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Alternative approach to the semiclassical description of lV-fermion systems
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An information-theory-based approach to the semiclassical treatment of the N-fermion problem
is presented which improves upon the traditional ones in two respects: It is valid beyond the turning
points and is able to describe shell effects. The method is illustrated by recourse to simple one-
dimensional systems.

PACS number(s): 03.65.Sq, 89.70.+c

I. INTRODUCTION

Semiclassical treatments were introduced already in
the 1920s [1,2] but still enjoy wide popularity (see, for
instance, [3—9]) as they are often able to provide use-
ful insights concerning the intricacies of some physical
phenomena. Of course, the concomitant literature is so
extensive that no attempt can be made to list a compre-
hensive set of references (for an excellent recent review
one could cite, for example, Ref. [10]). In particular,
the idea of investigating the ground-state properties of
an N-fermion system by recourse to the knowledge of
the diagonal part of the one-body reduced density ma-
trix has found extensive applications in atomic, nuclear,
plasma, and solid-state physics [10—16].

Several derivations can be found in the literature of the
so-called Wigner-Kirkwood expansion [17], of which the
celebrated Thomas-Fermi (TF) approach constitutes the
leading order [13—15,18]. A common trait characterizes
these derivations: that of approximating the Wigner dis-
tribution by a Heaviside step function. From the Wigner
transform, the diagonal one-body density, both in mo-
mentum and coordinate representations, is easily con-
structed. This density has the range of its validity re

stricted to the interval bounded by the classical turning

points, a fact that certainly must be stressed and that
receives adequate consideration if one attempts an alter-
native discussion of the Wigner-Kirkwood expansion on
the basis of a semiclassical expansion of Schrodinger's
equation (WKB) [19]. It is thus clearly appreciated
that TF constitutes an approximate treatment of the
N-fermion problem that retains terms up to order h,
while the Wigner-Kirkwood (WK) approach incorporates
terms up to order 6, while in both cases the level density
is smoothed.

Of course, one would like to deal with approximate
one-body densities without worrying about their range
of validity. A method that circumvents this difhculty is
provided by the widely popular density-functional theory

[11,12], which has enjoyed a considerable amount of suc-
cess and attracted the attention of many authors. How-

ever, an essential feature of the N-body systems is the
existence of shell effects, quantum Huctuations, and dis-
continuous behavior of the energy eigenvalues, which are
averaged out both by the TF and WK treatments, on the
one hand, and by density-functional techniques, on the
other.

The purpose of the present effort is to approach the
semiclassical treatment of the N-fermion problem kom
a different angle, so as to have one-body densities of un-

restricted validity and also be in a position to describe
"shell effects. " Simple tools of information theory (IT)
[20,21] will be used to this effect. Since this is an in-

troductory work, attention will be restricted to the one-
dimensional situation.

The manuscript is organized as follows. A brief sum-

mary of the main ingredients of the TF and WK ap-
proaches is given in Sec. II while some rudiments of IT
are reviewed in Sec. III. Our present treatment is de-
scribed in Sec. IV and some applications are presented
in Sec. V. Finally, conclusions are drawn in Sec. VI.

II. THE THOMAS-FERMI AND
SIGNER-KIRKWOOD APPROACHES

Following the ideas expounded in [19] and [22], the
expectation value of a one-body operator F in a state of
energy e can be computed as

(F), = lim —[e(V+ AF) —e(V)],
1

x~o A

where e(V+AF) is the energy eigenvalue when the Hamil-

tonian H = T + V is replaced by H' = T + V + AF. If
n is the number of zeros of the concomitant exact wave

function, the energy eigenvalues e are determined by the
requirement
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S(e„,V, h,) = (n + -') h,

S being the function de6ned as

S' = y+ ihyg dz

(2)

(3)
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where y is the solution of the associated Ricatti equation,
of which yi gives the contribution of order h [19]. The
contour integration in the complex z plane encloses the
segment of the real axis bounded by the turning points.

The semiclassical WKB approximation is obtained by
assuming that y (and, consequently, S and e) admits a
power expansion in h

One can recast (1) in the fashion

hS(E, e)
BS/Be

where

(6)

S = ) (ih) S (e„,V, h)
m=0

(4) hS(E, e) = liin [S(e, V + AE) —S(e, V)]/A .

and

e = ep + h ei + h ez +2 4

The expansions of S and e„can be truncated at the or-
der h2, so that the expectation value of our one-body
operator F acquires the appearance [19]

dz
(E)

~ Qsp —V

dz~ Qsp —V

1 r VF
16 y (p —V)s/s + 64 Y (s —V)~/s + S dao ~ i X ( —V)i/s

' +O(h4)+". ,
~ (sp —V)~/s dz

(8)

where ep is the eigenenergy of order h, determined by
recourse to (2) g(e) = — ()(e —e )

1 S
(14)

pep —Vdz = (n+ —,')h,

while e~ is the corresponding correction of order 5

V)s/s dz

24$ ' „,dz
'

(9)

(10)

where e is defined by the condition S(e ) = 0. Replace-
ment of (4) into (14) leads to the proper semiclassical
level density.

Of special importance for our purpose are the expec-
tation values of one-body operators in the TF (order h)
or in the WK (order h2) approximation. They are com-
puted by replacing sums over discrete levels by suitably
weighted integrals up to the Fermi energy

All the contour integrations can be evaluated in the
real axis by taking derivatives with respect to the energy

d

dE'0

— 2 n+2
(ep —V) ~ dz = —— (ep —V) ( s )dz (11)

2

and using

dz =2 dz (12)

ldN 1 BS . (' 1 1
g(e) = = — ) &~

——+ —S(e, V, h) —k
~

. (13)
de hBe - ( 2 h

where z+ are the turning points.
In the case of one-dimensional N-fermion systems we

can reach the TF and WK approaches by "smoothing"
the level density and integrating (8) up to the Fermi en-
ergy. Following [19]we write down the quantal level den-
sity as a function of S [the number of states N(e) equals
the number of fermions N],

ep

(E) = (E),g(e)de

so that one 6nds

(E) = 1
Epee —Vdz

6
h /' EV

48m ( (ey —V) s~2

3 EV'
4 (ey —V) s/2 )

(16)

EF

g(e)de = N .

The Fermi energy ~~ is obtained by requiring that

After averaging out the discontinuities of g(e) by ex-
panding (13) (using the method of Euler-McLaurin,
for instance) and dropping the oscillating terms, the
"smoothed" level density g(e) is obtained

The integrals of (16) can be computed in the real axis,
taking out derivatives with respect to the energy. When
they are not analytical, to avoid losing accuracy, we com-
pute them in the complex z plane.
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III. A BRIEF SUMMARY OF ELEMENTARY IT
CONCEPTS ) .&(')I (&(')/g (')) (23)

(A }=) p(i)A (i), a=1, ..., N. (18)

The question is the following: What can we assert with
respect to the (unknown) probability distribution p(i)?

Of course, many such distributions are compatible with
the amount of information provided by (18). It claims
that the "best" (or least-biased) one is that which max-
imizes Shannon's entropy [23] (or, more appropriately
perhaps, Shannon's ignorance function [20])

S = —) p(i)in@(i). (19)

The concomitant extremalization problem can be
solved in analytical fashion and yields the recipe for con-
structing the "one and only" probability distribution:

Information theory [23] provides one with a powerful
inference methodology in order to describe general prop-
erties on the basis of scarce information. Indeed, it pur-
ports to yield the "least-biased" description that can be
devised on the basis of some specific data, in any possible
situation [20,21]. The essential aspects of IT relevant for
our present purposes can be summarized as follows. Let
A (n = 1, ..., N) be a set of random variables that char-
acterize some system of interest. These variables adopt
the values A (i) with probabilities p(i). Assume that our
knowledge concerning the system is limited to the set of
expectation values

which produces no essential change in (20), (21), and

(22), except for the fact that on the left hand side of {20)
one should place the unknown function g3(i).

IV. THE PRESENT APPROACH

The main idea of the present approach is that of infer-
ring with the IT methodology an appropriate one-body
density valid beyond the interval bounded by the turning
points. The input information refers here to either TF
or WK expectation values.

As stated in Sec. II, these input values are of the form

(F}vF = {F},„g(e)de,
CD

(F)WK = (F},„, g(.) d.,
60

(24)

1
~+

(F}gF = — FgeF —V(z) dz
vrh,

(25)

where ~0 refers to the bottom of the appropriate potential
well V(z) and (F),„, (F), , is the expectation value of
the one-body operator computed using (8) up to order h
or 52. One is thus led to [19]

p(i) = exp
~

—Ap —) A A (i)
~

/'

(20) and (z+, z refer, of course, to the turning points)

where the A's are Lagrange multipliers that guarantee
compliance with the set of "constraints" (18). In partic-
ular, Ao ensures that the probability distribution (20) is a
properly normalized one, . The concrete values that these
multipliers adopt is obtained by solving the coupled set
of equations

{F}wK= (F}TF+
24

gV/I
dx

— (e~ —V)"'
3 * FV2

+
/

dz ~. (26)

The concomitant TF and WK one-body densities are
given in terms of the Heaviside function by

where

= —(A )
a

(21)

and

1
p~F = —fey —VO(eF —V)

~h

Ao —ln) exp~ —) A A (i) ~.
)

(22)

It can be proved that p(i) always exists and is uniquely
determined by (21) and (22), provided the input infor-
mation (18) is not self-contradictory [20]. A standard
well-known numerical algorithm is available that yields
the A's in (20) [24].

If, in addition to {18),some additional piece of infor-
mation is available, such as, for example, that p(i) is of
the form gq(i)g3(i), with gq known and g3 unknown, one
can incorporate this knowledge by maximizing [instead
of (19)] the so-called relative entropy [21]

( V"
PWK = PTF +

24 I

( V)3/2

3 V2
+—,/, ~8(ep —V) . (28)

It is our purpose, that of inferring from a set of M ex-
pectation values of the form (25) [or of the form (26)] an
extended semiclassical density valid beyond the turning
points, that incorporates shell efFects. This latter point
can be adequately reflected in IT terms by noticing that
it will lead to a one-body density p for the N-fermion sys-
tem that exhibits N "ripples. " In line with the discussion
of Sec. III we advance the following ansatz:
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p(z) = [PN-i(z)]'exp~ —Ao —).A + (*) l, (29)

where P is an arbitrary nth degree polynomial (squared
so as to guarantee the positivity of p ) that plays the
role of the function gq in Sec. III. %e assume that a set
of semiclassical expectation values (F ) (n = 1, ..., M) is
available.

A serious difhculty Inust be faced, however, since we do
not know the coefficients of PN i(z), so that a straight-
forward application of the IT approach (and of the con-
comitant numerical procedure given in [24)) is thereby
precluded. Consequently, we proceed now to put for-
ward a self-consistent algorithm that yields both the A' s
and the coefficients of PN

We start by expressing p in the form

Expectation
value
(*')
(*')
(z")

TF('%%uo)

7,41
16)83
29,50

ITF('%%uo)

0.0
0.0
0.0

i.e., our one-body density coincides with the exact one.
Some concomitant figures are listed in Table I for N = 5
(M = 1 a nd F = zs)

TABLE I. Harmonic oscillator. Relative errors of the ex-
pectation values of x, x, and x for N = 5 particles.
The predictions of the Thomas-Fermi (TF) and the inferred
Thomas-Fermi (ITF) approaches are compared to the quantal
ones.

p(z) = (PN i) P(Ai, ..., AM) (30) B. Anharmonic potentials

where & js, of course, of the exponential IT appear-
ance. The idea is now to devise an iterative process
that yields the A's at each step, in the usual fashion

[24] supplemented with additional manipulations involv-

ing P~ i(z). At order zero one sets PN i ——I and(o)

obtains, via the algorithm of [24], the concomitant A' s

of that order (Ai, ..., AM). Thus p( ) is of the form

(PN) i) E( &. We now proceed to construct the N first

orthogonal polynomials (Q~( ) (z) (n = 0, ..., N 1)) with—
respect to the weighting function P( ) by recourse to the

Gramm-Schmidt procedure. P~~) i is then constructed
according to

(31)

The new density p& ) = (PN i) %&i) is obtained by
upgrading E with the usual IT procedure. We see that
proceeding in a similar fashion, a double-step iterative
algorithm emerges in which information concerning the
coefficients of P~ i is fed into the IT machinery so as to
infiuence the value of the Lagrange multipliers. These, in
turn, affect, at order k, a fine tuning of the polynomial
coefficients via the Gramm-Schmidt process according to

We shall concentrate our efforts on Hamiltonians of the
type

H= —— + —x +pe1 d 0! 2 4 (33)
2dz 2

which continues to draw the attention of many authors
due to its relevance in several disciplines [25—34]. We
shall compare the results obtained with our approach
with those yielded by the TF one. In those cases in
which second-order corrections improve significantly over
the TF figures, we shall also discuss inferences obtained
with WK inputs. We shall take M = 2 and consider
as input the pair (z ), (z ) as provided by a semiclassical
approach. We "predict" with our inference technique the
expectation values of x " with n = 3, 4, and 5 in order
to illustrate the power of our method.

For the case o = 1 and p = 10 Table II compares the
values of (zs), (zs), and (z ), for N running between 2
and 10, as obtained in five different fashions: (1) quantal

0.6

0.5

0.4
N —i

[P""'(*)]'= ) [.""'(*)]'.
n=o

(32) R
03

As will be shown below, this scheme works nicely and
produces quite reasonable results.

0.1

V. RESULTS
0.0

A. The harmonic oscillator

This constitutes the obvious test to be performed. We
obtain the gratifying result that our "inferred Thomas-
Fermi" (ITF) approach yields the ezact quantal values,

FIG. 1. Densities p(z)/N for the quartic anharmonic os-
cillator (n = 1 and p = 1Q). The number of particles N is
5. The solid line represents the quantal (exact) result. The
dotted line exhibits the TF prediction and the dashed line the
results of the inferred Thomas-Fermi prescription.
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(exact), (2) TF, (3) WK, (4) inferred (from) TF (ITF),
and (5) inferred (f'rom) WK (IWK). It is seen that ITF
improves upon TF and IWK upon WK. The e8'ect of
terms of the order h2 is readily appreciated (already at
the semiclassical level) .

Our inference technique works well for other anhar-
monic oscillators and in all the cases analyzed the ITF
and the IWK approaches improve the TF and WK re-
sults, respectively. For instance, in the case o. = 1 and p
= 1 our ITF prediction for (z ) approaches the quantal
value with a precision between 13% and 0.5'%%uo when the
number of particles N runs between 2 and 10. The TF
method gives errors between 20% and 1'%%uo for the same
results.

We have also applied our method to a double-well
bistable potential (p = 1, n = —1.5cr, ) where a, is a
critical value discussed in Refs. [33, 34]. In this case
our ITF prediction for (z ) approaches the quantal re-
sult with a precision between 16% and 2% for N running

0.50 I I

(

I I I I

)

I I I I

)

I

0.48

0.46

0.44
Q.

0.42

0.40

0.38 —1 —0.5 0.5

FIG. 2. "Ripples" of the densities p(z)/1V for the quartic
anharmonic oscillator (a = 1 and p = 10). Additional details
are the same as in Fig 1.

TABLE II. Anharmonic quartic oscillator (p = 10). The expectation values of z, z, and z'
are evaluated according to diferent prescriptions. The number of particles N runs from 2 to 10.
ITF and IWK denote, respectively, the inferred Thomas-Fermi and the inferred Wigner-Kirkwood
prescription.

Expectation
value

(*')
(*')
(*")

Quantal

0.1375
0.1112
0.1065

TF
0.1120
0.0677
0.0436

WK

0.1425
0.1173
0.1094

ITF
0.1212
0.0860
0.0701

IWK

0.1421
0.1164
0.1125

(*')
(*')
(*")

0.4211
0.3914
0.4185

0.3827
0.3042
0.2580

0.4287
0.4027
0.4300

0.3984
0.3489
0.3460

0.4281
0.4010
0.4309

(*')
(*')
(*")

0.9650
1.0237
1.2219

0.9135
0.8816
0.9076

0.9750
1.0416
1.2470

0.9365
0.9629
1.1041

0.9738
1.0374
1.2416

(*')
(*')
(z")

1.8569
2.2173
2.9347

1.7923
2.0102
2.4047

]..8695
2.2432
2.9791

1.8225
2.1351
2.7580

1.8673
2.2348
2.9613

(*')
(z')
(z")

(*')
(z')
(*")

(*')
(*')
(*")

3.1850
4.2211
6.1396

5.0374
7.3204
11.597

7.5023
11.835
20.259

3.1074
3.9394
5.3270

4.9467
6.9552
10.431

7.3985
11.378
18.663

3.2000
4.2560
6.2093

5.0549
7.3654
11.699

7.5223
11.891
20.399

3.1442
4.1134
5.8862

4.9897
7.1825
11.245

7.4471
11.661
19.780

3.1966
4.2414
6.1710

5.0498
7.3420
11.629

7.5150
11.856
20.282

10

(*')
(*')
(z")

(*')
(*')
(*")

10.668
18.117
33.274

14.622
26.549
52.005

10.551
17.560
31.171

14.492
25.885
49.313

10.690
18.185
33.460

14.647
26.631
52.244

10.605
17.902
32.638

14.550
26.286
51.171

10.680
18.134
33.276

14.634
26.558
51.968
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from 2 to 10. The corresponding TF prediction gives
errors between 24%%up and 4'%%uo.

Figure 1 depicts our one-body densities for N = 5, a =
1, and p = 10 and compares them to both the exact quan-
tal one and the TF results. Notice that no %K density
exists (it yields actually a distribution). Shell effects are
clearly appreciated. Figure 2 is an ampli6cation of the
pertinent ripples so as to be in a position to distinguish
between ITF and IWK. It is seen that both densities are
reasonably good ones.

VI. CONCLUSIONS

of both the semiclassical approximations and the density
functional theories.

From the practical point of view our method requires
a very modest informational input, consisting in just a
few semiclassical expectation values that are easily eval-
uated. The concomitant numerical efFort should pose no
undue troubles, as only two standard programs are re-
quired: one for the Gramm-Schmidt orthogonalization
and the other for the determination of the IT Lagrange
multipliers [24j.

As the present one-dimensional results are of a rather
satisfactory character, they should encourage one to
tackle in a similar fashion more realistic problems.

We have presented in this work a semiclassical ap-
proach, based upon information theory, that uses as in-

put expectation values evaluated in orthodox semiclassi-
cal fashion. Our approach improves upon the traditional
one in two respects: (1) the resulting one-body density
is valid everywhere, whereas the original one is restricted
to the interval bounded by the turning points; and (2)
shell efFects are well described, which is not possible oth-
erwise, a fact that constitutes one of the main drawbacks
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