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Rigorous bounds are derived for the momentum-transfer squared, E, and used to construct a univer-

sal formula to extrapolate the generalized oscillator strength through the unphysical region to the opti-

cal oscillator strength. Results of the universal function are compared with those obtained from experi-

mental small-angle differential cross sections to determine the range of its applicability.

PACS number(s): 32.70.Cs, 34.80.0p, 34.50.Fa, 34.90.+q

I. INTRODUCTION

Lassettre, Skerbele, and Dillon [1] have deduced that
the generalized oscillator strength (GOS) converges to the
optical oscillator strength f as the momentum-transfer
squared, K ~0, regardless of whether the Born approxi-
mation is valid or not, i.e., at any impact energy. The im-
plications of Lassettre's theorem are much deeper than
Bethe's result, which is valid only in the framework of
the Born approximation. The limiting behavior of the
GOS as K ~0 is important in the normalization of the
experimentally determined relative differential cross sec-
tions for excitation of atoms by electron impact [2—5],
calculation of cross sections for energy transfer [6], and
in the determination of the optical oscillator strengths
[7]. The limiting behavior of the GOS as K2~0 has been
examined [5—10] with no clear departure from the limit
theorem. However, difficulties [10] and incompatibility
[11]with the limit theorem have been reported. The sep-
aration of GOS curves for Hg with different values of the
kinetic energy near K =0 has been interpreted [12,13] as
a manifestation of the failure of the Born approximation.

For finite electron impact energy E the value E =0 is
unphysical. Therefore, it is necessary to use an
interpolation-extrapolation algorithm on the experimen-
tal data to access this limit. To this end the Lassettre for-
mula [1],which has been constructed through some mod-
eling and/or intuition, has been used extensively. No-
body has an analytic, theoretically derived expression to
extrapolate the GOS through the unphysical region to
E =0. Our interest is to construct a universal extrapola-
tion formula which is valid in the limit E ~0 regardless
of electron-impact energy.

In this paper we have first derived rigorous bounds on
E and then used them to construct a universal formula
to extrapolate the GOS for optically allowed transitions
through the unphysical region to the optical oscillator
strength. The dipole allowed transitions Kr
4p ~4p ( P3&z)5s at 300 and 500 eU and Mg II 3s~3p
at 50 eV are used to demonstrate the limiting behavior of
our universal function through comparison with the
values obtained from experimental small-angle
differential cross sections. From the comparison the

range of validity of the universal function is thus deter-
mined. Also, the Xe Sp ~5p ( P3/2)6s dipole allowed

transition is used to illustrate the general behavior of the
universal function and to demonstrate the validity of the
Lassettre limit theorem, regardless of impact energy.

In Sec. II we present the theory. Section III gives the
results while Sec. IV deals with the discussion and con-
clusion.

II. THEORY

The GOS, fo„(K},is given in terms of the Born
differential cross section by [14,15]

f (K}=— K0" 2k„dn 0

where, in atomic units,

K~=2E 2———2&(1 to/E }cos—8
E

(2)

co, ko, and k„are,respectively, the excitation energy and

the electron momenta before and after collision; K and 8
are the momentum transfer and the scattering angle; and
E is the total energy of the system.

Where the Born approximation is applicable, fo„(K)
does not depend on E; there are pairs of E and 8,
(E&,8&,E2, 82}, say, which belong to the same K . Denote
x = 1 co/E with co &E—so that

T

Ei 2 2x
&
cosOi =E2 2

N CO —2x2cos82

2(1—u, )= (1—u2),
1 —x2

which reduces to

u, +x2(1—u, }=u2(1—x, }+x, .

(4)

(5)

(3)

Representing u, =x
&
cos8„u2

=x2cos82, and E=co/
(1—x ), Eq. (3) then becomes
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Given u „x„and,say, xz we can find uz. From Eq. (5)
we have

u, +x2(1 —u 1 )
—x f

X2cost 2 ~

1 —x

so that Eq. (7) becomes

x i(cos8i x i )
=X2)

1 x i cosOi
2

with x, =Ql co/—E, &0
Hence

and x2=+1 c—o/E2 &0. 1=X22 .

u, +x~(1—u, ) —x,
2 )

COS82
x2(1 —x&'

But —1~cos82~1 so that

u)+x2(1 u)) xf
xz(1 —x t )

In Eq. (6) x2(1 —x f ) )0 because x, = 1 co/E (—1 and
1 ~/E—&0. The right-hand side inequality in Eq. (6)
reduces to

Thus x2(1 —u, ) —x2(1 —x, )+u, —xf ~0 if x2 is be-
tween the roots 1 and

X i X i COSH'

1 x i cosOi

The second inequality in Eq. (6) gives

u, +x~(1—u, ) —x, & —x~(1 —x, ),
which reduces to

(1—x f )+g(1—x f )
—4(ui —x f )(1—ui)

2(1—u, )

Define

(7)

—1=—X'
21

x)(x( cos8))
22

X i COSH'

D=(1—xf) —4(u, —xf)(1—u, )

=(1+x t )
—4u &(1

—u, +x f )

= [2u, —(1+xf ) j &0 (always)

Again if x& &cos8&, X22 &0 and if x& &COSH„X&2&0.
Thus if only x, &cos8„viz., x, =+1 co/E, &c—os8,
both inequalities in Eq. (6) can be satisfied.

Case A. x, &COSH, :

zi —zy co88y2

1 —z)cos8y

z, —zgco88,2

1 —zy cos8y

Unphysical unphysical

Note that when E,~~, co/E& ~0 and x
&
~1 so that the domain of x2 is —1 ~ x2 ~ 1. This corresponds to the true

Born region. The closer E, approaches co, the larger is the unphysical region, viz. , ~cos8~~ ) 1 region. When this occurs
extrapolation of the experimental GOS through the unphysical region to its value at E =0 becomes dificult.

Case B. x, &cosO, :
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In this case there is no value of x& which would make

~cos82~ & 1. Hence, when x, =+1 co—/E, &cos8„cos8z
is unphysical.

To obtain the desired extrapolation formula, we use the
second root of x 2 in Eq. (9), viz. , x, (x,
—cos8, ) /( 1 —x, cos8, ) and rewrite it as

2

F,—„„,(x,y)= 1+
1 —x cos8

(10)

where we have replaced x, with x. Rather than use cos8
as the variable in Eq. (10), let us use y with no restriction
to its value. We note that Eq. (10) has the proper
behavior, viz. , lim, ,F,„„,~1 and lim„oF,„„,~0.
The former implies the true Born region (y = 1), E~~,
while the latter represents E—+e, strong non-Born re-
gion. Note that (i) from Eq. (2), when K =0,
y —=yo=(1+x )/2x which may be physical yo & 1 or un-

physical yo & 1, and that (ii) Eq. (10) is physically applica-
ble only for small K values.

The proper behavior of Eq. (10) in the limit x ~1 and
the slow variation of the dipole matrix elements as
K —+0 suggest the use of Eq. (10) in the construction of
an extrapolation formula to reach E =0. At exactly
K =0 we know that by definition fo„(K)=f and that
F t p 1, regardless of the value of E. Therefore, we
can write

lim f()„(K):f—
K —+0

= lim [f F,„„,p (x,y) ]
K —+0

=fo lim F,„„,p( yx)
K ~0

x —1f()„(K)= f 1+—
1 —xy

(12)

%e must stress that the range of EC values for which
Eq. (12) is applicable must be determined through com-
parison with measurements and that its beauty lies in that
it can be studied as a function of scattering angle

y (=—cos8) or K for fixed x (impact energy) for a given
allowed dipole transition. Clearly, for forward scattering
y=1 (8=0) and E=ao, Eq. (12) gives fo„(K)=f,the
Lassettre limit theorem. This is the only case for which
E =0 corresponds to physical angles. For any other im-
pact energy value, E =0 corresponds to unphysical an-
gles so that extrapolation of the GOS through the un-
physical region will be necessary to reach the optical os-
cillator strength. The largest value of E for which Eq.
(12) is applicable can only be determined through com-
parison of the calculated values of f0„(K)from Eq. (12)
with those obtained from experimental differential cross
sections using Eq. (1). Equation (11}can also be used to
normalize the experimentally determined relative

x —1f lim 1+—
y —ay 0 1 xy

In the region of small K, we can still write Eq. (11) ap-
proximately as

differential cross sections at any impact energy through
Eq. (1).

In using Eq. (12) for normalization of measured small-
angle differential cross sections, one selects a value for y
in the physical region where the measurements are accu-
rate and obtains x=&1 co/—E, and hence K . Then
Eqs. (10) and (12) are employed to obtain F,„„,and

f0„(K).Note that normalization will require an energy-
dependent normalization factor as was suggested by
Msezane and Henry [11]. Conversely, if f is unknown,
the ratio fOG„—(K)/f =1+—(x —1)/(1 —xy) is obtained
for given x and y as well as fOG„(K)from Eq. (1). Then f
can be determined. The accuracy off0 thus obtained will
depend upon how accurately the differential cross section
for optically allowed transitions is measured near y = l.
Generally, the differential cross section is highly peaked
in the forward direction [7,16] so that better accuracy
may be obtained away from 8=0. The reason is that
measurements are generally diScult and unreliable near
8=0.

III. RESULTS

To demonstrate the validity of the Lassettre limit
theorem regardless of impact energy, we show in Table I
the variation of F,„„,(x,y} with y and K~ at E=20, 100,
and 400 eV for the Xe Sp ('So)-+Sp ( P3/J)6s transition.
The function F,„„,(x,y) approaches unity as K ~0 in-
dependently of E. It is seen from Table I that the smaller
the value of E, the greater is the unphysical region [the
region between y =1 and yo =(1+x )/2x, corresponding
to 8=0 and K =0, respectively]. Because of normaliza-
tion, F,„„,~=1 at EC =0, regardless of the value of E.
Furthermore, the difference between the value of F,„„,
at E =0 and y = 1 measures the amount by which a
given transition deviates from the true Born approxima-
tion. Consequently, the value of F,„„,z is unity at y =1
(8=0) for the true Born approximation (E=oo). For
clarity, compare the values of F,„„,at y =1 for E=20,
100, and 400 eV; they are 0.76740, 0.956 89, and
0.989 40, respectively. Depending upon the desired accu-
racy, one can determine a priori whether a given transi-
tion can be analyzed through the Born approximation by
checking the value of F,„„,at y = 1 (8=0};it should be
unity. Accordingly, the Xe Sp ('So)~Sp ( P3&2)6s tran-
sition at 100 eV is still non-Born while at 400 eV it is al-
rnost in the Born region.

In Fig. 1 we have plotted the universal function
F(y)=+F,„„,(x,y) versus y for the Xe Sp ('So)
~Sp ( P3&2)6s transition (co=8.436 eV) for F. =8.5, 10,
20, 50, 250, and 500 eV. The origin is at y = 1 (8=0) and
F(y)=0 and the family of curves lies almost entirely in
the physical region (y &1) for E»co and in both the
physical and unphysical (y & 1}regions for E of the order
of co. The most significant revelation of the plots is that
the line F (y }=1 corresponds to K =0 regardless of the
value of E. Furthermore, each E curve has associated
with it a pole (vertical lines) and a zero at K =0. The
pole and the zero are coincident and are in the physical
region only for E= 00, but separate in the unphysical re-
gion. Interestingly, the pole moves away from the y =1
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TABLE I. Values of the universal function, F,„„,„vsIt ' (a.u.). Values in bold correspond to unphys-
ical values ofy.

1.037 75
1.035 00
1.03000
1.02000
1.01000
1.005 00
1.00000
0.99900
0.995 00
0.99000
0.98000
0.96000
0.94000
0.90000

E=20 eV

Fextrap

1.00000
0.980 36
0.945 63
0.879 70
0.81809
0.788 78
0.76740
0.754 83
0.732 90
0.706 25
0.655 33
0.562 10
0.478 81
0.336 31

K' (a.u. )

0.00000
0.006 15
0.017 33
0.039 70
0.06206
0.073 25
0.08443
0.086 66
0.095 61
0. 106 79
0. 129 16
0. 173 89
0.218 62
0.308 07

1.00097
1.000 80
1.000 50
1.000 10
1.00000
0.99900
0.998 00
0.99600
0.995 00
0.992 00
0.99000
0.98000

E=100 eV

Fextrap

0.999 95
0.992 27
0.978 85
0.961 24
0.956 89
0.91440
0.873 71
0.797 31
0.761 41
0.661 80
0. 154 38
0.355 25

Z' (a.u. )

0.00000
0.002 41
0.006 63
0.012 23
0.013 67
0.027 74
0.041 81
0.069 96
0.08403
0. 126 24
0. 154 38
0.295 10

1.00023
1.00000
0.999 90
0.99970
0.999 30
0.998 00
0.997 00
0.99600
0.992 00
0.99000

E=400 eV

Fextrap

1.00000
0.989 40
0.971 00
0.935 21
0.867 39
0.67644
0.554 20
0.448 57
0. 13894
0.028 97

K' (a.u. )

0.00000
0.001 65
0.009 13
0.020 77
0.04405
0.11971
0. 177 91
0.236 11
0.468 91
0.585 31

K =0

I I I I

E=5.5eV-
E=10eV
E=20eV
E=50eV
E=250eV o-
E=500eV

axis, as y increases to the left, faster than its correspond-
ing zero as E approaches co', for example, compare the
E=10 eV and E=20 eV poles and their corresponding
zeros along the F(y) =1 line.

In the figure, there is a small "physical window"
bounded by y = ( 1, —1 ) and F (y ) = ( —1, 1 ). In this win-

dow limz „yo=lim, ,y0=1, which corresponds to the
region of first Born approximation. We also note that
from Eq. (2) K /2to=(1 F,„„,) l(—1+F,„„,), which

reduces to II =2' when Fexfzzp 0, corresponding physi-
cally to excitation with zero kinetic energy. The smaller
energy curves have a much larger unphysical region than
the higher energy ones, examples of which are the E =20

and 50 eV curves. Note that the E=50 eV curve inter-
sects the y =1 axis at 0.9118 (this value can be compared
with 0.9915 for the E =500 eV curve) and has a
significant unphysical region.

To test Eq. (12) and determine its range of applicabili-

ty, we have compared in Fig. 2 our ( ) GOS at 300
and 500 eV (the results are the same to the thickness of
the line) with the experimental values at 300 eV (0) and
500 eV (A) by Takayanagi et al. [7] for the Kr
4p ~4p ( P3&z)5s dipole allowed transition. Agreement
between the calculated and measured values is very good
for K ~ 0. 1 a.u. ; the interest of this paper is in the region
of small K . In Fig. 3 the experimental values (A) of
Williams et ttl. [17] are contrasted with the current
values ( ) at 50 eV for the Mg II 3s~3p transition.
Good agreement is obtained between theory and mea-
surernent for E + 0. 1 a.u. Also are included the theoret-
ical data (———

) of Msezane and Henry [18].

I I I I I I I I I I I I I
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I
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I ~
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\
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~ I ~
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1.0
cos(8)

I I I I I I

—0.5 —2.0 0.0
0.0 0.1 0.2 0.3 0.4

K (a.u. )

0.5 0.6 0.7

FIG. 1. The universal function F(y) is plotted against y for
the Xe 5p'( P3/2)6s state under the experimental condition of
Suzuki et ttl. [7]. Several values of E have been used to demon-

strate the physical (y +1) and unphysical (y &1) regions. We

note that for each energy curve, F(y)=+1 corresponds to
K =0 regardless of the energy. The vertical lines ———,

, and ——.—.correspond to the poles at K =0, for
E= 10, 20, and 50 eV, respectively.

FIG. 2. Generalized oscillator strength (GOS) vs K' (a.u. ) for
the Kr 4p ~4p'( P3/2)5s transition. The experimental values
E =500 eV (A) and E =300 eV (~) of Takanayagi et al. [7] are
compared with the theoretical curve ( ) obtained at E=500
and 300 eV. To the thickness of the theoretical line the values

at E=500 and 300 eV are indistinguishable.
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1.0

0.8

Mgll 3s S~3p P

THEORY (Current)
X EXPT
- - THEORY (M and H)

E =50eV
W = 4.421 eV

0.6

0.4

0.2—

0.0
0.0

I

0.1
I

0.2
I

0.3

K (a.u. )

FIG. 3. The GOS from the small-angle differential cross sec-

tion measurement of Williams et al. [17] for the Mg tt

3s S~3p P transition is compared with the current theory

( ) and the data of Msezane and Henry [18] (———) at

E=50 eV.

IV. DISCUSSION AND CONCLUSION

In this paper, we have derived rigorous bounds on E
and used them to construct a universal function F,„«,p to
extrapolate the GOS through the unphysical region to
the optical oscillator strength. F,„„,has been used to
demonstrate unambiguously the validity of the Lassettre
limit theorem through the Xe 5p ~5p ( &3&2)6s dipole
allowed transition regardless of electron-impact energy.
Also, the dipole allowed transitions Kr
4p ~4p ( P3&z)5s at 500 and 300 eV and MgII 3s —+3p
at 50 eV have been used to determine the range of appli-
cability of F,„„,through comparison of the GOS values
obtained from it with those obtained from the measured
small-angle difFerential cross sections. The soundness of
our extrapolation function is further supported by the
most recent calculation by Mitroy [19] for the K 4s —+4p
transition at 54.4 and 100 eV. At both energies there is
excellent agreement between our data and Mitroy's
UDWBA results given in his Figs. 3(a) and 4(a) (we do
not show the results), including the measurements

[20,21], particularly the data of Vuskovic and Srivastava
[20] for E ~0.05 a.u. This comparison demonstrates
that the GOS for the K 4s~4p transition is almost the

same at 54.4 and 60 eV in the limit E ~0, viz. , away
from the diffraction minima of the differential cross sec-
tion.

We conclude that our universal extrapolation function
produces results that are in excellent agreement with
measurements and other theory for Il ~0.05 a.u. (con-
servatively). The ultimate test of a theory is its ability to
produce results that are compatible with measurements.
Further theoretical justi6cation of our derivation is found
in the assumption of the pole dominance of the single
photon exchange in the E crossed channel embedded in
the Lassettre limit theorem. It leads to the proportionali-
ty of the optical oscillator strength to the residue of the
differential cross section at E =0 [22]. Clearly, in the
limit E —+0 kinematical considerations are the main
determinants of the behavior of the GOS. We note that
high energy and small E require equivalent theoretical
approximations. It is therefore not surprising that the
Lassettre limit theorem is valid in the Born approxima-
tion as well as at sma11 E values. The advantage of our
extrapolation function is its rigor and simplicity, having
been derived from rigorous bounds on E . Fextzzp is by
no means the only possible extrapolation function that
can be constructed from the bounds on E . For example,
another function X,„„,(K )= —[1—2/(1+K /2w )~] is
possible, where y varies from 0.2 through 5.0 and we have
used Eq. (2) and the value of x to eliminate x and x cosa
in Eq. (10). When y =1.0, we recover Eq. (10). The func-
tion X,„„,(E ) can increase/decrease the range of appli-
cability of Eq. (12) depending upon the value of y used.
The expression for X,„„,(E ) is only a function of K2 for
a given transition, thus demonstrating the validity of the
Lassettre limit theorem, regardless of the impact energy.

We have focused our investigation to the region of
small E values because this region is difficult to access
both experimentally and theoretically, particularly for
moderate and small impact energies. Obviously, dynami-
cal effects will become important as E increases from
zero. How to include these effects for larger E values
will be the subject of our future investigation. Suffice it
to say that our current interest has been in the region of
small scattering angles where most experimental uncer-
tainties occur.
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