903
0.343
0.792
0.579
0.517
0.446

Ion HF LDA NL(BP) Model Expt.

F
Cl
Br
I

—0.097
—0.022
—0.008
+0.005

—0.099
—0.023
—0.009
+0.004

0.128
0.140
0.140
0.139

0.125
0.133
0.124
0.112

TABLE I. Ionization energies and electron affinities from the

highest occupied Kohn-Sham orbital.

%(x„.. . , x~)

Pp(x) )/N

Vg;„(x, }=f4'( —
—,'V, )4dx2 dx~

=+-,' f lV, el'dxz dxz . (49)

N2

F2
CO

0.622

0.551

Molecule HF

0.328
0.339
0.334

0.322
0.334
0.336

0.557
0.607
0.529

0.573
0.582
0.515

LDA NL(BP) Model Expt.
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FIG. l. Exchange-correlation potentials of the beryllium atom.
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The conditional amplitude 4(x . l

' d
the s

x2, . . . , x& Ix, ~ describes
t e system of X—1 electrons with positions x2, . . . , xz

posi ion x, and isw en one electron is known to be at pos t
t e amplitude connected with the condit' 1 b b'1iona pro a iity

t b t . V ~ m k
o n ing the other electrons when one electr k
o eatx. V. m~

e ec ron is nownt, . Vk;„makes a significant (positive} contribu-
tion to the effective potential v in th S h "d

ff e c ro inger equa-
tion for the square root of the densit t thy a ose positions
x& of the reference electron where the conditional ampli-
tude changes rapidly, so that V 4 is lar e. A d'arge. s iscussed
in e. [34], this is the case when x crosses the b d
re iong' between two atomic shells, since the exchange hole
is localized within one atomic shell if the reference posi-
tion is in that shell but "jumps" to the next shell when
the reference position crosses th b de or er (see Refs.
[35—37]). The intershell peaks of V„„which are less pro-
nounced than those in v 1,ff, also originate from relatively

~ ~ ~

strong changes in the pair correlation function at shell
It is obvious from the 6gures that the

f
LDA potentials almost completely lack th'ac is important
eature of the exact potential. This

' t' 1 1is par icu ar y clear
rom the pronounced appearance of peaks in the

difference plots of ( V —V ) and ( V —Van r „VLDA ) in

also h
Figs. 1(b) and 1(d) and 2(b) and 2(d). The LDAe potential
aso has a wrong asymptotic behavior for r~~, as is

evident from the fact that rV does not t —1 b

to 0. The exact potential has a much improved asymp-
totic behavior. However, the quality of the exact poten-
tia we generate depends on the quality of the correlated
wave function and density on which it is based. The
asymptotic region is notoriously difBcult to describe ac-
curately, since wave functions are almost invariably ob-
tained from energy optimization algorithms which have a
strong bias towards improving the energetically impor-
ant inner region. In the case of neon we observe that for
arge r (r & 3 bohrs) there is a spurious minimum in the

curve for the exact V„, [Fig. 2(c)] which we ascribe to
inaccuracy of the correlated density at such large r. It is
nevertheless clear that the "exact" rV,c r „, approac es —1

much better than the LDA potential does. For Be it is
not evident that the calculated "exact" V ff„, su ers rom

poor accuracy of the asymptotic behavior of the
configuration-interaction (CI}density, but we do feel that
some suspicion is warranted concerning the (too?) slow

approach by rV„, to the limiting value of —1 [Fig. 1(c)].
This suspicion is aggravated by the strange minimum be-
tween 6 and 8 bohrs in the curve of r ( V —V

' F'

1(d).
ig.

In panels (a) and (c) of Figs. 1 and 2 we have also added
Becke's gradient-corrected exchange potential [2] and
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FIG. 2. Exchange-correlation potentials of the neon atom
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Perdew's correlation potential [3] to the LDA potential.
The plots demonstrate that these potentials make rather
small corrections to the LDA potential. This makes it
understandable that the one-electron energies shown in
Table I, which are rather poor for LDA when compared
to the experimental ionization energies, do not improve
when the Becke-Perdew nonlocal corrections are includ-
ed in the self-consistent-field (SCF) calculation. Panels
(b) and (d) of the figures display directly the comparison
between the nonlocal corrections to the potential and the
difference ( V„,—VLD~ ) to which they should be equal. It
can be seen that the nonlocal Becke-Perdew potential
behaves singularly near the atomic nucleus. This poten-
tial has in this region the Coulombic singular behavior
discussed earlier. At somewhat larger distances it crosses
the horizontal axis and gives a small positive peak which
is located at the right spot in the intershell region, For
Be this does not lead to good agreement with
( V„,—VLD~ ) in the intershell region, but for Ne
Va k p d 'quite nicely approximates ( V„,—VLDA ) just
at the position of the intershell peak. At larger distances
the Becke-Perdew potential is almost zero and there is no
correction to the LDA potential, in agreement with the
failure to give improvement of the LDA eigenvalues.
The large deviation in the asymptotic region between the
Becke-Perdew potential and the exact nonlocal potential
is most clearly exhibited in panels (a): the exact nonlocal
corrections correctly tend to a constant which approxi-
mates —1, whereas the Becke-Perdew potential tends to
zero. The panels (d) also demonstrate that the Becke-
Perdew potential multiplied by the radial distance does
not tend to zero at the atomic nucleus but to a finite
value, indicating the Coulombic behavior of this potential
in this region.

V. A MODEL POTENTIAL

In this section we will make a first step towards the
construction of model potentials that snore closely resem-
ble the exact Kohn-Sham potential. The advantage in
modeling potentials instead of energy expressions is the
fact that potentials are uniquely defined by the exact den-
sity. The quality of model potentials can therefore be
judged by comparing to exact potentials calculated from
accurate densities.

In modeling the potentials one should incorporate the
general features of atomic-shell structure and asymptotic
Coulomb behavior. One might also wish the potential to
satisfy some scaling properties. To incorporate the shell
structure we use for our model potential the dimension-
less parameter x = ~Vp~/p . This parameter is propor-
tional to the length of the gradient of the local Wigner-
Seitz radius and can be interpreted as the change in mean
electronic distance (at least in regions with slowly varying
density where r, -p ' is meaningful, i.e., in the regions
where LDA is applicable). As an illustration of the
behavior of this parameter we display both this parame-
ter and r p(r) in Fig. 3 for the krypton atom Whereas.
the electron density p(r) is monotonically decreasing in
an atom, r p(r) exhibits the shell structure. We observe

r'p(r)

0-
I

0.001

I I I I I I I Il I I I I I I I I
1

I I I I I I I Il
0.01 O. l I

RADIAL DISTANCE (bohr)

I I I I I I Ill

FIG. 3. The electron density times the radial distance
squared and the parameter x =

~ Vp ~ /p
~ for the krypton atom.

u„,(r)=p' '(r)f(x(r)) . (50)

This form of the potential scales like an exchange poten-
tial [12,11]:

u„,([pz];r)=Au„, ([p];Ar) . (51)

We do not know the scaling behavior of the correlation
part of the potential but as the major part of the potential
comes from the exchange we take the above form as an
approximation. For systems with small density varia-
tions (small values of x}we want the nonlocal correction
potential also to be small. We therefore require f(0)=0.
We further know that [9,10]

(52)

This means that fmust asymptotically satisfy

f(x)- —— (x~ oo ) .1 x
3 ln(x)

(53)

Our problem of finding a smooth interpolation between
these limiting situations is similar to the one that Becke
faced for the exchange energy density. Inspired by his
solution we take

Xf(x)= —P
1+3@xsinh '(x)

(54)

This gives the final form of our model potential for the
nonlocal corrections. In spin polarized form

2X~
u„,(r)= —Pp' '(r}

I +3Px sinh '(x )
(55)

that x also oscillates with the atomic shells, with maxima
approximately at the infiection points of r p(r), and thus
seems a suitable parameter to model the shell structure of
the exact potential. For the asymptotic behavior of the
potential we then have to take into account that x
behaves for an exponentially decaying density p-e
asymptotically as ap '~, i.e., increases exponentially (see
Fig. 3). We thus choose our nonlocal correction to the
LDA potential of the form
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In order to check if with this potential we have captured
the main features of the Kohn-Sham potential which the
LDA potential is lacking, i.e., shell structure and a
Coulombic asymptotic behavior, we compare to exact po-
tentials in Figs. 1 and 2. The parameter P in our model
potential was fitted in such a way that our model poten-
tial resembled as closely as possible the difference be-
tween the exact and the LDA potential for the beryllium
atom. For this procedure we choose the beryllium atom
instead of the neon atom because its density appears to be
the most accurate of the two. This leads to a value of P
of 0.05. The model potential for neon in Fig. 2 uses the
same parameter P. The model potentials in Figs. 1 and 2
have been calculated self-consistently using our density-
functional program package.

As can be seen from Fig. 1 for the beryllium atom our
potential is in reasonable agreement with the exact poten-
tial. In particular, Figs. 1(c) and l(d) show that the inter-
shell peak is fairly well represented and the asymptotic
behavior is essentially correct in that r(VrD~+ Vm, z,&)

approaches —1. Concerning the remaining difference,
there is obviously room for improvement, although we
suspect that part of the difference between our model po-
tential and the exact potential in the asymptotic region is
due to the possible inaccuracy in the latter mentioned be-
fore. The model potential does clearly improve upon the
Becke-Perdew potential. For the neon atom (Fig. 2) the
asymptotic behavior of the model potential appears to be
quite good (assuming that the minimum of the "exact"
potential between 5 and 6 bohrs is incorrect). However,
in the inner region of the neon atom the model potential
is not so well behaved. Although it does exhibit an inter-
shell peak, the approximation of this feature to the true
intershell peak is rather poor. As a matter of fact, the
Becke-Perdew potential gives a better approximation to
the exact nonlocal potential precisely at the intershell
peak. Nevertheless, considering the whole r range we can
say that for both the beryllium and the neon atom our
simple model potential gives a considerable improvement
of the LDA potential, especially in the asymptotic region
where the Becke-Perdew potential gives almost no
correction.

We might now ask whether these improvements are
reflected in the quality of the eigenvalues. In order to in-
vestigate this question we calculated for several atoms
and molecules the eigenvalue of the highest occupied
Kohn-Sham orbital. This eigenvalue should be equal to
the ionization energy of the system (or electron affinity
for negative ions). We have done this for both LDA,
LDA with the Becke-Perdew potential added, and for
LDA with our potential (P=0.05) added. The results for
H and a number of atoms with noble gas configurations

TABLE II. Expectation values of (r) and (r ) for the
highest occupied orbitals with corresponding eigenvalue.

Atom
LDA

&r'&
Model

(r & &r')
Expt.

Li(zs )
Na(3s )
K.&4s &

Rb(5s )
Cs&6s &

Be(2s )
Mg(3s )
Ca(4s )
Sr&Ss)
Ba(6s )

3.822 17.345 0.12 3.815
3.995 18.753 0.11 3.703
4.839 26.962 0.10 4.428
5.125 30.041 0.09 4.664
5.674 36.481 0.08 5.170
2.621 8.263 0.20 2.595
3.137 11.572 0.17 2.985
3.991 18.304 0.14 3.771
4.339 21.468 0.13 4.079
4.880 26.909 0.12 4.588

17.410
16.256
22.739
25.036
30.475
8.118

10.528
16.437
19.066
23.897

0.19 0.20
0.21 0.19
0.18 0.16
0.18 0.15
0.16 0.14
0.32 0.34
0.29 0.28
0.24 0.22
0.23 0.21
0.21 0.19

Ion
LDA

&) ('&
Model

(r& &r'&
Expt.

Li'( 1s )
Na+ (2p )
K'&3p &

Rb+(4p )
Cs+(Sp )
Be'+ ( Is )
Mg'+(2p)
Ca'+ (3p )
Sr'+&4p &

Ba'+ (sp )

0.585 0.468 2.19 0.576 0.453 2.65 2.78
0.803 0.839 1.34 0.795 0.821 1.70 1.74
1.428 2.421 0.92 1.430 2.428 1.15 1.16
1.720 3.428 0.80 1.713 3.404 1.01 1.00
2.087 4.959 0.69 2.078 4.920 0.88 0.85
0.421 0.240 4.81 0.417 0.235 5.45 5.66
0.684 0.599 2.46 0.681 0.592 2.88 2.95
1.260 1.866 1.58 1.263 1.879 1.85 1.87
1.555 2.775 1.34 1.553 2.772 1.58 1.60
1.912 4.129 1.14 1.909 4.123 1.35 1.35

are presented in Table I. In this table we also compare
with the self-interaction free eigenvalues of the Hartree-
Fock approximation. From the table we can see that the
LDA eigenvalues have a large discrepancy with experi-
ment, with a mean absolute error of 5.40 eV. We can also
see that these values are not improved by inclusion of the
Becke-Perdew potential. The model potential, on the
other hand, gives a considerable improvement compared
to the LDA eigenvalues, with a mean absolute error of
0.56 eV. A nice feature of the model potential is also that
it yields bound state solutions for the negative ions. We
see that the improvements are not restricted to atoms but
also occur for molecules. Table II shows results for the
alkali-metal and alkaline-earth-metal atoms and ions.
The same quality is obtained as for the noble gas atoms
and ions.

Does the improvement of the asymptotic behavior
achieved by the model potential, apart from showing up
clearly in the one-electron energies, also have observable
consequences for the density? In Tables II-IV we inves-
tigate a number of moments of orbital and total densities.
Table II demonstrates that the radial extent of the

TABLE III. Density moments for the beryllium atom.

HF
LDA
Model
Exact

57.618
56.766
57.837
57.597

8.409
8.339
8.446
8.427

6.129
6.091
6.022
5.975

17.319
17.019
16.704
16.284

63.151
61.475
59.796
56.946

270.656
261.641
250.937
233.167

1325.49
1276.385
1198.763
1085.87
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TABLE IV. Density moments for the neon atom.

HF
LDA
Model
Exact

414.890
411.916
416.406
414.967

31.113
30.998
31.275
31.110

7.891
8.016
7.895
7.935

9.372
9.853
9.477
9.545

15.967
14.799
14.941

32.500
28.576
29.006

80.692
66.239
67.904

highest occupied orbital in the alkali-metal and alkaline-
earth-metal atoms is significantly affected by the asymp-
totic correction introduced by the model potential. Max-
imum errors of the LDA potential amount to 9% and
18% for ( r ) and ( r ), respectively, of the alkali metals
and 6% and 13% for the alkaline earth metals. The first
members of the two series, Li and Be, show cornparative-
ly small errors of 0.2% and 0.3% for Li and 1% and 2%
for Be. The errors are much smaller for the ions, prob-
ably since they possess very tight closed shells. Although
the effects are rather small for Be, making this atom
perhaps not a good test case, we happen to have a very
accurate CI density available for this atom and therefore
we compare in Table III for Be the moments of the total
density as obtained from various calculations. Also the
Hartree-Fock data are shown in this table, in order to see
how much of the effect of correlation is taken into ac-
count by the LDA or model potential. Judging by this
example, for (r~) with p positive the LDA potential
corrects the Hartree-Fock result in spite of the wrong
asymptotic behavior of this potential, the model potential
gives improvement over LDA but in general only some-
thing like 50% of the difference between Hartree-Fock
and exact is covered by the model potential. For (r ')
and (r ) there is no improvement over the Hartree-
Fock results.

For neon (Table IV) it is seen that for (r~) with p posi-
tive the model potential considerably improves the LDA
result. With respect to the difference with Hartree-Fock
the picture is different from that for Be: the LDA poten-
tial does not correct the Hartree-Fock results but gives as
expected a too diffuse density. For ( r ' ) and ( r )
there is again no improvement over the Hartree-Fock re-
sults. The LDA potential appears to give a too diffuse,
the model potential a too contracted density in the inner
region.

VI. SUMMARY AND CONCLUSIONS

In this work we have formulated a number of condi-
tions fox approximate exchange-correlation potentials.
Potentials of gradient-corrected density functionals that
are currently used with much success to calculate atomic
exchange and correlation energies as well as bond ener-
gies of molecules do not obey some of these conditions.
In order to make comparisons over all space to (almost)
exact Kohn-Sham potentials we devised an iterative
scheme to obtain the corresponding Kohn-Sham poten-
tia1 from a given density. The scheme is applicable to
both atoms and molecules and is not limited to systems
with few electrons. In this paper highly accurate CI den-

sities for Be and Ne have been used to generate accurate
Kohn-Sham potentials. Comparison to potentials derived
from existing gradient-corrected functionals demonstrat-
ed that these potentials cover only a small part of the
difference between the LDA potential and the exact one.
This is at first sight a little surprising: how can we have
large improvements in energies and almost no improve-
ment in the potential? Several explanations may be ad-
vanced. First of all, the approximate nonlocal functional
might "oscillate" around the exact functional, giving a
good approximation of the energies but a bad approxima-
tion of its functional derivative. Other deficiencies are in-

herent to the derivation of the functionals. For instance,
both the nonlocal exchange-correlation functional of
Langreth and Mehl [5] and the Perdew-Wang generalized
gradient expansion [25] use a long-range cutoff of the
exchange-correlation energy density. Langreth and Mehl
use a low-k (large distance) cutoff' in the momentum dis-

tribution of the exchange-correlation energy and Perdew
and Wang perform a real-space cutoff in the exchange-
correlation hole. This neglect of this asymptotic region
reflects itself in the potential which thereby loses its
asymptotic Coulombic behavior. However, the Becke
functional shows that even a correct behavior of the ex-

change hole potential does not guarantee a good behavior
of the exchange potential.

A model potential has been presented which corrects
some of the deficiencies of the current potentials, notably
the asymptotic behavior. The improved asymptotic
behavior shows up very clearly in the one-electron ener-

gies. The error in the highest occupied LDA eigenvalue
(which should represent in the exact case the ionization
energy) is reduced by almost an order of magnitude by
using the model potential. The model potential also
significantly corrects the higher moments of the density,
notably for diffuse outer orbitals. Because of this correc-
tion of the highest occupied orbitals, the model potential
may be useful in the calculation of highly excited diffuse

states and in general for density-dependent properties
such as dipo1e and quadrupole moments and derivatives
thereof (infrared intensities).

In spite of some success, the present model potential is

clearly deficient in some respects, notably the behavior in

the atomic intershell region. It wi11 therefore require fur-

ther improvement. This problem will be addressed in a
subsequent paper of this series. We feel that the most
significant success of the nonlocal corrections to LDA
applies to bond energies of molecules. In particular, the
potential derived from the Becke gradient correction to
the exchange energy density displays very interesting
structure in molecules [39] that may explain the success
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of the Becke energy expression for bond energies. We
feel that further modeling of exchange-correlation poten-
tials should not only try to optimize the potential for
atoms but should take into account the special efFects of
chemical bonding.
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