
PHYSICAL REVIEW A VOLUME 49, NUMBER 4 APRIL 1994

Improvement on the correlated-Hartree-Fock method and application to atoms

Hiroshi Yamagami
Department ofPhysics, Tohoku Uniuersity, Sendai 980, Japan

Yasutami Takada
Institute for Solid State Physics, Uniuersity of Tokyo, Tokyo 106, Japan

Hiroshi Yasuhara
Department ofPhysics, Tohoku Uniuersity, Sendai 980, Japan

Akira Hasegawa
College of General Education, Niigata University, Niigata 950-21, Japan

(Received 4 October 1993)

Based on the recent paper of Yasuhara and Takada [Phys. Rev. B 43, 7200 (1991)] on a screened-
exchange potential for band calculations, an improvement is made on the correlated Hartree-Fock
method for inhomogeneous many-electron systems so as to yield excellent results for both the total ener-
gies and the ionization potentials of atoms in the Periodic Table from He to Ca.
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I. INTRODUCTION

Conventionally, the ground-state energy of a many-
electron system, Eo, is broken down into the Hartree, ex-
change, and correlation parts:

Eo =E~+Ex+Ec

In practical calculations of Eo in real solids, molecules,
and even atoms, we must introduce some approximate
scheme to evaluate the exchange and correlation parts,
E„+E,. The most notable is the local-density approxi-
mation (LDA) based on the density-functional theory
(DFT} [1—3]. However, LDA provides results with
moderate accuracy (typically 1—10%) [4,5] and thus an
improvement on it is needed if better accuracy is re-
quired. For this purpose, both the self-interaction correc-
tion [6,7] and the gradient correction [8—10] are
developed within the framework of DFT.

If we consider the correction to LDA in perturbation-
theoretic approaches, we quite naturally hit upon an idea
that at least E„should be treated more seriously by the
consideration of its nonlocal character, because ~E„~,
which has a very nonlocal feature [11],is definitely much
larger than ~E, ~

at metallic densities. As an extreme in

this direction, we can think of the following scheme: We
first solve the self-consistent Hartree-Fock (HF) equa-
tions to obtain E~+E and then evaluate E, in the local
approximation, a modification of LDA to E„+E„with
the electronic density obtained in the first step. At first
sight, this seems to be a physically correct procedure, be-
cause the radius of the correlation hole is about half of
the exchange hole in the homogeneous electron gas and
thus nonlocality is less serious in E, than in E„. Howev-
er, according to the calculation of Eo for atoms in this
scheme [12,13], a systematic error is found: The calculat-

ed values of Eo are always lower than the experimental
ones. The situation does not change at all even if we per-
form the full self-consistent procedure in which the effect
of E, is included in the solution of the HF equations, as
we shall show in this paper by the HF+C scheme. This
implies that the local-potential approximation to E,
should be corrected in some way.

A difFerent scheme to include nonlocality can be con-
sidered by an alternative partition of the exchange and
correlation energies in Eo. As indicated in the so-called
GW approximation [14—17], Eo may be rewritten as

Eo =E~ +ESE+ECh (1.2)

where the screened-exchange part EsE is defined by the
exchange energy with some static screened potential V„
rather than the bare Coulomb potential V and E&I,
represents the Coulomb-hole energy. Based on this parti-
tion, proposals [18,19] have been made to perform the
HF procedure with V rather than V for the exchange
part. In this approach, Ech is usually treated in the local
approximation, but the problem lies in the fact that ~EsE ~

does not dominate over ~Ech ~
in the partition (1.2). This

means that errors in the evaluation of Ez& by the local
approximation may become even more serious in this
case. A tentative calculation of Eo for atoms in the
Yasuhara- Takada scheme [19], which is one of the
methods in this approach and will be denoted by CHF
(correlated Hartree-Fock) hereafter, shows that the re-
sults of Eo are always larger than the experimental ones.
Thus we come to conclude that at least in the calculation
of Eo for atoms, nonlocality in E&h should not be neglect-
ed in CHF.

In view of those situations, we propose a combination
of HF+C and CHF for an ab initio calculation of the
properties of atoms and molecules in this paper. To be
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more specific, let us start with HF+C. Then the problem
is to include nonlocality in E,. A practical form for the
nonlacality may be obtained if we compare Eq. (1.1) with
Eq. (1.2). In CHF, Esu is treated as nonlocal, which
means that the difFerence Esz —E„represents the nonlo-
cal part in E, in the partition (1.1). Of course, the full
value of Esz —E„ is not necessarily the best choice. So
we introduce a multiplicative factor g in front of it so as
to give yet another partition for Eo as

EO=Ea+E„+rl(Esa E„}—+E (1.3)

Here both E„and Esa will be treated exactly as in the
HF method and Ei, is the correlation cantribution in the
local approximation. The local potential to define Ei, de-

pends on i) and is determined in such a way that in the
homogeneous electron gas, Eo in Eq. (1.3) reproduces the
exact total energy known by other many-body methods
such as the Green's-function Monte Carlo. Note that
HF+ C and CHF correspond, respectively, to the cases of
g =0 and 1 in Eq. (1.3).

In the partition (1.3), the main issue is the value for i)
in order to obtain a systematic agreement between theory
and experiment, together with a suitable form for V to
define Esu. This constitutes the main purpose of this pa-
per. After self-consistent calculations of Eo as well as the

I

ionization potentials for the atoms in the Periodic Table
from He to Ca in the present approach with change of rl,
we find that an optimum value for il is —', .

This paper is organized as follows: In Sec. II we give a
brief description of CHF in the Yasuhara-Takada version
to define V to be used in this paper. In the final part of
this section, we introduce q to combine CHF with
HF+C. In Sec. III the CHF equations are reduced to
the form convenient for the calculation of atomic proper-
ties. An approximate, but very accurate expression for
Eo in CHF is presented here. Calculated results for the
total energies, the energy levels, and the ionization poten-
tials are shawn in Sec. IV. Summary of the results ob-
tained in this paper and future problems are given in Sec.
V. Rydberg units (R=e /2=1, ni, =

—,
' ) will be employed

in the derivation of equations in this paper. In the tables
and figures, however, the calculated energies are present-
ed in atomic units, because most of the results published
so far are given in those units.

H. GENERAL FORMULATION OF CHF
AND COMBINATION WITH HF+C

The CHF equation with nonlocal screened-exchange
and local correlation potentials propased by Yasuhara
and Takada [19]is given as

2Z, f,'. (r')f,.(r'}
+2+n, .J dr', ,

~

+P„,[r, (n(r))] f; (r)r ~r —r

f,'.(r')f, (r')—2+5 .nj .(dr' f (r)=e f (r), (21)
~
r —r' ~Z(r —r')

with

3e iq(r —r') v(q}
(2m ) 'E(q)

(2.2}

where Z is the atomic number and n; represents the
electron occupation number of state i with spin 0 de-
scribed by the wave function f, (r'). The dielectric func-
tion'E(r —r') is introduced to define V as

V (r —r'):— 1

Ir —r'~ g(r —r')

G()4Az
1+4Bz

(2.5)

v(q)II (q)= P(z),
82

(2.6)

Here z=ar, q/2 with a=(4/9m)'~ =0.5211 and the
coefficients A and 8 are, respectively, given in Eqs. (Al)
and (A2) in the Appendix. With the use of the variable z,
we can rewrite the product af v(q) and II (q) in Eqs. (2.3)
and (2.4) as

X(q) = 1+I (q)v(q) II (q), (2 3) with

where v(q} is the Fourier coefficient of the bare Coulomb
potential V, II (q) is the static polarization function in
the random-phase approximation, and I'(q) is given
through the so-called local-field factor (LFF) G (q) as and

1/2
4o;r,

(2.7)

[1—G(q)]I (q)=
1+G(q)[1—G(q)]v(q)II (q)

(2.4) p( ) 1+ 1 —z ~ (1+z)
4z (1—z)2

(2.8)

We need not specify the form for G(q) to make a fur-
ther development of the general formulation of CHF, but
for the homogeneous electron gas with the electronic
density characterized by the parameter r, in the usual
definition, a tentative form for G (q) is suggested in Ref.
[19]as

Pxc Pc+Px ~

with

(2 9)

Then we can calculate Y(r —r') from Eqs. (2.3), (2.4),
(2.6), and (2.8).

In Eq. (2.1},the local potential p„, is defined as
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and

P„=— f dz ( 1 —z)S(z)
16

S(z)=1—
s(z)

(2.10)

(2.11)

calculation in HF. The other is that the radial part of
f; (r) does not depend on either magnetic or spin quan-
tum number. This means that we shall take a treatment
similar to the so-called restricted Hartree-Fock equation.

Under those assumptions, the wave function is divided
into the factors as

v„v'+q( v„—v') . (2.12)

Then we also change the factor S(z}in Eq. (2.10) into

S(z)~rlS(z), (2.13)

in order to obtain a corresponding change in p„, in Eq.
(2.9). Note that g= 1 corresponds to CHF, while g=O
corresponds to HF+ C.

III. SPECIFICATION TO ATOMS

A. CHF equation

The nonlinear differential equation (2.1) is transformed
into an expression convenient for the calculation of atom-
ic wave functions and eigenenergies. For the practical
solution of Eq. (2.1), we make two assumptions for the
wave function f, (r} at the outset: One is the central-
field approximation as is usually presumed in the atomic

The correlation contribution to the chemical potential in
Eq. (2.9), p„ is the same as that given by Vosko, Wilk,
and Nusair [20]. If G(q) is chosen in the form (2.5), the
local exchange potential in Eq. (2.10), P„ is calculated
analytically. The result is given in Eq. (A3) in the Appen-
dix. With those f(r —r') and P„, thus determined, we can
obtain the one-electron energy level and the wave func-
tion for each quantum state in the CHF scheme by the
self-consistent solution of Eq. (2.1).

In order to combine CHF with HF+C [12,13],we only
need to introduce a parameter g to control the magnitude
of ESE—E„. For this purpose, we first change V„ in Eq.
(2.2) into

f, (r) = P„—,(r) Y, (r)y(0 ),=1
r

(3.1)

with the radial function P„&(r), the spherical harmonics
Y& (r), and the spin function y(o ), where n, 1, and o
denote, respectively, principal, angular, and spin quan-
tum numbers. Substituting Eq. (3.1) into Eq. (2.1), we ob-
tain the following nonlinear inhomogeneous equation:

dr
2Z 1(l +1)+, + V,(r)+p„,[p(r)]—s„,r

XP„&(r)=F„&(r), (3.2)

in which V, (r) and F„&(r) are the Hartree potential and
the screened Fock term, respectively. The normalization
condition for the radial function P„&(r) is given as

r' r=l,
0

and the total electron density is obtained as

(3.3)

p("}=XNniPni(r)
nl

(3.4)

V, (r)= —f p(r')dr'+ f , p(r')dr' . —2 r
r ~

cc 2
r 0 r r

(3.5)

In the treatment of the nonlocal term in Eq. (2.1), care
must be taken in calculating the LS-term energy which is
important in complex atoms. The concept of Slater's
"average energy of the configuration" [21] is employed to
treat it to obtain the nonlocal term F„&(r) in Eq. (3.2) as

where X„I is the occupation number of the state specified
by (n, l). With this charge density, the Hartree potential
is calculated easily as

F i(r)=2P i("} J i, i(r)+
L =2,4, . . .

c (10;10)— D (1) J„&„i(r)41+1

+ g N„& P„.&.(r) g c (10;10)J„&„.&.(r)
(21 + 1)(21'+1)

(3.6)

with

J„«&(r)= f dr. 'P„&(r')P„.&.(r')U (r, r'),
0

and

Q (r, r')= —f "dq $(q;r, )jl (qr)J'L(qr'),
7T 0

(3.7)

(3.8)

(3.9)

where c (lm;1'm') is the Inglis-Shortley coefficient [22]
and D (1) is the coefficient accounting for the deviation
from the average energy of the configuration [23]. In Eq.
(3.8}, r& and r& represent, respectively, smaller and
greater between r and r', while in Eq. (3.9), jL (x ) denotes
the spherical Bessel function of order l. and S(q;r, ) is
the function S(q) defined in Eq. (2.11) evaluated at r, =r, .
Here r, is meant as some average of the r, parameter.
Although the best choice for the average is not known at
present, we employ the arithmetic mean between r, (r)
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and r, (r') for r, in this paper, where the r, parameter at
the position r, r, (r), is determined from the total electron
density p(r) in Eq. (3.4).

B. Numerical procedure

Calculation procedures in HF or its modification may
be classified into two categories: analytical or numerical.
The representative in the former is the well-known
Roothaan method [24] in which the problem is reduced
to a generalized eigenvalue problem by the expansion in
terms of the optimized-Gaussian or Slater-orbital basis.
In the latter, a direct numerical integral of the HF non-
linear equation is performed [25]. In this paper, we
proceed along the latter procedure.

In order to obtain the radial wave function numerical-
ly, we introduce grid units on which the wave function is
given. The grid points are defined by the logarithmic
variable and the Numerov algorithm is employed in the
solution of Eq. (3.2). A self-consistent result is obtained
by an iteration method in which we start with the wave
function self-consistently determined in LDA. The total
charge density is made self-consistent with the
Liberman-Waber-Cromer program [25] based on a rela-
tivistic Hartree-Fock-Slater equation. The inhomogene-
ous term in Eq. (3.2), F„i(r), is evaluated with the radial
wave function obtained in the previous iteration step and
thus it is a known quantity for the present iteration.
Then the combined shooting-direct method for an inho-
mogeneous equation [26] is employed to give an inhomo-
geneous solution to Eq. (3.2) which is made continuous at
the classical turning point by the matching of inward and

outward wave functions. This matching is made possible
by the correction to the energy. For the correction, the
usual method in a Hartree-Fock-Slater atomic calculation
[27] is extended in the inclusion of the nonlinear Fock
term. Since the inhomogeneous solution does not always
satisfy Eq. (3.3), a homogeneous solution is added to it to
maintain the normalization condition (3.3).

E =E~&~+E~2~
0 0 0

with

(3.10)

Eo ' =g N«s« ,' f——drp(r) V, (r)
nl

+ r p r 'E„, p r —p,„,p r

and

+
2 g N„i f dr P«(r)F«(r),

nl

(3.11)

C. Expression for the total energy

The total energy Eo is an important physical quantity
by which a theory can be tested. In Ref. [19],no expres-
sion for Ep was given, primarily because the formally ex-
act expression is quite dif6cult to obtain in CHF. In this
subsection, we give an approximate but accurate enough
expression for Eo. The basic strategy is to divide Eo into
local and nonlocal parts. Then the former is treated in an
analogous way to LDA, while the latter to HF. Let us
give our expression first:

E0
= q Nnl Inl ~ +

nl L =2,4, . . .
c (10;10)— S (1) I„i(q)

nl

(3.12)

XjL(qr)p«(r'j)L(qr') . (3.13)

The Srst term in Eq. (3.11) represents the total energy
as the sum of all the occupied level energies. The rest of
the terms in Ep account for the double-counting correc-
tion due to the mutual interactions between electrons.
The second term in Eq. (3.11) is the correction to the
Hartree contribution. This is an exact expression. The
next term corresponds to the correction to the local ex-
change and correlation contribution. An expression simi-
lar to that in LDA is employed for it. This term can be
calculated easily if Z„, is known. Since it is rather in-
volved, the actual process to obtain E„, from p„, will be
shown later. The correction to the nonlocal contribution
is given in both the last term in Eq. (3.11) and Eo ' in Eq.
(3.12). In the derivation of the former, the r, value is
fixed to r, in Z(q;r, ) and the factor —,

' is used by the as-

where p„i(r) is the partial electron density deSned by
p„i(r) =P„i(r),X„,is the exchange and correlation energy
per particle in the local approximation, and

I„i(q)=f dr f dr'[S(q;r, ) S(q;r, )]p„i(r—)

Z„,[r, ]=s,[r, ]+'E„[r,], (3.14)

s, is a known quantity, given by the interpolation expres-
sion of Vosko, Wilk, and Nusair [20]. On the other hand,
the local exchange energy E„ is not known. This must be
derived from the corresponding local exchange contribu-
tion to the chemical potential, p„, in Eq. (2.10). For this
purpose, we note a theorem due to Seitz [28] which re-
lates the ground-state energy to the chemical potential as

r, dz„[r, ]
P„[r,]='E„[r,]——

S

(3.15)

By solving this differential equation numerically, we can

sumption that the deviation from the usual Fock correc-
tion is small. In this sense, Ep" may be regarded as the
total energy in the fixed-r, approximation. The correc-
tion due to the change in r, is provided in Ep ', in which
only leading terms are taken into account.

Now we show our process to determine E„,from P„,. If
we divide 'E„, into the correlation and the exchange parts
as
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obtain c.„from p,„. After an inspection of the obtained re-
sults, we find that 'E„can be written as

E„[r,]=P,„[r,'], (3.16)

where the scaled r, parameter, r,' =gr„ is introduced
with the scaling factor (=1.3698. This value of g is asso-
ciated with LFF in Eq. (2.5} and it is independent of r, in
a very wide range of r, . This indicates that LFF, which is
a source for the r, dependence, has no influence on the
functional form of r, in the local exchange potential. In
the case of the usual exchange potential p„, which is in-
versely proportional to r„g is obtained analytically as
g= —'„which is very close to our value of g.

The inclusion of the g parameter is self-evident: The
change indicated in Eq. (2.13) should be done. So we will
not give the modification introduced by r} explicitly here.

IV. RESULTS

A. Local-Seld factor

Basically, the values of G(z} at both z =0 and ac are,
respectively, determined by the compressibility sum rule
and the pair distribution function at zero separation. In
the intermediate values of z, no such guiding principles
exist and thus G(z} is not determined uniquely. For-
tunately, however, the eigenenergies in Eq. (3.2) as well as
the total energy are virtually independent of the choice of
G(z) provided that G(z) near z =0 has a correct value.
To prove this statement, we have tried with LFF as

Gsov(z)=G(z)+[0. 6 —G(1)]e ' " 07, (4.1)

in addition to the calculation with G (z) in Eq. (2.5). The
function (4.1) successfully reproduces LFF proposed by
Suehiro, Ousaka, and Yasuhara (SOY} [29] which has a

peak structure in the vicinity of z = 1 to mimic the effect
due to the nonlocal exchange potential by a local one. If
we compare the results employing Gsov(z} with those us-

ing G(z}, the diff'erence in the total energy is negligibly
small: In the closed-shell atoms such as Be, Ne, Mg, and
Ar, the deviations are, respectively, given as 0.03%,
0.02%, 0.03%, and 0.05%. The same is true for the level
energies. This conclusion does not change at all even if
we try other possible forms for LFF.

B. Total energy

The calculated results for the total energy with g=0
and 1 are, respectively, given in the columns HF+C and
CHF in Table I for the neutral atoms in the Periodic
Table from He to Ca. We did not calculate Eo for atoms
beyond Ca, because the corrections due to the relativistic
efFect [30] cannot be neglected in those atoms. In all the
atoms treated here, the contribution Eo'" in Eq. (3.11)
dominates over E02' in Eq. (3.12}in CHF: Generally, the
latter gives a correction of the order of 0.01 in atomic
units to the former. The total energies of the HF+C
have previously been reported in detail by Carroll, Bader,
and Vosko [12] with various choices for the correlation
potential in the local spin-density approximation. As
noted previously, the correlation energies are evaluated
with the electronic densities in HF in their treatment.
This means that they did not complete the self-consistent
calculation. Our total energies of the HF+C in Table I,
on the other hand, are the results in the full self-
consistent calculation. We find that this self-consistent
procedure does not give any significant change. Thus the
charge density in HF is actually very close to the self-
consistent charge density.

Our present results are compared with the experimen-
tal results [31]as well as those in LDA and HF which are

TABLE I. Total energies of neutral atoms ( —Eo in a.u.).

He
Li
Be
8
C
N
0
F

Ne
Na
Mg
A1
Si
P
S
C1
Ar
K
Ca

Experiment'

2.904
7.478

14.667
24.653
37.844
54.587
75.063
99.725

128.928
162.245
200.043
242.336
289.348
341.240
398.100
460.149
527.549

LDA

2.835
7.335

14.447
24.344
37.426
54.025
74.473
99.100

128.233
161.440
199.139
241.316
288.197
339.946
396.716
458.664
525.946
598.197
675.742

HF

2.862
7.433

14.573
24.529
37.689
54.401
74.809
99.409

128.547
161.859
199.615
241.877
288.854
340.719
397.505
459.482
526.817
599.165
676.758

HF+C
g=0

2.975
7.595

14.798
24.825
38.064
54.863
75.361

100.056
129.294
162.674
200.507
242.848
289.911
341.865
398.742
460.815
528.249
600.668
678.341

CHF
g=1

2.856
7.398

14.532
24.494
37.676
54.425
74.888
99.556

128.773
162.041
199.796
242.059
289.052
340.942
397.770
459.738
527.112
599.446
677.047

9-CHF
q=2/3

2.896
7.464

14.620
24.594
37.795
54.559
75.033
99.710

128.932
162.254
200.032
242.322
289.338
341.249
398.093
460.096
527.490
599.852
677.477

'Reference [31].
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given m the columns indicated by Experiment, LDA, and
HF in Table I. (Data for K and Ca are not available to
us. ) Note that the results in LDA are obtained using the
expression of Vosko, Wilk, and Nusair for the local
exchange-correlation potential. We fi d h
trend as

e n suc a general

1.0

0.8

0.6 — ~ ~

~ s
I s ~

~ o ~

0.4
I(

~
f ~ s ~ ~

I
~ ~ ~ ~

I ~ ~ ~ ~ I ~ ~ ~ ~

Eo(LDA) & Eo(HF) & Eo(experiment) & Eo(HF+C) .

(4.2)

Thhe results in CHF are located between LDA and HF for
atoms lighter than N, while they are between HF and ex-
periment otherwise. In either case, the correlation ener-
gies are underestimated in CHF.

Since the experimental results always lie between the
results with tf =0 (corresponding to HF+C) and if =1 (to
CHF), we can naturally expect a perfect fit to experiment

y a suitable choice of ri. In Fig. 1, the calculated results
o o with the change of r) are shown for such neutral
atoms as Be, B, C, N, and Ne by the solid circles, solid
squares, solid diamonds, solid triangles, and open
squares, respectively. In order to give all the results in
one figure, we plot the deviation from the experimental
results instead of the values for Eo themselves. A re-
markable point is that for each atom, Eo has a linear
dependence on g. In addition, the calculated Eo is found
to reproduce the experimental value for rf around —'„ ir-
respective of the kind of atoms.

In order to investigate the above point in more detail,
we have determined the value for if, r)o, which yields Eo
in perfect agreement with the experimental value. The
values of qo are plotted in Fig. 2 as a function of the
atomic number Z. Although it is less than 0.6 for Z & 6,
go is always close to —', for Z &6. Thus we propose to

0.4

0.2

0.0
0

s a a I a a ~ a I s a

10

z

I s a

15 20

the ground-state properties in inhomogeneous electron
systems. A trial along this line is given in th 1'n e co umn t-

wit ri= —', in Table I for Eo of atoms. Notice that
E th us obtained is in good agreement with experiment
with accuracy of 0.08% or less.

C. First ionization potentials

The ionization potential (IP) is defined as the difference
etween the ground-state energy of a neutral atom and

t at of the corresponding ion in which some electrons are
removed from the atom. In particular, the smallest ener-

gy to extract an electron from the neutral atom is called
the first ionization potential (FIP), I, . The results for I,
in our g-CHF with r)= —', are given in Fig. 3 by the solid
circles. For comparison, the experimental values are

the atom
shown by the solid squares. The agreement is good

'
ll

toms treated here. The relative error is at most 5%.
in a

FIG. 2. Values of qo for atoms with the atomic number Z
from 2 to 20. Note that go is the value which reproduces the ex-
perimental result of Eo in the g-CHF method.
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TABLE II. Energy levels in the ground states for Ne (a.u).

1$
2$

2p

LDA

—30.306
—1.323
—0.498

HF

—32.772
—1.930
—0.850

HF+C
—32.847
—1.992
—0.910

CHF

—31.644
—1.649
—0.635

Experiment'

—32.0
—1.78
—0.80

'Reference [33).

the LS term: In the unrelaxed calculation, only the state
with P is treated, while in the relaxed calculation, the
difference of the energies between the state with P and
that with S is considered.

As shown in (4.3), the experimental I, is sandwiched
between the values in HF+C with g=0 and CHF with
g=1. This indicates that the relaxation effect might be
accounted for by the change of g from the value —', . In or-

der to check this idea in more detail, we plot the results
for I, I,„,in—the unrelaxed scheme in Fig. 5 for Be, B,
C, N, and Ne by the solid circles, solid squares, solid dia-
monds, solid triangles, and open squares, respectively,
where I,„~, is the experimental value of FIP. As in Fig.
1, we find again the linear dependence of I, on g. Thus
we can easily determine the value of g, g&, at which I pt
is reproduced. In Fig. 6, the results for g& are plotted as
a function of the atomic number Z. The average value
for g, is —,

' which should be compared with ric= —,'. The
reason why g& is reduced from go may be explained as
follows: In the relaxed calculation, the wave functions
for the occupied levels shrink from those in the unrelaxed
calculation. A shrink in real space implies an expansion
in momentum space. This means that large-q scattering
processes which are less screened than small-q ones be-
come more important in the relaxed case. Thus, even if
we employ rjc as large as —'„ the effect of screening is not

large compared to the unrelaxed case. The present calcu-
lation shows that such a reduction in the screening effect
with the shrunken, i.e., relaxed, wave functions is ac-
counted for by the reduction of g in the unrelaxed calcu-
lation. Note, however, that the evaluation of I, with

3 has general ly a rather large error, because g &
in Fig.

6 scatters in a quite wider range than go in Fig. 2.

E.Energy levels

So far, only the highest occupied level is considered.
In order to investigate the behavior of deeper levels, we
give all the level energies in Tables II and III for neutral

Ne and Ar atoms, respectively. Similar to (4.3), we find
the following relation for all occupied levels:

s;(LDA) & e;(CHF) & e, (experiment)

& s;(HF) & e;(HF+C) . (4.4)

Once again, the experimental value is always sandwiched
by the values at ri=0 and l. In Fig. 7, e; is drawn as a
function of g for Ne. We find that all the levels behave in
a quite similar way: They change in proportion to g. At
first sight, this is a very curious behavior. With the
change of the screening eff'ect introduced by the change
of ri, the wave function at each level is expected to
behave differently, depending on the site where it is locat-
ed. Then such a different behavior in the wave function
with g will be reflected in e;, but actually this is not the
case. This indicates that the change in the wave function
due to the alternation of ri is negligibly small. Thus we

may conclude that the wave function itself is already
given rather accurately in HF.

V. SUMMARY AND FUTURE PROBLEMS

In this paper, we have proposed an improvement on
the correlated Hartree-Fock calculation of the ground-
state energies Eo as well as the first ionization potentials

I& for atoms by the introduction of the g parameter. The
optimum value for q is determined to be —,. This provides

very accurate results for both Eo and I&. The effect of re-
laxation during the ionization process may be included by
the choice of g =

—,
' in the calculation for the level energies

in the unrelaxed scheme, though I& thus obtained is not
always very accurate.

At present, we do not see any reason why the present
g-CHF method does not give results for molecules, insu-
lators, and semiconductors with the same accuracy as for
atoms. Thus the application to those systems is one of
our future problems. For the metals, however, we do not
know whether the same g =—', remains the best choice or

TABLE III. Energy levels in the ground states for Ar (a.u.).

1$
2$

2p
3$

3p

LDA

—113.800
—10.794
—8.443
—0.883
—0.382

HF

—118.610
—12.322
—9.571
—1.277
—0.591

HF+C
—118.697
—12.388
—9.639
—1.332
—0.643

CHF

—116.833
—11.681
—8.953
—1.094
—0.471

Experiment'

—118.1
—12.1
—9.25
—1.08
—0.58

'Reference [33].
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not, because the screening may work in a much difFerent
way for the conduction bands in metals. Thus this con-
stitutes another future pxoblem.
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APPENDIX: LOCAL-FIELD FACTOR
AND LOCAL EXCHANGE POTENTIAL

In Ref. [19],the parameters A and 8 introduced in Eq.
(2.5}are, respectively, given as

(I+a&A) +—', a2A, (1+—7aiA)+ —3a&A, (1+—89aiA)
A =—+0.019 18A2

4 (1+a&A, +a2A, +a3A, }
(A 1)

with a& =12.05, a2=4. 254, and a3 =1.363 and

3A

2 —(1+—'A, +—'A, +—'I, + ' I, )2 12 144 2400

(A2}

where the parameter A, was defined in Eq. (2.7). With the
1.216 1+0.2307K,

1+1.532/+ 0.4291$
(A3)

choice of the local-field factor in Eq. (2.5), P„ in Eq. (2.10}
is calculated in units of Ry as
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