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A semiclassical propagator is applied to describe the dynamics of circular-orbit wave packets
which are initially well localized in three dimensions. A sum over classical Kepler trajectories for
the wave-packet autocorrelation function is obtained which is extremely accurate well past the
classical regime of the evolution of the wave packet. The nonclassical nature of the wave-packet
evolution at long times is associated with the interference between amplitudes from classical paths
at different energies. The time scale of the wave-packet revivals is related to the shearing rate of

the corresponding classical ensemble.

PACS number(s): 03.65.Sq, 31.50.+w, 32.80.Rm

I. INTRODUCTION

A clear understanding of the relationship between the
classical trajectories of the Kepler problem and the dy-
namics of quasiclassical states of hydrogen has eluded
physicists for decades. This is in spite of the fact that
the relationship between the quantized energy levels and
certain Kepler orbits was properly formulated when Bohr
developed his model of the atom, even before the birth
of modern quantum mechanics. The earliest attempt to
clarify the meaning of the classical limit for spatially well-
localized quasiclassical states was by Schrédinger, who
tried to adapt his theory of “coherent” states for the
harmonic oscillator to hydrogen and failed [1]. This was
more than a failure of technique, as certain assumptions
about the transition from quantum to classical mechanics
were implicit in the attempt itself.

In recent years there have been renewed efforts in this
direction which use a variety of quasiclassical or coherent
states [2-11]. Some approaches to building such states
use sophisticated generalized coherent-state theories to
find a superposition of eigenstates [2—4], and others are
based more on considerations involved in experimentally
creating such states with the use of short laser pulses
[5-9]. The ideal in all of these approaches is the creation
of a state that is well-localized in position and moves
along a Kepler ellipse [4,10,11] much as a classical par-
ticle would, with the only difference between the wave
packet and the classical particle being limits set by the
uncertainty principle. This picture holds for short times,
but as the wave packet evolves it first decays and later
exhibits nonclassical revivals. These features of the wave-
packet evolution are easily explained [11-13] in terms of
the evolution of the eigenstate superposition coefficients.
However, the possible connection of these phenomena
with the underlying classical dynamics remains obscure
because the representation of the wave-packet evolution
via a superposition of eigenstates is not natural from the
point of view of classical correspondence.

A resolution of this difficulty is provided here with the
use of a semiclassical method that is suited to the study of
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time-dependent dynamical systems. This approach has
been developed by Tomsovic and Heller [14,15], who have
applied it successfully even when the classical mechanics
is chaotic. This method is a refinement of the Gauss-
ian wave-packet theory that has been used by Heller [16]
and Littlejohn [17] in their studies of the relationship be-
tween quantum dynamics and classical phase space. The
technique is based upon an extension of the Van Vleck
propagator [18] due to Gutzwiller [19]. This semiclassi-
cal propagator is the WKB approximation to the Feyn-
man propagator. It maintains the sum-over-paths view
of quantum mechanics due to Feynman, but in this case
only the classical paths are included in the sum. This
allows for a relatively simple explanation of the nonclas-
sical regime of the wave-packet evolution, when the wave-
packet probability distribution differs in significant ways
from the corresponding classical ensemble of trajectories.
At such times, the difference between the two distribu-
tions can be explained by the interference between many
possible classical path amplitudes.

We begin in Sec. II by describing the Van Vleck-
Gutzwiller propagator and outlining Tomsovic and
Heller’s approach to its use in the evaluation of wave-
packet correlation functions. The particular states to
which we apply this method are Rydberg wave packets
that are localized in all three dimensions on a circular Ke-
pler orbit. These states were first introduced by Brown
[10], and later were studied in more detail by Gaeta and
Stroud [11]. We discuss these states and their evolu-
tion in Sec. III. Following that, the classical ensemble
that corresponds to this wave packet will be discussed in
Sec. IV. There the orbits appropriate for evaluation of
the semiclassical approximation to the wave packet’s au-
tocorrelation function will be found. In Sec. V we apply
this semiclassical technique to the evolution of a three-
dimensional wave packet. This is the first step in the
application of these methods to closely related noninte-
grable problems, such as the diamagnetic Kepler prob-
lem and the microwave ionization of hydrogen, which
will require multidimensional treatments. Related to the
present work is that of Barnes et al. [20] for the one-
dimensional hydrogen atom.
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II. SEMICLASSICAL CORRELATION
FUNCTIONS

A semiclassical theory based upon classical trajectories
provides a representation that is useful for studying the
evolution of a state which is initially a well-localized wave
packet. This representation is more intuitive than a con-
ventional energy eigenstate expansion which may involve
hundreds or thousands of states that have little direct
connection to the dynamics. Such wave-packet states are
commonly excited by short laser pulses or collisions, and
are of increasing interest in atomic and molecular physics.

Quite often highly excited systems have classical coun-
terparts which are interesting in their own right, because
of the chaotic or nonintegrable character of their evolu-
tion. The semiclassical method of this section was orig-
inally developed by Tomsovic and Heller [14] to address
the issues involved in the relationship between the classi-
cal dynamics of nonintegrable systems and their quantum
mechanical counterparts. The more important details of
the technique are given here; complete treatments of its
fundamentals can be found in the works of Heller and
co-workers [14,16] and Gutzwiller [19,21].

The starting point is the Green’s function representa-
tion of the quantum mechanical propagator, K(q,q’;t),
which takes amplitudes from position q' to position q
in time t. The evolution of the wave function can be
approximated with the semiclassical form of this propa-
gator, Ksc’ by

Ylat) ~ / dq Kue(a, a3 2) 9(a,0) . (1)

This is the ideal equation to solve, because any physical
quantity of interest can be calculated once the wave func-
tion is known. However, quite often it is just as useful to
have the solution to correlation functions of the form

Chal(t) = / da3(,0) Ya(a,t)

~ / dadq’ $3(e,0)Kie(a, @'s8) Ya(d,0) . (2)

For example, the ionization signal of wave packets excited
by a short laser pulse in a pump-probe experiment can be
directly related to this type of correlation function. In ad-
dition, the time-evolved wave function as represented in
Eq. (1) can be indirectly solved by expanding it in a basis,
and the evolution of the coefficients in the expansion can
be found [15] from equations of the form of Eq. (2). As we
will show, the application of the semiclassical propagator
is considerably simplified when it is used to evaluate the
correlation function of two well-localized wave packets.
Before discussing this aspect of the method, it is neces-
sary to describe the semiclassical approximation in more
detail.

The fundamental semiclassical tool needed for either
Eq. (1) or (2) is the Van Vleck—Gutzwiller (VVG) prop-
agator
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which can be derived from the Feynman propagator [22].
This semiclassical propagator represents a superposition
of classical path amplitudes. The sum over j is for all
trajectories in the N-dimensional space which travel from
q' to q in time t. The phase of the jth contribution
depends on the classical action R; and the Maslov index
p; of the corresponding classical path. The Maslov (or
Morse) index is related to the number of conjugate points
(focal points, caustics, etc.) of the trajectory in question.
The full action R; is also known as Hamilton’s principal
function [21,23]. It is given by the time integral of the
Lagrangian £ along the jth trajectory,

t
Rj(q,q;t) = / dC(qq,?) =5;(aqd;E;) - Ejt .
0

(4)

Here we have assumed a conservative system. The re-
duced action S, which is given by

q

t
Sj(q,qCEj)=/ dt’pj-Q=/ p; -dq" (5)
0 !

q

commonly appears in other semiclassical theories. We
use the same notation for these classical actions as
Gutzwiller in his textbook [21], where he gives an
excellent exposition of the classical underpinnings of
K..(q,9q’;t) and related semiclassical Green’s functions.
Heller [14,16] and others designate the full action by S
instead of R. As much previous work in atomic physics
[6] has used semiclassical theories based on the reduced
action S, rather than the full action R, we choose to
conform to Gutzwiller’s notation.

The magnitude of each contribution in Eq. (3) is equal
to the square root of a classical density which depends
on the stability of the trajectory. This can be seen by
introducing the inverse of the matrix in the determinant
in Eq. (3),

— azR — _83, = U"l
9qdq’  dq ’

(6)

The meaning of this matrix is best understood by con-
sidering trajectories which start at q' at time ¢t = 0 with
a small difference in initial momentum dp’ from a trajec-
tory which reaches q at time t. The difference in their
final position from q, given by the increment dq, depends
upon the matrix U by §q = Udp’. So the magnitude of
each contribution in Eq. (3) depends on the stability of
the corresponding trajectory, or the spread of the trajec-
tories nearby, and represents a density of trajectories. As
the propagator is to be used in an integral, this density
is a weighting term for a differential volume of trajecto-
ries starting in a volume dq’ about q’ and ending in the
volume dq about q. Thus, the role this density plays is
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similar to the role that the density of states plays in solid
state theory or the study of ionization into a continuum.
The nature of the matrix U and its connection with the
Maslov index p is discussed in more detail in Gutzwiller’s
book [21].

There are two difficulties one encounters when apply-
ing the VVG propagator in the integrals of Egs. (1) and
(2). For any arbitrary pair of end points (q',q), it is
quite possible for the number of trajectories involved to
become unmanageably large or even infinite. Further-
more, the integration to be performed is highly oscilla-
tory and therefore not amenable to a numerical com-
putation. Tomsovic and Heller [14] have recently re-
solved these two problems by considering application of
the VVG propagator (3) to the correlation functions of
well-localized Gaussian wave packets.

The first step is to recognize that the classical ensem-
ble p, associated with a well-localized wave packet 1,
is easily determined from its probability distributions in
position and momentum space. For the propagation of
such a wave packet, it makes sense to restrict the trajec-
tories used for the VVG propagator to those with initial
conditions determined by p,. If the correlation function
of 1, (t) with another well-localized wave packet 1(0) is
under consideration, the relevant trajectories are found
from the subset of the classical ensemble p, which evolves
in time t to become a subset of the classical ensemble pp
corresponding to 9. This concept is illustrated in Fig. 1.
Classical trajectories not in this subensemble p,(t)Nps(0)
will give contributions to the VVG propagator which are
highly oscillatory with respect to the integrations over
initial and final wave functions for the correlation func-
tion. These contributions will average out, leaving the
contributions from the trajectories given by p,(t) N py(0)
to dominate the result. This can be likened to a “filter-
ing” of the VVG propagator by the wave packets [14,16].

The example in Fig. 1 illustrates a situation at short
times for which there is only one contribution for every
pair (d’,q), with the possible exception of contributions
from trajectories outside of p4(t) N pp(0) which are ig-
nored henceforth. At long times, the ensemble p, (t) will
most likely be spread out over a large region of space.
In general, it will fold over upon itself or “mix” in ways
that depend upon the nature of the dynamics (integrable,
chaotic, etc.). When this happens, there will be more
than one contribution in the semiclassical sum for most
pairs of initial and final positions (q’,q), even with the
restriction to physically relevant trajectories. A proper
understanding of the dynamics allows one to organize the
set pq(t) N pp(0) according to its topological properties.
Consider two pairs of points (q},q:) and (q}, q2), where
the primed coordinates are both located near the cen-
ter of one wave packet and the unprimed coordinates are
near the center of the other. In the sum over trajectories
for the VVG propagator, for every trajectory labeled by
J1 for the first pair of end points, there is a trajectory
labeled by j, for the second pair which is a smooth de-
formation of the first trajectory. If a sensible scheme has
been developed for the labeling of the trajectories, then
j1 = j2 = k, and the summation index in Eq. (3) is in-
dependent of (q’, q), over the range of coordinates where
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the wave packets have significant amplitudes. This de-
fines a partitioning of the ensemble p,(t) N pp(0).

The partitioning of the ensemble allows the order of
integration and summation to be interchanged when the
VVG propagator (3) is inserted into Eq. (2), resulting in
the partitioned semiclassical correlation function

Cua(t) =) CE,(t)
k

= E d dq, ‘qb‘ q, 0 1(: q, ql; t ¢ ql, 0) .
. /] q b( ) c( ) G( )

If the partitioning is done correctly, the value of the VVG
propagator for all of the members of the kth partition
can be approximated by a Taylor series expansion of
the action R about that of a representative trajectory
in that partition. This reference trajectory must be cho-
sen carefully, in order to minimize the error in the phase
of the partition’s contribution [14]. The expansion of
Ri(q,q';t) about the initial and final positions (qo,q¢)
of the reference trajectory is carried out to second order
in ¢ — qo and q — q; in the Appendix. The first-order
terms depend only upon the initial and final momenta

(a)
p Py
q
................ (b)
q;

P,®

9

FIG. 1. Set of trajectories relevant to semiclassical corre-
lation function, shown in (a) phase space, (b) configuration
space. The solid line indicates the trajectory of a representa-
tive member of the set p,(t) N ps(0). The dotted line indicates
a trajectory which is not a member of either p, or ps at any
time, but has initial and final positions within the projection
onto configuration space of p, and ps, respectively, and so
would be needed for a direct evaluation of the VVG propaga-
tor.
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of the reference trajectory. The second-order terms de-
pend upon the elements of the matrix given in Eq. (6),
evaluated for the reference trajectory. It often proves
convenient to solve for those matrix elements with the
use of the stability matrix defined by

(5o ) =™ (50 ) ®

where (8qo,dpo) are small deviations about the initial
position and momenta of the reference trajectory, and
(dqe, 6p¢) are the resulting deviations at the final time ¢.
The relationship between the matrices given in Egs. (6)
and (8) is given in the Appendix. The stability matrix
defined by Eq. (8) represents a linearization of the dy-
namics for trajectories near the reference trajectory, and
is the key to accounting for the contributions of an en-
tire partition with a single reference trajectory. Tomso-
vic and Heller [14] discuss this linearized dynamics in
more detail, particularly with regards to chaotic classical
systems. The linearized dynamics near circular Kepler
trajectories will be given in Sec. IV.

The expansion of the action Rj out to second order
turns the exponential in Eq. (3) into a complex Gaussian.
The use of this linearized semiclassical propagator allows
for an analytical solution to the integral for Cf, in Eq. (7)
when 1, and 1, are Gaussian as well. More details of
this procedure are given in the Appendix. The use of the
resulting solution for CF, in Eq. (7) yields a sum with
the form

Cba(t) = ZCk exp (%Rg) )
k

where RY is the classical action of the kth reference tra-
jectory. The complex amplitude (; depends on the prop-
erties of the reference trajectory and the parameters of
the initial and final Gaussians. The beauty of this ap-
proach is that now the semiclassical solution for the corre-
lation function has been reduced to a sum over reference
trajectories, which are a much smaller set of trajecto-
ries than the total number of physically relevant trajec-
tories, much less the total number of classical trajectories
which would contribute to the VVG propagator in a for-
mal sense. Furthermore, for integrable systems such as
the Kepler problem, the classical parameters needed for
this solution to the partitioned correlation function can
be found explicitly. As will be shown in Sec. V, this
makes it possible to understand the long-time behavior
of these wave packets in different terms than we use when
we examine the exact quantum mechanical expression in-
volving the quantized energy levels.

III. CIRCULAR-ORBIT WAVE PACKETS

Now that the semiclassical approach has been ex-
plained, it is time to discuss the Rydberg wave packets to
which it will be applied. The circular-orbit wave packets
[10,11] can be considered to be among the most classical
of the Rydberg wave packets localized on a Kepler el-
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lipse [4]. This is because all of the quantum numbers are
large for the states involved in the superposition, which
are known as the circular-orbit, or aligned, hydrogenic
eigenfunctions (m = [ = n — 1). The wave-packet state
is a Gaussian superposition of these eigenstates over a
range of energies,

B (n —m)?

'l/l(l',t) = (7['0’121)‘1/4 Zexp ( —27‘-2—— — zwnt> @n(r) 5

(9)

where the mean energy of the wave packet @ depends on
7. The energies of the states are given by w, = —1/2n?
in atomic units, which are used throughout this paper.
It has been shown by Gaeta and Stroud [11] that this
state has uncertainty products approaching their mini-
mum values in all three dimensions. It can be shown [10]
that the Gaussian wave packet

Ywp(r) = Ngexp [zﬁ(qS — 5)]
s exp (_(r—r)z _(0-9? (¢—¢)2)

202 202 203

(10)

is a good approximation to the circular-orbit quasiclas-
sical state in Eq. (9) at ¢ = 0. The polar coordinates
used in Eq. (10) have the z axis for the polar axis. The
parameters of the Gaussian assume that 0, < 7, and
are given by 02 = 40202, 02 = 1/7, 0y = 1/0,, T = 12,
6 =m/2,and ¢ = 0.

These circular-orbit wave packets were first studied by
Brown [10], who considered their dynamics only for rel-
atively short times. The long-time dynamics of these
states were studied by Gaeta and Stroud [11], who have
made a videotape of the full evolution which displays all
of the interesting features of these wave packets. The
state in Egs. (9) and (10) represents an electron ini-
tially localized with near minimum uncertainty about
(7,0,¢) = (n®,7/2,0). As this state evolves in time it
remains localized in the z-y plane on the circle 7 = 7, so
we need only to consider the ¢ dependence as a function
of time. For the first few classical orbit periods, the state
remains fairly well-localized around ¢(t) = ¢ + wat, as if
it were a classical electron with m = [ = m. The wave
packet spreads in ¢, but this can be understood from
the classical dynamics by considering the spreading of an
equivalent ensemble of particles.

As the wave packet evolves further, it spreads com-
pletely around the circle and then its evolution devel-
ops nonclassical features. At certain critical times in
this quantum regime of evolution, wave-packet structures
known as fractional revivals form. When this occurs the
wave function consists of a set of localized wave packets
[11,12], each identical to the initial state, which are dis-
tributed symmetrically in ¢ about the circle » = 7. This
curious behavior contrasts with that of the correspond-
ing classical ensemble at these times, which will be more
or less evenly distributed about a circular annulus cen-
tered at 7. It would appear that classical correspondence
completely breaks down at this point.
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As was shown in the last section, the Van Vleck—
Gutzwiller propagator provides a simple way to under-
stand this discrepancy. With this propagator, when more
than one classical path is involved there will be interfer-
ence between their amplitudes. Thus, the quantum fea-
tures of the wave-packet evolution can be given a classical
“grounding,” providing a more complete appreciation of
the correspondence between the classical and quantum
dynamics of this system. Therefore, it is necessary to
find the proper partitioning scheme for the classical en-
semble relevant to these Rydberg wave packets, and to
choose the appropriate reference trajectories. The next
section discusses these trajectories and their properties,
which will be used in Sec. V to calculate the semiclassi-
cal autocorrelation function of the circular-orbit Rydberg
wave packet.

IV. CIRCULAR-ORBIT CLASSICAL DYNAMICS

The importance of the circular orbits for the Rydberg
wave packet in Eq. (10) can be seen from its probabil-
ity distribution. From the Gaussian form of its coor-
dinate representation, it is clear that the members of
the relevant classical ensemble have initial positions near
(r,0,¢) = (F,7/2,0). It is easy to see that the circular-
orbit wave packet’s momentum space representation will
be centered at (p,,ps,py) = (0,0,7), keeping in mind
that # = 1 in atomic units. All trajectories with these
conditions on their initial position and momenta are cir-
cular or nearly circular Kepler trajectories oriented close
to the z-y plane. This set will be referred to as the
circular-orbit ensemble, even though only a subset of this
ensemble is composed of strictly circular trajectories.

The semiclassical evaluation of the autocorrelation
function for the wave packet requires a partitioning of
this ensemble and a determination of the reference tra-
jectories according to the scheme outlined in Sec. II. The
key step is to recognize that all Kepler orbits with the
same energy will have the same period regardless of el-
lipticity or orientation. In atomic units the energy and
period are given by

E=—2% , T =2mn?, (11)
and depend only upon one action variable, n, which cor-
responds to the principal quantum number in the quan-
tized hydrogen atom. If an initially well-localized en-
semble of trajectories with the same energy, but varying
ellipticity, is allowed to propagate, during the course of a
classical period they will spread apart. However, because
they all have the same classical period they will come
back together again at the end of each period. Thus,
even at very long times the evolution of the slightly non-
circular trajectories can be accurately determined from a
local linearization of the dynamics near the circular tra-
jectories in the manner discussed at the end of Sec. II
[see Eq. (8)].

The next step is to study the dynamics of circular tra-
jectories as a function of energy. The circular trajectories
in the z-y plane can be fully parametrized by the action

2333
variable n and the initial angle ¢y,
r=n?,
1
¢=¢o+ —t. (12)

Consider a set of circular trajectories which start with dif-
ferent values of 7 but have the same initial value ¢ = 0,
as if they were at the starting line of a race track. As
can be seen from Egs. (12), the trajectories in this “race-
track” ensemble with larger r will take longer to cover the
same range of angle ¢ than those with smaller r, so there
will be a shearing of this ensemble as time increases. If
the race-track ensemble is well-localized with values of
r near some large 7, the shearing will be small for the
first several periods, with the trajectories on the “inside
track” gradually creeping ahead of the ones outside. The
shearing of the race-track ensemble for relatively short
times is displayed in Fig. 2. At these short times, the
behavior of the entire race-track ensemble can be accu-
rately described by linearizing the dynamics about the
trajectory at the mean energy. A similar linearization of
the dynamics about the central trajectory of the circular-
orbit ensemble will accurately explain the behavior of the
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FIG. 2. Shearing of race-track ensemble. (a) Circular tra-
jectories at integer values of n = 9995 to 10005 (7 = 10000),
with differences in r exaggerated by a factor of 20. Initially
lined up at ¢ = 0 (open circles), the trajectories at smaller
r move ahead after traveling clockwise for ¢t = T¢; (solid cir-
cles). (b) In this case a continuous distribution with 7 = 360
and o, = 10/7 is plotted to scale at ¢ = 0 (solid vertical
line) and ¢t = 2T, (dotted line). The solid outline shows the
corresponding Gaussian wave-packet contour.
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circular-orbit wave packet. Ehrenfest’s theorem applies
during this range of times, which defines the classical
regime of the wave packet’s evolution. The extent of this
regime has been dubbed the Ehrenfest time by Heller and
Tomsovic [24].

At much longer times, the trajectories at smaller values
of 7 will lap the ones at larger values of r. The shear-
ing will be so great that the race-track ensemble will be
spread out in a large spiral, as illustrated in Fig. 3. At
this point the ensemble has spread out so much that tra-
jectories on the inside part of the spiral have gone around
the nucleus several times more than those on the outside
of the spiral. As mentioned in Sec. II, the partitioning
scheme needed for evaluation of the semiclassical corre-
lation function depends on the location of the final state.
Hence, for the autocorrelation function it is the intersec-
tion of the spiral with the initial Gaussian that is perti-
nent. Viewing the intersections that the spiral structure
makes with the Gaussian wave-packet outline in Fig. 4,
the race-track ensemble can be characterized by the dif-
ferent strips, which each represent a set of trajectories
that have just completed, or are about to complete, the
same number of repetitions of their periods. Each mem-
ber of one of the strips will differ from any other member
of the same strip only by a small increment in energy, and
so a linearization of the dynamics about any single mem-
ber is sufficient to completely determine the evolution of
the entire set in the strip.

Keeping in mind that all of the circular trajectories
plotted in Fig. 4 left ¢g = 0 at t’ = 0, the most symmetric
choice of trajectory to represent the strip is the one at
¢: = 0, which will be completing its kth period exactly
at time ¢’ = t. This trajectory will be defined as the kth
reference trajectory, and it is determined from

kT =t (13)

where k is an integer and T = 2mn} is the period of

FIG. 3. Spiral formed by race-track ensemble at long times.
The initial distribution (solid line) has mean 7 = 360 and
variance 0, = 10/, and the final distribution (dotted line)
shows the amount of shear at ¢ = 607;. The spread in radii
is exaggerated by a factor of 10.
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FIG. 4. Intersection of race-track spiral with Gaussian
wave packet. Expanded view of the spiral shown in Fig. 3,
this time plotted properly scaled. The solid horizontal curves
are the visible portions of the Gaussian contour [see Fig. 2(b)],
and solid vertical and dotted lines are as in Fig. 3.

the orbit. Here, and for the remainder of the paper, the
subscript £ on a variable indicates that it is evaluated
for the circular trajectory which satisfies the condition
(13). The partitioning of the circular race-track trajec-
tories into strips is the same as partitioning them into
energy ranges centered at the reference trajectories de-
fined by Eq. (13). The circular-orbit ensemble includes
slightly elliptical trajectories as well as circular ones, so
we define the kth partition to be all circular and almost
circular trajectories close in energy to the kth reference
trajectory that leave the vicinity of the Gaussian at time
t' = 0 and return to the vicinity of the Gaussian at time
t’ = t. According to the discussion at the end of Sec. II,
these trajectories and their contributions to the semiclas-
sical propagator are obtained from a linearization of the
dynamics about the reference trajectory’s initial and fi-
nal positions. This requires the solution to the stability
matrix given by Eq. (8) for closed circular orbits in the
z-y plane.

It is most appropriate in this case to solve for the sta-
bility matrix in polar coordinates,

Mf — a(rt70t3¢typr¢7p0¢7p¢g) ) (14)
a(”"07007 ¢0,PrO,P007P¢o) k

This can be solved analytically for general Kepler trajec-
tories by several methods, but for a full three-dimensional
treatment this becomes rather tedious. It is easiest
to take a direct approach for the special case of the
circular trajectories in the z-y plane. The stability
matrix for these trajectories can be easily found by
varying the initial conditions (ro,80, P, Pros P> Pso) =
(n2,7/2,0,0,0,n) by an infinitesimal increment in each
phase space coordinate, one at a time, and finding the
Kepler ellipse that results. Once the perturbed ellipse
is found, the change in the phase space coordinates at
some later time t is readily determined from the Kepler
equations.

This procedure is straightforward, so we just give the
final result. For a circular trajectory at a time which is a
multiple of its period, the stability matrix has the simple
form
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Mf = (15)
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The only nonzero off-diagonal element is d¢;/8p4,, and
it is proportional to

ri= (16)

a-:.sI @

which determines the shearing rate of the nearby trajec-
tories. There is an interesting relationship between this
shearing rate and the wave-packet revival period. This
will be discussed further in the next section, where the
results of this section will be applied in conjunction with
the semiclassical method from Sec. II.

V. CIRCULAR-ORBIT AUTOCORRELATION
FUNCTIONS

The autocorrelation function of an initially well-
localized wave packet captures the most important fea-
tures of its evolution. As the wave packet slowly decays
in the classical regime, the autocorrelation function maps
this as a series of spreading peaks centered at the classi-
cal period. When the wave packet undergoes fractional
revivals, the wave-packet fractions are mapped out as a
series of well-localized peaks separated by the relevant
fraction of the classical period from one another. Ad-
ditionally, the Fourier transform of the autocorrelation
function yields the eigenvalues of the system over the
band of energies covered by the wave packet, but that
plays a secondary role here as the primary concern is the
dynamics of the system.

The autocorrelation function is also an important
physical observable which is more accessible to experi-
ment than the wave function itself. This is because there
is a close connection between the autocorrelation func-
tion of a Rydberg wave packet and the result of a pump-
probe experiment used to excite and detect it. The wave
packets excited by short laser pulses are usually radially
localized [5-7], but their autocorrelation functions be-
have very similarly to those of circular-orbit wave pack-
ets. This is most easily seen from the eigenstate repre-
sentation of the autocorrelation function

(T(0)[(2)) = Y lan|® exp(—iwnt) , (17)

where the a,’s have a Gaussian distribution about 7,
as indicated in Eq. (9). A wave packet excited from a
ground state to, say, the p states of the Rydberg series
will populate those states with a distribution in energy
similar to what is found in Eq. (9), for a laser pulse with a
Gaussian shape. This is because there is a Fourier trans-
form relationship between the laser pulse excitation and
the final Rydberg state amplitude distribution [6]. Be-
cause the energy level spacing is the same for the p states

as it is for the aligned states, the correlation function for
the radial wave packet is very close to Eq. (17).

In the classical limit of large 7 and with the condi-
tion o, < 7, the levels with significant population sat-
isfy n — m <« ®. Over such a small range of energies in
the Rydberg series, the energy levels are spaced approx-
imately like those of a harmonic oscillator with period
T, = 277° equal to that of the Kepler orbit at the mean
energy. The wave-packet autocorrelation is close to that
of the harmonic oscillator until times such that the non-
linearity of the energy levels becomes significant, when
the wave-packet decay becomes apparent. However, it
has been predicted theoretically [5,11,12] and observed
experimentally [9] that at times near the so-called revival
period

Trev = chl ’ (18)
the wave packet will approximately regain its original
form. Furthermore, at certain fractions of this period the
wave packet undergoes fractional revivals [9,11,12]. The
rest of this section is devoted to showing how these fea-
tures can be accurately reproduced semiclassically, with-
out the need for the quantized energy levels.

The semiclassical approximation for the correlation
function defined by Eq. (7) is integrated in the Appendix,
after linearizing the action R about that of an arbi-
trary reference trajectory. The resulting expression in
Eq. (A11) depends upon the parameters of the initial and
final Gaussians, and those of the reference trajectory. As
discussed in Sec. IV, each reference trajectory for the au-
tocorrelation function of the circular-orbit wave packets
is the kth recurrence of a circular orbit. In Eq. (13) this
orbit is defined by T} = t/k, which is more conveniently
expressed as a relation for the action variable,

ni = (5%)1/3 : (19)

As these are closed orbits, the initial and final positions
of the trajectory are the same point. This point is chosen
to be in the z-y plane with ¢ = @, where ¢ = 0 is the
center of the wave packet in ¢; see Eq. (10). This is used,
along with r = n? from Eq. (12), to get

(r0s00a¢01proap0mp¢u) = (Ttyeta¢t7pr¢7p9¢1p¢¢)
= (n?,7/2,0,0,0,n;) .  (20)

The stability matrix of this reference trajectory is given
by Eq. (15), and only depends upon k and ny, as can be
seen from Egs. (16) and (19). The Maslov index p; of
the reference trajectory is determined from its conjugate
points. For a single repeat of a Kepler orbit there are
four conjugate points [19,21], which results in a phase
contribution of 27 per orbit repeat.

The initial and final wave packets are identical for
an autocorrelation function. The parameters of the
Gaussian wave packet are completely specified by its
mean position and variance in phase space. The mean
phase space coordinates of the circular-orbit wave packet
are identical to the initial and final position of the ref-
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erence trajectories, except for 7 = @2 and p, = m. The
wave packet variances are specified by a width matrix.
The width matrix of the circular-orbit wave packet is di-
agonal, and is readily obtained by inspection of Eq. (10),

1/202 0 0
W = 0 1/207 0 . (21)
0 0 1/20}

The semiclassical sum for the circular-orbit wave
packet autocorrelation function can now be calculated by
using Egs. (15), (16), and (19)—(21) in Egs. (A9)-(A11)
in the Appendix. The final result can be simplified to

t)zzkjcs t)_z "’exp( (kﬁ_") +zR°)

(22)
The full action for the kth reference trajectory is
1
R}, = Sk — Ext = 27k —t, 23
k k mENY + 2n? (23)
and the parameters for the amplitude are
ak = U'i - ZXk 5
1 1
3= +i—, 24
k U?;& Xlzc ( )
FG
2 k
= k¢
Xk 2

The exact quantum autocorrelation function in
Eq. (17) and its semiclassical counterpart in Eq. (22) are
plotted in Figs. 5 and 6. Their real parts are compared to
check the accuracy of the phase as well as the magnitude
of the semiclassical approximation. To aid the compar-
ison, the quantity studied is C(t) = e*“*(¥(0)|¥(t)) ~
€*“tC,.(t), which removes the rapid oscillations. The ini-
tial parameters of the wave packet studied in Fig. 5 are
chosen such that it remains well-localized for a number
of Kepler periods. As can be seen in Fig. 5(a), the semi-
classical sum provides a very accurate solution to the
autocorrelation function during the initial decay of the
wave packet, except for the first recurrence of the wave
packet. We note that the semiclassical sum in Eq. (22)
does not apply near t = 0 because none of the trajectories
in the circular-orbit ensemble will have time to complete
their orbits. At any time after the initial decay, there
is no visible difference between the exact and semiclassi-
cal expressions. An example of this is shown in Fig. 5(b),
which compares the two expressions near the half revival.
Figure 6 examines the accuracy of the semiclassical ap-
proximation at the same times as in Fig. 5, but for a wave
packet which is initially much better localized in ¢. This
large decrease in width requires a corresponding increase
in spread over energy, and as a result the wave packet
breaks apart even in its first orbit about the nucleus,
and never fully revives. For this wave packet, the semi-
classical sum accurately reproduces all of the features of
its autocorrelation function, even the recurrence at the
first classical period.

It may come as a surprise that the semiclassical ap-
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FIG. 5. Accuracy of semiclassical result. The real part of
the exact autocorrelation function (solid line) is compared to
that of the semiclassical approximation (dashed line). The
wave-packet parameters are 7 = 120 and o4 = 27w /10. The
comparison is during (a) the classical regime (b) the 1/2 re-
vival.
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FIG. 6. Accuracy of semiclassical result. The real part of
the exact autocorrelation function (solid line) is compared to
that of the semiclassical approximation (dashed line). The

wave-packet parameters are 7 = 120 and o4 = 2m/40. The
comparison is during (a) the initial decay (b) the 1/2 revival.
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proximation works better at short times for a wave packet
which has no classical regime of evolution than for one
that does. However, this is not due to errors in the semi-
classical propagator, but rather in the way it was ap-
proximated with reference orbits. The range of energies
spanned by a given ensemble partition increases with o.
The accuracy of the linearization of the dynamics about
a reference trajectory is only good for a constant range
of energies at some given time. Thus, the method is
expected to be more accurate for smaller values of oy,
in agreement with Figs. 5(a) and 6(a). The errors in
Fig. 5(a) are most pronounced in the wings of the first re-
currence because contributions from the trajectories near
the mean energy are more important to the wings of the
recurrence than contributions from trajectories far from
the mean energy are to the center of the recurrence. The
accuracy is still good in any case, but could be improved
if we linearized the dynamics about the mean energy cir-
cular trajectory at these times. This approach would
yield a result which is equivalent to that of Brown [10],
and is valid in just those cases where the semiclassical
approximation in Eq. (22) works most poorly.

The value of the result in Eq. (22) is not merely its ac-
curacy, but also the insight it provides for the correspon-
dence between the classical dynamics of the system and
even the nonclassical features of the wave-packet evolu-
tion. The transition from the classical regime to the non-
classical regime has been explained previously in terms of
the nature of the energy level spacing [11,12]. The semi-
classical sum gives an entirely different perspective on
this transition. During the classical regime of evolution,
the ensemble of trajectories corresponding to a prop-
erly prepared wave packet remains well-localized, only
spreading significantly after a number of classical periods.
Before this ensemble has spread completely around the
orbit, there will be at most one significant reference tra-
jectory contribution in the semiclassical sum in Eq. (22)
at any given time, and so there will be no nonclassical
interference involved. As soon as the classical ensemble
has spread around the orbit, as in Fig. 3, more than one
contribution will be involved and the nonclassical inter-
ference begins. This rate of spreading is given by the
shearing rate T'" near the mean energy trajectory. With
the use of Eqgs. (18) and (16), this shearing rate can be
directly related to the revival period by T'" = 27 [Trev,
yielding a classical explanation for this time scale.

This semiclassical approach permits a more intuitive
way of approaching wave-packet dynamics in the corre-
spondence principle limit, because all of the terms in-
volved in the semiclassical sum have a classical origin.
Furthermore, the partitioning scheme used to simplify
the semiclassical calculation also provides an effective ba-
sis for understanding the final result. This is because
the partitioning “organizes” the members of the relevant
classical ensemble into the essential minimum number of
terms needed to fully appreciate the dynamics of the sys-
tem. The ease with which this technique can be applied
to a full three-dimensional calculation in hydrogen is also
encouraging because of the continued interest in noninte-
grable systems such as the diamagnetic Kepler problem
and the microwave ionization of Rydberg atoms, as well

as other closely related problems which need a multidi-
mensional treatment.

VI. CONCLUSIONS

We have applied an accurate semiclassical method,
based on the Van Vleck-Gutzwiller propagator, to a
full three-dimensional calculation for the autocorrelation
function of circular-orbit Rydberg wave packets. The
result was attained by organizing the relevant classical
ensemble into appropriate subsets, and evaluating each
of their contributions with a properly chosen reference
trajectory. These reference trajectories are the circular
Kepler trajectories which have completed some multiple
of their period at the time of interest. The shearing rate
of these Kepler trajectories was seen to be directly related
to the revival period of the wave packets, reflecting the in-
timate connection between the classical and quantum me-
chanical dynamics even in the nonclassical regime. The
semiclassical approximation that results from the use of
these reference trajectories proved to be highly accurate,
even for very long times during which nonclassical phe-
nomena are observed. With the semiclassical sum, it is
seen that the onset of the nonclassical regime of evolu-
tion coincides with the beginning of interferences between
classical path amplitudes. This provides an alternative
description of the dynamics of localized electron wave
packets in hydrogen, and helps lay the foundation for
the solution of closely related nonintegrable systems.
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APPENDIX: LINEARIZED SEMICLASSICAL
INTEGRALS

The circular-orbit wave packet in Eq. (10) is a specific
example of an N-dimensional Gaussian wave packet of
the form

Ya(q) = [det (%Wa)] . exp [%pa “(a- qa)]

xexp |~ (@ o) Wa-(@a-aa)]. (A1)
This Gaussian represents a probability distribution local-
ized about (q.,p.) in phase space. The N x N matrix
W, specifies the width of the Gaussian in configuration
space, and is assumed to be symmetric. With wave func-
tions v, and 1, having the form given in Eq. (A1), an ap-
proximate analytical solution to the correlation function
defined by Eq. (7) can be found if the action Ri(q,q’;t)
is expanded out to second order about the initial and
final coordinates of the kth reference trajectory. This
expansion results in the linearized action
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ORy,

R™(q,q;t) = Ry (qs, qo;t) + (a_q’) (4 —qo) + (
0

1 O%R;,
+ E(q_qt)' ( dq2 )q

t

where qo and q; are the initial and final positions of the
reference trajectory, respectively.

Using Eq. (A2) in Eq. (7) leads to two N-dimensional
Gaussian integrals. To evaluate the integrals, the deriva-
tives of the action integral need to be put into a useful
form. The first derivatives are given, from elementary
classical mechanics [21}, by

q' ) 4 ° oq /,,

The second derivatives are solved for in terms of the ele-
ments of the stability matrix, defined by

dar \ _ aqk [ 990
(5Pt) =My (6po>’

where (8qo,dpo) are small deviations about the initial
conditions of the reference trajectory and (dq:,dp:) are
the resulting deviations at the final time ¢t. Decomposing
the stability matrix into four N x N blocks

(A3)

(Ad)

Oqr  Oar
d0q0 9po A B)
k: = N A5
Me= ) ope op cD "o
8q0 Opo

the second derivatives of the action integral work out to

2
(a Rzk) — DB—I ,
dq a
32Rk) —1
=B7TA,
( aqlz qo0

(Bsz ) — _(BT)™
3q8q’ q¢,90

(A6)

Cha () = [det(Yo/2)] ? exp{ “[BY + o (20— @a) — P~ (0 — b)) — i 1

1

@)+ (a—a)- (g—;ﬁ%)
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dRy B 1, 8’R,, ,
3a )q‘(q 9:) + 5(a' — Qo) (—aq'2 (d' —qo)

0

) (q, - qO) ) (A2)

qt,d0

[

where use was made of the fact that M¥ is a symplec-
tic matrix [17]. The double integral in Eq. (7) is now
approximated by

CE () ~ [det(2ninB)] /2 / / dq dq’ ¥} (a) Ya(q)

7 1 T
X exp (5R}:“(q, q’;t) — 25;%) )

(A7)

which is a pair of Gaussian integrals; see Eq. (A2) for the

linearized action integral. This can be evaluated for the

general case, but it simplifies considerably if the matrices

A, B, C,D, and W, = W, = W 2/2 are diagonal.
The new matrix W, takes the diagonal form

0 oo e 0
wo= | (a9
0 0 - o,
The following matrix definitions are useful:
Yo=A+D+VB+CV!,
Y,=A+VB | Y,=D+CV! (A9)

Y;=A+CV™!' | Y,=D+VB,

with V = iAW 2. Also needed are the scaled variables,
Go=W;" (@0-qa) , Po=Wo-(Po—Pa)/h,

Pt = W, - (p: —ps)/R .
(A10)

@a=W;' (@ —q) ,

Performing the integrals in Eq. (A7) yields

2

“5(60'Y3Y51'ao+f50'Y4Yo—1'§0+at'YZYJI'at+§t'Y1Y51'ﬁt)

+i(8o - YeY3l - Po— G- Y1Y5" - Be) + (do +iPo) - Yo' - (@ — iﬁt)} . (ALD)
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