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Contractive states of a free atom
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A position-measurement scheme is discussed which prepares an atom in a contractive state.
Two operating regimes are analyzed. In the Srst, the quadratic form of the interaction potential is
responsible for the focusing. In the second regime the potential varies approximately linearly with
position, and the focusing results from the measurement itself. In this second regime the scheme
provides a very close realization of the Einstein-Podolsky-Rosen Gedankenexperiment, an analogy
that allows some insight into the production of measurement-induced contractive states.
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I. INTRODUCTION

Quantum mechanics imposes a fundamental limitation
on the precision of position measurements of a free mass
since such measurements inevitably introduce momen-
tum uncertainty into the system. This momentum uncer-
tainty feeds into the position of the system, afFecting the
position uncertainty at a later time and limiting the reso-
lution of a subsequent position measurement [1].This has
important practical consequences in gravitational wave
detectors where the signal is comparable in magnitude to
the quantum noise of the measurement. In an attempt
to evade this so called standard quantum liinit (SQL)
Yuen [2] suggested the preparation of contractive states,
a proposal which has initiated much debate (see [3,4] and
references therein).

In this paper we discuss an experimentally realizable
method to measure the position of an atom while simulta-
neously preparing it in a contractive state. The physical
arrangement, which has been described previously [5,6],
involves a standing light wave that is highly detuned &om
an atomic resonance. As the atoxn passes through the
standing wave it induces a phase shift on the field that
depends on the atom's transverse position. The atomic
position can then be inferred by making a phase-sensitive
measurement on the field.

An alternative method to measure the position of an
atom has recently been demonstrated by Gardner et
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al [7]. The. y obtain suboptical wavelength position reso-
lution of atoms using Raman induced resonance imag-
ing, in which a spatially varying light shift correlates
an atomic resonance frequency with the atomic position.
However, since the de Broglie wavelength of their atoms
is much less than the position resolution they are in the
limit of a classical measurement.

We first consider position measurements made in the
region of a Beld antinode, where the potential is approx-
imately quadratic. The production of contractive states
in this region was mentioned briefly in Ref. [5].

Secondly we consider position measurements made in
the region midway between the nodes and antinodes of
the standing wave, where the potential is approximately
linear. Whether or not the atom contracts in this case
depends on the type of Geld measurement chosen. This
choice may be made after the atom-field interaction,
when the atom can no longer be physically manipulated.
The system is shown to provide a very close realization
of the Gedankenexperiment described by Einstein, Podol-
sky, and Rosen (EPR).

II. CONTRACTIVE STATES

The standard quantum limit, as it was originally for-
mulated by Caves et aL [1], states that in two successive
position measurements on a free mass m made a time 7.

apart, the result of the second measurement cannot be
predicted with uncertainty smaller than (hr/m) 1 . A
heuristic argument for this limit runs as follows. The un-
certainty in the position of a mass at a time w after a posi-
tion measurement will arise from two sources: There will
be some uncertainty due to the finite resolution b,x(0) of
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the 6rst measurement, and there will be a contribution
Ap(0)r/m kom the momentum uncertainty introduced
by the measurement. The resulting uncertainty obtained
by combining these two contributions is

b,z(7) can be minimized by varying the initial position
and momentum uncertainties within the constraint im-
posed by the uncertainty principle. According to this
argument, the position uncertainty at time 7 must there-
fore be greater than a minimum given by

(» (&))wL = —.

(b,z2) —ipse
C = —sgn((bzb, p+ Gpss, z)) (6)

For a Gaussian distribution w is given by the minimum
uncertainty relation, and the contraction is therefore

C = —sgn((h zb, p+ b.p6z)) —l. (7)
4(Ep2) (Ez2)

set of twisted coherent states. Their position uncertainty
decreases while t is negative, reaching a minimum at t =
0. This minimum position uncertainty is analogous to a
beam waist in optics, and we denote it by to. For positive
t the distribution spreads out again.

We may define the "contraction" C of the state in
terms of the &action by which the position variance de-
creases,

Yuen [2] pointed out a serious Saw in this heuristic
argument for the standard quantum limit. A rigorous
treatment of the evolution of a free mass in the Heisen-
berg picture showers that the position varies as

Hence for a twisted coherent state

—L
2m02 (s)

t
(t) = *(o) + p(o) m

where z and p are now quantum-mechanical operators.
The position uncertainty at time t is therefore

An expression for the twisted coherent states can be
derived as follows. Given the minimum uncertainty state
of the free mass at time t = 0,

+ ap(0) az(0)) —.t
(4)

1$(0))=, dz exp
tT 2'Jl' 402

++o I*——') I*& (~)
2

I' t(EzEp+ b,pb, z) =
2fAO

(5)

which for t & 0 is negative, as required for a contractive
state. In fact the states of the mass for t ( 0 form the

This full treatment reveals a third contribution to the
position uncertainty that depends on the correlation be-
tween the position and momentum. This correlation
was implicitly assumed to be nonnegative in the heuris-
tic treatment of the SQL. Indeed it is identically zero if
the measurement leaves the mass in a minimnm uncer-
tainty state (which, for the purposes of this paper, we
have taken to mean a state satisfying bzsEp2 = fi2/4).

Yuen described a class of states which can breach
the SQL. These states, which he called "contractive
states, " have a negative position-moment»m correlation
that causes them to contract with time. This contrac
tion does not occur indefinitely, but stops when a certain
minimum position variance is reached, after which time
the state spreads out in the usual manner.

Yuen de6ned one set of such states, which he termed
"twisted coherent states, " in analogy with the squeezed
states of the electromagnetic Geld. These twisted coher-
ent states may alternatively be thought of as minimum
uncertainty states of a &ee mass that have been propa-
gated backvrards in time.

Suppose that at time t = 0 a &ee mass is in a minimum
uncertainty state with position uncertainty o'. Then at
an arbitrary time t the correlation between the position
and momentum of the mass is given by

the state of the system at time t is

~0 [*—*o (&)]'
Cz exp

~2~/~'+ '—"' 4(~2+ st.
)

+iko *— (10)

where

zp (t) = zp + —kp.

The states [P(t ( 0)) are the set of twisted coherent
states.

III. PRODUCINC CONTRACTIVE STATES
WITH A QUADRATIC POTENTIAL

The position of an atom may be measured by passing it
through a standing light wave that is highly detuned &oxn
the atomic resonance [5,6]. The atom alters the phase of
the field by an amount that depends on its position in the
cavity mode. Position information can then be recovered
by measuring a phase-sensitive quantity of the field such
as the quadrature phase.

The atom is assumed to enter the field in the ground
state. Because of its large det»~~ng &om the atomic res-
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onance, the field is very unlikely to induce an atomic
transition from the ground to the excited state, and
hence the probability of spontaneous emission is negligi-
ble. The Hamiltonian in this regime can be derived using
the method outlined in Ref. [6], and may be written (in
a frame rotating at the optical frequency) as

H = )i cr, (2a a + 1) + '-, cos (kz + () + M, o, .

(12)

Here a and at are the annihilation and creation opera-
tors of the cavity field, and k = 27('/A denotes the field
wave number. o', is the inversion of the atom, which is
equal to —1/2 since the atom is in the ground state. Igl
is the coupling constant (equal to the one-photon Rabi
frequency) and 6 is the detuning of the atomic transition
frequency &om the cavity frequency. Since the detuning
is chosen to be positive, the antinodes of the field act as
potential wells. Before the interaction the field is pre-
pared in a coherent state Ict) with a real, and the atom
has a position distribution denoted by K(z). Taking the
interaction time to be suKciently brief that the atom's
transverse motion in the cavity may be neglected (the
Raman Nath condition), we find that the state of the
system after the interaction is given by

intensity field is chosen the atom will be better localized.
The potential sampled by the atom will then be more
nearly quadratic, and the contractive state into which the
atom is projected will more closely approximate Yuen's
ideal twisted coherent state.

Figure 1(a) shows the Wigner distribution [9] of the
atom after a measurement of the field quadrature has lo-
calized it at an antinode. The signer distribution clearly
shows the negative correlation between the position and
momentum of the atom. Figure 1(b) shows the variance
of the atomic distribution as it propagates &eely after
leaving the cavity. The distribution contracts until it
reaches a "waist, " beyond which it spreads out again.
This is compared with the ideal focusing achieved by a
twisted coherent state with the same momentum variance

40-

20-

CL

-20-

(e) = f dec(x)e ~ ~a) ip ~x)

.
I

I'~. Igl 2(I +g)

The interaction establishes a correlation between the
position of the atom, and the phase of the field. Infor-
mation about the atomic position may then be obtained
by measuring the quadrature phase Xs = ae 's + ate's
using balanced homodyne detection [8]. Denoting the re-
sult of the field quadrature measurement by yg, we can
calculate the state of the atom after the field measure-
ment by projecting the system onto the quadrature phase
eigenstate Iys).
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where

a~ +iae =aexp i cee (k + ) x—8 () (15)

and N is a normalization factor.
Provided the atomic beam is not too rapidly diverging

as it enters the cavity, a field measurement that localizes
the atom in the region of a field antinode will simultane-
ously project it into a contractive state [5]. If a higher

FIG. l. (a) The atomic Wigner distribution after the field

quadrature measurement Xo = —2c(., for n = v 8 and

~gI t/b, = ip. The initial atomic state was chosen to be a
minimum uncertainty state centered at an antinode with po-
sition uncertainty o' = A/4s'. The contour levels are spaced
logarithmically. (b) The evolution of the atomic position vari-
ance (i) is compared with the focusing of a twisted coherent
state (ii).
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and initial position variance. The efFective focal length
of the atomic lens provided by the field antinode is

J'
2/g[2t/a(2k2 5'

where p is the longitudinal moment»m of the atoxn.
The focusing of the atom described above is largely

independent of the field measurement, and essentially re-
sults from the quadratic nature of the effective poten-
tial at the Beld antinode. The focusing of atomic beams
by standing light waves has been observed by Sleator et
al. [10]. The standing wave used for their experiment
was created by refiecting a traveling wave off a mirror at
grazing incidence. The periodicity of the resulting inten-
sity grating was —45@m, much larger than the wave-

lenth of the light used. A lens aperture (25@m) was
centered in one antinode of the standing wave, and irra-
diated through a 2 pm wide object structure. The atomic
beam was focused down to a spot size of 4 pm.

In our calculation of the atoxnic state after the interaction
and field measurement we will assume that ~g~2t jb, = m.

Substituting approximation (17) into Eq. (15) then gives

ai ———a sin (vrk2: —8),
o!2 = cl cos (7I'kx —8).

The state into which the atom is projected by the field
measurement is calculated by inserting these expressions
for ai and o;2 into Eq. (14). In keeping with our as-
sumption that the initial atomic distribution e(z) is very
narrow, we neglect terms of higher than second order in
z in the exponent. For large a we find that the atomic
state after the field measurement is given by

(g)„, = N f dTr. (z)

a (eke —tan 8) + 2
~'

sx exp 1+ i tan8

IU. MEASUREMENT-INDUCED CONTRACTIVE
STATES

x exp ia a(~km —tan8)+ ))z).Xe
cos 8.

(19)

In this section we show that position measurements
made using a linear potential can also project a particle
into a contractive state. We analyze the same scheme
as was discussed in the preceding section, but now con-
sider measurements that localize the atom in the region
midway between a node and an antinode of the standing
wave, where the potential varies linearly with position.
In this case focusing may be exhibited by all the con-
ditional atomic distributions (conditioned on the result
of the field measurement), but not by the total distribu-
tion (obtained when no field measurement is made). We
therefore describe the atomic focusing as being measure-
ment induced. The degree of focusing depends on which
field quadrature is measured, that is it depends on the
phase chosen at the hoxnodyne detector.

It is shown that the entangled atom-Geld state pro-
duced by the interaction is analogous to the entangled
two-particle state at the heart of the EPR Gedankenex-
periment. The atom plays the role of one of the particles
in the EPR experiment and the field plays the role of the
other. This analogy provides some insight into the rea-
son that atomic focusing results from certain quadrature
phase measurements.

If the initial distribution ~(z) is Gaussian then this ex-
pression is of the same form as (10), and it is clear that
the state into which the atom is projected by the field
measurement is precisely a twisted coherent state. Cal-
culating the resolution of the position measurement from
Eq. (19) gives

1

i
2nm k cos 8i

(20)

The best resolution is obtained for an amplitude quadra-
ture measurement (corresponding to 8 = 0). The resolu-
tion worsens as 8 is increased, until in the limit of a phase
quadrature measurement (8 = n/2) no position informa-
tion is obtained &om the field measurement. Hence in
the parameter regime considered in this section we can-
not rightly describe a perfect phase quadrature measure-
ment as a position measurement of the atom.

We will take the initial atomic wave function rc(z) to
be that of a minimum uncertainty state, with momentum
uncertainty cr„,

A. Producing contractive states with a linear
potential

We suppose that the atom passes through the stand-
ing light wave in the region midway between a node and
an antinode. If the initial atomic distribution m(x) is
su8iciently narrow we need consider only the linear com-
ponent of the potential. We therefore approximate the
field mode by the linear function

—tan8 p
2 (o.m.k)

(22)

If 8 is chosen so that tan8 is negative, then ~vP)~q~~ in
Eq. (19) is a contractive state. Since it has a Gaus-
sian position distribution, the contraction and efFective
focal length can easily be calculated. The focal length
(in terms of the longitudinal moment»m p) is given by

1
cos (kx ——.) = kx+ —.

2
(17) where it must be remembered that we have set )g) t/b =
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s. From Eq. (7) the contraction is found to be B. EPR analogy

—a2 tan 0

( „'„)'sec'0+n' (23)

Note that the contraction depends on the phase 0 of the
measured field quadrature, although it is independent of
the particular result ye of the field measurement. This
phase 0 is set at the homodyne detector, and may be
chosen after the interaction.

Figures 2(a) and 2(b) show the evolution of the atomic
position distribution for two different results of the field
quadrature measurement. Note that the mean momen-
tum difFers between the two cases. If the atomic distri-
bution is not conditioned on the result of the field mea-
surement then no focusing is observed, as expected from
a linear potential.

The efFect of the atom-field interaction at a linear part
of the Geld mode is to correlate the position of the atom
with the amplitude quadrature of the field. Similarly we

will show that the momentum of the atom is correlated
with the phase quadrature of the field. These correlations
are reminiscent of the EPR t"edcnkenezperiment [11],in
which two particles have correlated positions and corre-
lated momenta. The analogy with the EPR state pro-
vides some insight into how contractive states arise in
the atom-field interaction.

The correlation established between the amplitude
quadrature of the field and the position of the atom is
best revealed by expanding the entangled atom-field state
~4') in terms of the respective eigenstates of these observ-
ables. Using Eq. (19) and setting 8 = 0 we obtain

I@) = f Ao iso)(col@)

X(7p Xp&= N dx dip exp — " — o.vrkx+ — +ia avrkz+ yp yo |3 z,
2 )

(24)

Rom which we can deduce that the best estimate of the position of the atom given the result yo for the amplitude
quadrature measurement is

—~2' o.7rk

(~)'+ (~~k)2
(25)

Alternatively the system state may be expressed in terms of the eigenstates of momentum and phase quadrature,
to reveal the correlation between these observables,

i~) = f4 fdx , Ix=, )&l~)(pl~=(x-;I&)

1 -2 XQ=N dp dy exp —
2 p —o'xhk y, —o' — ' —o' y, 8 p.
p

(26)

The best estimate of the atomic momentum given the
result y for the phase quadrature measurement is

2

p = a7rhk(y —n). (27)

IEPR) = f dec ' I*h 8 ie+ eo)o (28)

dpe ~ pp —pi p2 ~

The position representation of the state (28) explicitly
demonstrates the perfect correlation between the posi-

We may make the following analogy between the atom-
field system and the two-particle EPR system. The field
plays the role of the first particle, on which the mea-
surements are made, and the atom plays the role of the
second particle, whose position and momentum are in-
ferred. The EPR state with total momentum pp can be
expressed in both the position and momentum represen-
tations as

tions of the two particles. If the position of particle 1 is
measured to be zq, then it can be inferred that particle
2 is at position xq + zp. Similarly, the momentum repre-
sentation of the state (29) reveals the perfect momentum
correlation of the two particles: if the momentum of par-
ticle 1 is measured to be pq, then it can be inferred that
particle 2 has momentum pp —pq.

If instead a measurement is made on particle 1 of a lin-
ear combination xq +pqt/m of position and momentum,
then particle 2 will collapse to an eigenstate of xq —p2t jm.
For negative t, this resulting eigenstate will have the neg-
ative correlation between position and momentum that
is characteristic of contractive states. The analogy in
the atom-field system is the measurement of observables
Xp cos 0 + X sin 8 = Xp with tan 0 negative. It is pre-
cisely these measurements which we have shown project
the atom into a contractive state.

The atom-field system described in this paper provides
an experimentally accessible realization of the EPR sys-
tem, the essential difFerence being that the correlations
established in the EPR system are perfect, whereas those
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of the atom-field system
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and the uncertainty product will be

(37)

In this case a paradox is demonstrated if

xhka ) 1.
f7'

{38)

Thus we see that for a sufficiently intense field, the
Einstein-Podolsky-Rosen paradox can be demonstrated
without preparing the atom initially in a minimum un-
certainty state.

gions of the standing wave were considered. The first
was the region near an antinode, where the quadratic
form of the potential was responsible for focusing the
atom. The second was the region midway between a node
and an antinode, where the potential was approximately
linear and the focusing was found to be measurement-
induced. In this region of linear potential, the scheme
was found to provide a close realization of the Einstein-
Podolsky-Rosen Gedankenexperiment, and the produc-
tion of measurement-induced contractive states could be
understood in terms of this analogy.
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