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We use separation of variables as a tool to identify and to analyze exactly soluble time-dependent
quantum-mechanical potentials. By considering the most general possible time-dependent rede6ni-
tion of the spatial coordinate, as well as general transformations on the wave functions, we show
that separation of variables applies and exact solubility occurs only in a very restricted class of time-
dependent models. %e consider the formal structure underlying our Sndings, and the relationship
between our results and other work on time-dependent potentials. As an application of our methods,
we apply our results to the calculation of propagators.
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I. INTRODUCTION

Quantum-mechanical systems with explicit time de-
pendence have been studied by a wide variety of tech-
niques; a representative, though by no means exhaustive,
list of such work is [1—11]. In this paper, we will add to
this collection of results, with a focus on the use of co-
ordinate transformations and separation of variables to
study time-dependent systems, and on the application of
such methods to physical calculations in time-dependent
models.

This paper should be thought of in particular as a
follow-up to [6]. In that paper, the authors identified
changes of variables in a limited class of time-dependent
systems that allowed those systems to be analyzed via
separation of variables. (We will use the term sepa-
mble to describe the situation in which separation of
variables can be applied usefully. ) The applicability of
separation of variables in these models means that for
these time-dependent systems, there exists a mathemat-
ical structure and formalism analogous to that of the
time-independent Schrodinger equation. As an applica-
tion of their approach, the authors used separation of
variables, in combination with both algebraic and ana-
lytic techniques, to solve exactly the harmonic oscillator
with inverse &equency linear in time.

That paper left open some important questions. First,
can the technique of [6] be used to identify exactly solu-
ble time-dependent generalizations of other exactly solu-
ble time-independent systems? Second, how special was
the change of variables that paper used to find sepa-
rable models? Would other changes of variables have
yielded other models? Third, can we use this method
to simplify or make possible other exact calculations in
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time-dependent quantum-mechanical theories? And fi-

nally, what connections can be drawn between the use
of separation of variables and other approaches to time-
dependent quantum-mechanical systems? This paper ad-
dresses these questions.

Our central findings are as follows. First, we show ex-
plicitly how to construct exactly soluble time-dependent
generalizations of any exactly soluble time-independent
model. We do this using a time-dependent redefinition
of the spatial coordinate which is linear in the spatial
variable. Second, we show that this linear change of vari-
ables, although apparently quite special, is actually quite
general (at least in the case of one spatial dimension):
any time-dependent model which is separable following
some coordinate transformation is in fact separable un-
der the simple linear transformation already considered.
Including arbitrary multiplicative transformations of the
wave functions, we are able to obtain a larger family
of separable and exactly soluble models. %'e find that
separability singles out a unique possible wave-function
transformation, and makes possible a larger (but still
specified) set of useful changes of variables. Third, we
find these exactly soluble models again by an additional
method: we derive the quant»~ generalization of the
work of [12] on classical Hamiltonians with an invariant
quadratic in momentum; strikingly, we find that the po-
tentials with a quadratic invariant quantum mechanically
are exactly those that have one classically. Finally, as an
application of our method, we present exact calculations
of propagators in exactly soluble time-dependent models,
combining our techniques with those of shape invariance.

One of the key results of this paper is that we reduce
the determination of whether a time-dependent poten-
tial is exactly soluble to the determination of whether an
associated time-independent potential is exactly soluble.
We do this through the use of separation of variables as
the central aspect of our approach. As is well known,
this xnethod reduces a xnultidimensional problem to two
or more lower-dimensional ones. The method of separa-
tion of variables is very powerful, and so has been applied
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broadly. A summary of such applications is presented in
[13], with a particular focus on the relation between I.ie
groups and the method of separation of variables. In
[4], Reid has classified all possible coordinate systems for
which the potential-free Schrodinger equation is separa-
ble. More recently, Sklyanin has introduced the so-called
functional Bethe ansatz as an alternative to the algebraic
Bethe ansatz, in order to remove the restrictions inherent
in the second. approach; this new method is a hybrid of
the method of separation of variables and the quantum
inverse scattering inethod [14].

As we mentioned earlier, the existing literature on
time-dependent quantum mechanics already covers a va-
riety of other approaches, as seen, for example, by survey-
ing the articles [1—ll], as well as the references therein.
The articles [2, 3, 7, 9, ll] provide a variety of approaches
to time-dependent quantum mechanics, for the most part
with a focus on exact solubility &om the start. In this
way our work is somewhat diferent; we take separation
of variables as our central criterion, and study its impli-
cations. A similar approach has been adopted in [1,4, 5],
although the first two of these references only study spe-
cial cases. In [5], the problem of R separability is treated
in general terms. In that paper, the focus is on the rig-
orous mathematical structure underlying separability. In
our paper, on the other hand, our focus is on the actual
transformations that achieve separability, along with the
practical applications thereof. Thus these two papers are
complementary. If we had to provide a rough character-
ization of the distinction between these two papers, it
would be that [5] presents a mathematician's approach
to separability, and our paper presents a physicist's ap-
proach, and thus these papers obtain distinct but parallel
insights. For example, the actual extremely limited set of
transformations useful for separability or the &amework
for forging connections to specific potentials with shape
invariance, things which we identify, are not obvious in

[5], and the implications for simplifying calculations are
only implicit in their work; and. , on the other hand, in our
work, it is not obvious how to treat general manifolds on
a common footing, something which is done quite nicely
in [5]. (A specific technical difference is that [5] works in
d dimensions, whereas we focus on the case of one spatial
dimension. This makes sense given the other distinctions
between our papers: we are focusing on the process of
changing variables, and since this process can be imple-
mented in essentially the same way in any number of
dimensions, we concentrate on presenting this process in
the one-dimensional case. In [5], by contrast, the focus is
on the general mathematical structure, and so this work
is more naturally presented in arbitrary dimension. )

Our interest in separation of variables is twofold. First,
as we said above, separability implies the existence of
a mathematical structure in a theory analogous to the
structure associated with the ordinary time-independent
Schrodinger equations; and second, as we see &om our
work, particularly as it stands in relation to the work in

[2, 7, 9, 11] (our methods identify all the exactly soluble
models found with other approaches in those references),
separation of variables also appears to be an appropri-
ate stepping stone in at least one path toward uncov-

II. EXACTLY SOLUBLE
TIME-DEPENDENT POTENTIALS

To begin, we consider nonrelativistic quantum mechan-
ics in the Schrodinger picture. The Schrodinger equation
in position space reads

(2 1)

where the Hamiltonian, with time-dependent potential,
Ls

02
'R =—,+ V(z, t) .

2m |9x
(2.2)

Our goal is to identify time-dependent potentials V(x, t)
such that the Schrodinger equation (2.1) is exactly solu-
ble. Obviously, separation of variables in terms of x and
t will not be helpful in this case, so we attempt to find
a change of variables for which separation of variables
will be useful. To this end, we define a new variable

y = f(t)x. In order that this change of variables be pro-
ductive, we require that the potential factorizes in terms
of these new coordinates, that is, we require that

V(x(y, t), t) = g(t) V(y)+h(t) . (2.3)

The time-dependent Schrodinger equation now reads

ering and classifying the exactly soluble time-dependent
models. The agreement among these various papers (in-
cluding ours) where they overlap suggests the existence
of some fundamental principles that connect their var-
ious approaches. We will comment on the connections
between our work and that of these other papers where
relevant.

For the sake of simplicity, we will, as we indicated
above, restrict our attention in this paper to systems with
only one spatial dimension, but it will be readily apparent
that our techniques can be applied without modification
to higher-dimensional models as well (see also [5,9]). Al-

though we will give some multidimensional results where
appropriate or useful, we intend this work primarily to
be an exploration of coordinate transformations and sep-
arability as elucidated in the context of one-dimensional
quantum mechanics.

Overall, we feel time-dependent quantum mechanics is
still inadequately understood. For example, an explic-
itly time-dependent property analogous to shape invari-
ance —which has greatly enriched our understanding of
exact solubility in the time-independent case —is still
elusive. %e believe the restrictive nature of the results
we have obtained using changes of variables with sepa-
ration of variables is significant, because this helps us to
determine what the actual range of exactly soluble time-
dependent models is; this can serve to focus the search
for a fundamental explanation of exact solubility in the
time-dependent case.
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—, f'(t)B, ~(y, t)+[y(t) V(y)+h(t)]~(y t)

=ih y—4(y t) +ih ' . (24)f(t) B - . Bi(y, t)
f (t) By Ya(y) = e ' ""~'"Yi(y) (2.1S)

the limit that p = 0, the pseudo-Hamiltonian becomes
the ordinary Hamiltonian, as it must. )

We are now in a position to determine the exactly sol-
uble potentials as follows. Defining the wave function

%'e use 4 to denote the wave function as a function of
y and t; thus @(z,t) = 4(y(z, t), t) No. te that in (2.4),
the partial derivatives with respect to time are now taken
with y fixed rather than with z fixed.

Inspecting (2.4), it is easy to see that separation of
variables in y and t will work provided that

where

h d2Yj, + V (y)Ys = eI, Yj, ,2m dy
(2.14)

we find that Yg satisfies an ordinary (time-independent)
Schrodinger equation

f(t) =(pt+q) "'
and that

(2 5) 2m
V (y)

—= V(y) — y (2.i5)

g(t) = f (t) = (pt+q) (2.6)

where a, p, and q are constants. The constant a may
be absorbed in V(y); thus, without loss of generality, we
take a = 1. From now on, we take the separation of
variable conditions (2.3), (2.5), and (2.6) to hold. Now

by considering solutions to the Schrodinger equation (2.4)
of the form 4'(y) = T(t)Y(y), we see that the general
solution to the Schrodinger equation can be written as

4(y, t) = ) cgTj, (t)Yj(y), (2 7)

ih(pt+q) —(pt+q)h(t)T» = VI, TI,dTA.

dt
(2.9)

with ps a complex constant. As we show below, Im(pg) =
—(hp/4). The differential equation for TI, can be solved
exactly,

Tg(t) = e ~f "~'l(q+ pt)

where

(2.10)

where the cp are arbitrary constants, and where YA, and
Tp are the solutions of, respectively,

h' d'y& .hp dY&+'—y + V(y)Y. = ~.Y.
2m dy2 2 dy

(2.8)

and where ~p is a real constant given by

~ hJ'
&k = 'Yk+ &—

4
(2.16)

Thus, whenever V (y) is an exactly soluble potential of
ordinary time-independent quantum mechanics, then the
original time-dependent system is itself exactly soluble.
Hence whenever

2m
V(*,t)=f'(t) V [f(t)*] +, f'(t)

z ~ p2m x2
V +pt+ q I,v'pt+ q) 8 pt+ q

+h(t), (2.17)

and V (y) is an exactly soluble potential for the ordi-
nary time-independent Schrodinger equation, the time-
dependent Hamiltonian of the Schrodinger equation (2.2)
is exactly soluble.

In this way, we have identified a family of exactly sol-
uble time-dependent potentials to generalize any exactly
soluble time-independent potential. Of course, much
work has gone into the study of exactly soluble time-
independent potentials; most recent work has focused on
the uses of shape invariance [15]. In fact, all the well-
known exactly soluble potentials of quantum mechanics
can be understood to derive their exact solubility ulti-
mately from the property of shape invariance. If a po-
tential V (y) is shape invariant, this means that

t

q(t) = dth(t) .
0

(2.11)
V (y) = W (y, o.)

h

2
W'(y, cx),

and W(y, a) satisfies the condition

(2.i8)

h d2 .hp d+ i y —+ V(y), —
2m dy 2 dy

(2.12)

Thus, for the above time-dependent Hamiltonians, one
recovers a mathematical structure formally analogous to
the one one finds for time-independent systems. Defining
the (non-Hermitian) pseudo-Hamiltonian

W (y, a) + W'(y, a)
2m

= W (y, o(cr))
h

W'(y, o(o.))+ B(a)
2m

we see that the problem of solving the time-dependent
Schrodinger equation is equivalent to finding the eigen-
functions and (complex) eigenvalues of 'R. (Note that in

(2.19)

for some functions o(n) and R(a). Using the theory of
supersymmetric quantum mechanics [16], the "levels" pi,
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are given by

~ hp
/0

4
(2.20a)

k/0 (2.20b)

In other words, we can view (2.8) as describing the cou-
pling of a quantum-mechanical particle of mass m to a
background electromagnetic field described by the two-

potential (y(y), A(y)) = (V (y), (pm/2) y), and this ne-
cessitates the harmonic-oscillator-type term. Invoking
the gauge transformation A(y) ~ A(y) —Py, one can ob-
tain the eigenfunctions of the gauge-transformed Hamil-
tonian from those of the original Hamiltonian by observ-
ing that under this transformation, the eigenfunctions
transform by

where a~ = o(n~. l) and tip = cl.
One of the intriguing features of the exactly soluble

time-dependent potentials we have identified is that, in
addition to containing a term of essentially the same form
as the original potential, they all contain an additional
time-dependent harmonic-oscillator term. We give a sim-
ple way to interpret this term below. But first let us point
out that because of the appearance of this term, for the
harmonic oscillator, and only for the harmonic oscillator,
will the time-dependent generalization simply involve in-
troducing a time dependence into the original coefIicient
of the potential. It is for this reason that [6] discovered
no exactly soluble systems other than the time-dependent
harmonic oscillator.

As promised, we give here an instructive interpretation
of the harmonic-oscillator term that appears in (2.17).
Using the definition of V (y) in (2.15), one can write the
Schrodinger equation in y space (2.8) in the following
forIIl:

( . d pm )'
y I &A, + V-(y) &i

2m q dy 2

(2.21)

y(»t) = f(t)[x — (t)l . (3 1)

Going through the same calculation as we did for the
case u(t) = 0, we find that separation of variables is only

possible for f g 0 when, as before,

consider other transformations, to see what separable and
what exactly soluble models these produce. We have
done this, and the answer we find is surprising. Consider
any change of variables of the form y = P(x, t), while
keeping t as the second coordinate. Then, neglecting
Galilean transformations (as these are essentially trivial),
we find that such a transformation can produce separa-
tion of variables only when the function P is in fact a
function not of x and t arbitrarily, but only of the ratio
x/gpt + q, that is, P(x/gpt + q). (Of course, the poten-
tial must also separate appropriately. ) Furthermore, the
only exactly soluble models uncovered by such transfor-
mations are exactly the exactly soluble models uncovered
in (2.17) by the very simplest transforlnation we consid-
ered.

We now ofFer a proof of this result. The argument is
rather technical, and the reader interested primarily in
our results might comfortably omit this section on a first
reading.

We will build towards the general proof by first giv-
ing three preliminary results. First, note that making
a transformation y = P(x/gpt+ q) for any function P,
will, given an appropriate potential, lead to separation of
variables in terms of y and t. Moreover, when the time-
dependent potentials are determined which are exactly
soluble using separation of variables and this transforma-
tion, one finds that they are exactly the same as the po-
tentials already uncovered in the preceding section by the
linear transformation. The calculation proceeds exactly
as in the preceding section; in the interest of brevity, we

will not present the details here, as they are straightfor-
ward to obtain. [It is helpful in this calculation to invert
the transformation formally via x = (gpt + q)P l(y).]

Second, consider a transformation slightly more gen-
eral than the linear transformation of the preceding sec-
tion, namely, the redefinition of variables

p2
Y (y) e exp ——

y) Y )y) .
5 2

(2.22)

1
t

v'pt+q ' (3.2)

In this way, then, the solutions to the eigenfunction equa-
tion (2.21) can be obtained Rom those of the correspond-
ing equation with an ordinary kinetic term. We point this
out because we suspect that proper use of such a gauge
picture may yield a more fundamental way to understand
and to classify the exactly soluble time-dependent mod-
els.

III. CHANGES OF VARIABLES:
THE POTENTIAL

The above set of exactly soluble models with the po-
tentials of (2.17) arises &om a consideration of the partic-
ularly simple change of variables y = f(t)x. In order to
begin to develop a classification of separable and exactly
soluble time-dependent models, it is clearly essential to

and when

u(t) = agpt+ q+ c . (3.3)

(When f = 0, the only solution is a Galilean transfor-
mation; since this is a trivial possibility, we ignore this
case. ) The additional parameters a and c are easy to un-
derstand if we rewrite (3.1) using the results for f(t) and

u(t) obtalnlng

y = f(t)(x —c) —a . (3.4)

We see that the parameter a corresponds to a shift in the
origin of y, while c corresponds to a shift in the origin of
x. Thus these parameters give us no new models. Any
potential for which separation of variables obtains when
a = 0 yields separation of variables for any value of a,
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and so allowing the parameter a adds no new models
to our list (2.17). The parameter c also gives us no new
models. If separation of variables works for V(x, t), it will
not generally work for V(x —c, t) in terms of the same
separating variables. However, V(x, t) and V{x —c, t)
correspond to the same physical model. Including the
parameter c thus allows us to use separation of variables
directly no matter what origin one uses for x; the earlier
transformation found all the same models, but entailed
choosing a particular origin for z.

The next result is a slight generalization of the pre-
ceding one (3.1). Consider now a transformation of the
form

tion of variables here requires that G(t) oc (pt + q)
Without loss of generality, we may rescale the transfor-
mation so that

(3.8)

Next we consider the case that x is in the neighborhood
of u~ (t). Here x —u~ (t) is a small parameter. Expanding
to lowest nontrivial order in this parameter, we see that
in this neighborhood

(3.9)

& = V'(t)[* u(t)] (3 5) where G;(t) is

Such a transformation can lead to separation of variables
only when &p(t) = (pt+ q) "~ (i.e., [f(t)]", where f(t)
is as above) and u(t) = agpt + q + c, as before. Rather
than going through the same type of calculation again,
one can obtain this result &om the preceding one. If
separation of variables holds in terms of y and t, then it
also holds in terms of z = y ~" and t. In this way, we
can reduce the problem of Gnding useful transformations
of the type in (3.5) to finding useful transformations of
the type in (3.1), which we already know.

We are now in a position to obtain our general result,
namely, that any transformation of the form y = P(x, t)
leads to exactly the same separable and exactly soluble
models as we have already obtained. To begin, we will
write the function y = P(x, t) as a product,

G (t) = G(t) (3.1O)

u, (t) = a, Qt+q, +c, .

Also, we see that Gz is

fbi

gt+q ~

Thus

(3.11)

(3.12)

In this neighborhood, the transformation takes the form
of (3.5), and so we see immediately that we must be able
to write each u~ as

~ 1 ~ h

j=l
(3.6)

(3.13)

y --G(t)x (3.7)

From our consideration of (3.5), we know that separa-

For the purposes of our discussion, we take the nz to be
positive but not necessarily integral, although the restric-
tion to positive n~ is not actually necessary. The u~ must
all be distinct. For convenience, we define N = P. i n~
We note that any P which is polynomial in the variable z
can be written in this form. Since our proof will hold for
all polynomials of any order, it will also hold in the limit
of an in6nite but converging power series, which can be
understood as the limit of such polynomials. The set of
transformations which we can handle based on (3.6) is
thus a superset of those functions which have a power
series in x. In fact, the form of (3.6) shows us that our
argument covers all functions except those with extreme
singularities.

The essential idea behind our proof is to take the re-
quirement that separation of variables holds under this
transformation, and look at the implications of this re-
quirement in diferent regions of space and time. This
will enable us to place restrictions on the possible forms
of G(t) and the u~(t).

First, consider this transformation at large values of x,
when x )) u~(t) for all j. In this region, the transforma-
tion is essentially

Since we know the general form of the u~'s, we know
that the left side of the preceding equation (3.13) has
no divergences, and thus the right side must have no
divergences. This requires that qz ——q in the expression
for G~, which in turn dictates that q~ = q in each of the
uz, since, as we saw back in (3.5), the square root that
appears in u(t) is the same square root as appears in y(t).

Putting all these results together, Eq. (3.13) now reads

i=1,i'

In order that the multiplicity of zeroes at t = —q be the
same on both sides of the equation (and that there be
no zeroes at any other value on the left side, since there
are none on the right side), we must have c~ = ci, for
all values of j and A:, and a~ g ai, for j g k. (This
is consistent with our requirement that all the u~'s be
distinct. ) We define c by cz ——c for all j.

We now see that in order for separation of variables
to work, the transformation in (3.6) cannot be the most
general product possible, but must necessarily be of the
form
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1
y

(i/ )~ (z Q'Qt + q —c)
1

(a.is)

We are free to redefine the origin along the x axis; this
does not change the physical mo de l. We therefore choose
the origin such that c = 0. Factoring out the square roots
(and recalling that N = g . i n~ ), we see that the most
general possible transformation which has the possibility
of producing separation of variab les is of the form

z
+ gj=1

Such a transformation is not a function of both x and t
separately, but rather is a function only of the combina-
tion z/gt + q. As we discussed above, the separable and
exactly soluble models that are identified via separation
of variables following a transformation y = P(z/ gt + q)
are exactly the separable and exactly soluble models
found using our original linear transformation .

Thus by considering an arbitrary co ordinat e trans for-
mation which leaves time as the second coordinate, we
obtain no models that we did not already identify by
considering the simple linear transformation . This resul t
is quite restrictive, and it suggests that there is a rich
mathematical structure underlying both the applicabil-
ity of separation of variables to and the occurrence of
exact solubility in time-dependent quantum mechanics
We would like to mention that we have tested our gen-
eral proof by examining a number of specific changes of
variables. In every case we have checked [which includes
a number of polynomial and rational functions for w hich

y (z) can be inverted in closed form], we have verified that
the only changes of variables that can produce separabil-
ity are the ones identified by our general argument

Thus we have shown that separat ion of variables only
arises for transformations y = P(z, t) if P is a function
of z/ gpt + q. Let us reemphasize here the twofold na-
ture of the consequences of this result: (I) there are no
models that admit separation of variables us ing an ar-

bitraryry

transformation for which a linear transformation
does not suffice; (2) there are no exactly soluble models
that we find using separation of variabl es and an arbi-

traryy

coordinate transform that we did not find us ing
separation of variab 1es and the linear coordinate trans-
form. Thus, unless we consider changes of variables in
which the time variable is redefined (a possibility we do

not explore in this paper), we have, by using the sim-

p1est time-dependent transformation, already identified
the most general exactly soluble time-dependent gener-
ahzations of the exactly soluble time-independent models
which are accessible by means of separation of variables
while using the original wave function. In the next sec-
tion we include a multiplicative transformation on the
wave function along with changes of variables, which en-
ables us to find a somewhat larger class of separable mod-
els. Our results here (and in the next section) demon-
strate that the space of time-dependent exactly soluble
models is extremely constrained, and thus suggests that
separability may be a useful tool in classifying such mod-
e1s and in identifying the structure underlying their so1-

ubi 1ity.

IV. CHANGES OF VARIABLES
THE WAVE FUNCT ION

The fact that the series of potentials found by the
method described above closely resembles the series of
potentials discussed in [7] is very intriguing. It suggests
that there should be a modification of the above prescrip-
tion such that the potentials of [7] —and perhaps more

are exact ly reproduced. Here we present such a mod-
ification, which also serves to he lp us ascertain the scope
of mo de ls one can address via separation of variables . To
this end, we define a new variable

y = f (t) [* — (t)] (4.i )

but aiso include now, in addition, a transformation of the
wave function

4'(y, t) =:-(y, t) e~~"'l (4.2)

where 4 denotes the wave function as a function of y and
t, i.e. , 4 (z, t) = @(y (z, t), t) [This ans.atz is motivated
in part by an attempt to generalize the transformation in
(2.22) .] Without loss of generality we write the potential
in the form

&(z(y t) t) = g(t) &(y) + &(y t) + «(t) (4 3)

Furthermore, since we are interested in finding new mod-
els, we only consider the case that V (y) is not exclusively
a quadratic po lynomial in y.

Using the above definitions, the Schrodinger equation
becomes

6 82:-

2fA l9y gy
+

h Bc . f(t) . n
i h y + i h

m By fs(t) f

t92 4+ w

2m Oy

h (B4) . (n f(t) ~ Bc ih BC

2m ( By ) ~ f f'(t) "
~

By f'(t) Bt

go (t) ih B:-

f (t) [ (t)v(y) + U (y, t)l =
f (t) f (t)
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y2
@(y t) = ~(t)+b(t)

2
+c(t)y+d(y) (4.5)

In order that the coefficient of B:-/By be a function only
of y (which is necessary for separability), we must have

In the more general case that U g 0, there is a some-
what larger family of separable (and, in turn, a larger
family of exactly soluble) models. Separability requires
that U(y, t) exactly cancel the y and y terms, leading to

with a m2f2 —ff
U(y, t) = —m —y —— yf' 2 f' (4.i2)

b(t) = —„—,,
Xm 0,'

c(t) =

(4 6)

(4.7)

Shifts of b(t) and c(t) by a constant from these values are
allowed consistent with separation of variables, but such
constants can just be absorbed into redefinitions of a(t)
and d(y).

Since our goal in (4.2) is to make separation of variables
possible where it previously was not, we see that the
choices one makes for a(t) and d(y) are arbitrary, as these
will not change whether the model is separable. Hence,
without loss of generality, we make the convenient choices

d(y) = 0 and

=(»t) = ). T (t)Y(y) (4.13)

where the c& are arbitrary constants, and where Yq and
Tq are the solutions of, respectively,

[We can shift U(y, t) by any function of the form

Uo(y) fz(t) or F(t) consistent with separability, but these
can just be absorbed into redefinitions of V(y) and go(t),
respectively. ]

Now by considering solutions to the Schrodinger equa-
tion (4.9) of the form "(y, t) = T(t)Y'(y), we see that,
with U(y, t) as in (4.12), the general solution to the
Schrodinger equation can be written as

=1 im ' .2a(t) = —ln f + ds n (a) —— ds go(s) .
2 2h 0 0

(4 8)

d2Yj,
+ V(y) Yg = egYj,

2m dy
(4.14)

Thus we see that given a transformation to new variables
(4.1), there is an essentially unique 4(y, t) which has the
potential to be useful in transforming the wave function
to obtain separability. Using the value of 4(y, t) we have
now determined, we see that the Schrodinger equation
(4.4) simplifies to

ih —= elf (t).TIc 2

Tk
(4.i5)

Bz:- ri m2fz —ff z

2mB 2 fs 2 fs T (t) = —
q el, r(t)

where

(4.i6)

The difFerential equation for TI, can be solved exactly,

+: [ (t)V( ) +U(»t)] =
B (49) t

~(t) = dt f'(t) .
0

(4.17)

g(t) = f'(t). (4.10)

We now only have left to consider f(t) and n(t). Note
first that if the potential factorizes in the sense of (2.3),
so that U(y, t) = 0, separability will only obtain provided
that

Since V(y) is not simply a quadratic polynomial, in
order for separation of variables in y and t to work, the
function g(t) must satisfy

Thus, whenever V(y) is an exactly soluble potential of
ordinary time-independent quantum mechanics, then the
original time-dependent system is itself exactly soluble.
Grouping together several terms by defining

&2f'- ff 2~(t) = —m, o' —~c +go(t), (418)

we see that whenever

(t) =
QAtz + pt+ v

(4.11)

and with o. fixed by requiring that the coefBcient of the
term linear in y in (4.9) be independent of t This case.
xnakes contact with and generalizes the results of the pre-
vious sections; more significantly, it reproduces exactly
the set of models investigated in [7]. So in the special
case U = 0, there are n»que transformations (which we
have found) of the spatial coordinate and the wave func-
tion which can produce separation of variables.

V(* t) = f'(t) V(f(t) [*-~(t)])
2f'- ff-l

f'
m 2fz- ff
2 2 7 (4.19)

the model is separable, and that when, in addition, V(y)
is a standard exactly soluble potential for the time-
independent Schrodinger equation, the time-dependent
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Hamiltonian of the Schrodinger equation (2.2) is exactly
soluble. In this way, we have identified a more general
family of exactly soluble time-dependent potentials.

As we have already said, our technique for identifying

exactly soluble models is by no means restricted to the
one-dimensional case. In the simplest generalization of
our work, one can easily show that the time-dependent
potentials

V(z t) =, V! )! —m! n -—
!

z — — *'+h(t)
p (t) & p(t) J & p(t) ) 2 p(t)

(4.20)

are exactly soluble in d dimensions. This result is of
course in agreement with [1,5].

V. THE LEWIS—LEACH APPROACH

The series of potentials (4.19) that we obtained has
been found before, by Lewis and Leach in a diferent but
related context [12]. They found that a classical Hamil-
tonian with explicit time dependence has an invariant
quadratic in the momentum if and only if the potential
is of the form (4.19). [Their notation is related to ours
via the substitution p(t) = 1/f (t).] Lewis and Leach
examined a purely classical problem; our investigations,
however, are explicitly quantum mechanical. In this sec-
tion, we show how to generalize [12] to the correspond-
ing quantum-mechanical problem. Remarkably, we Gnd
that a quantum-mechanical Hamiltonian will have an in-
variant quadratic in the momentum in exactly the same
cases that the classical Hamiltonian will, and that these
are the potentials we have identified by the condition of
separability.

Any operator in quantum mechanics satisfies Heisen-
berg's equation

dI OI i—= —+ —[H, I] .
Ch Bt

(5.1)

We are interested in the case for which there is an invari-
ant I which is quadratic in the momentum. Because of
the identity

(5.2)

we can always write I in the form

I = f2(»t)&'+fl(»t)&+fo(z t) (5&)

Then one can easily derive that the functions fo(z, t),
fl (z, t), and fq(x, t) satisfy the following differential
equations:

1 t'p l . „—fx —nlI = —m p! ——n! —p(x —n) + V!
2 qm j )

(5 9)

Of course, the existence of an integral of motion does
not guarantee exact solubility; rather, it appears as the
analogue of separability. Exact solubility will occur only
for V{y) of certain functional forms. The shape invari-
ance condition we used earlier in this paper, for exam-
ple, does guarantee exact solubility of the corresponding
time-dependent model.

VI. PROPAGATORS

equations of Lewis and Leach [12] as we expect. The
above system of differential equations for the quantum
case can be solved in the same manner as the classical
equations. Remarkably, the solution to the system of
quantum-mechanical equations is virtually identical to
the solution to the classical equations. In particular, we
see that fq is independent of z, and that if we define

fo(*, t) = fo(z, t) —i&mf2(t)/2, then fo, fl, and f2 sat-
isfy exactly the classical Lewis-Leach equations. We can
use this to find easily that the form of all possible time-
dependent potentials that satisfy the quantum Lewis-
Leach equations is given by {4.19), and the associated
integral of motion is

=1 p — /'z —n
!I = —m p ——n —p(x —n) +V!

2 . m )'
(5.8)

with p(t) = 1/f(t), where f(t) is the function from the
coordinate transformation (4.1). Note that this invariant
is exactly the pseudo-Hamiltonian defined earlier in this
paper. It is worth pointing out that in the d-dimensional
case given in (4.20), the corresponding integral of motion
is, quite clearly,

0
Bx

Of2 Ih O f2 1 Of&

Bt 2m Oz2 m Bx
Ofl ih O2fl 1 Ofo OV

Ot 2m Ox2 m Ox Ox
+-

Ofo ih O fo . O2V OV

Ot 2m Ox2 Ox2 Ox
+ih

(5.4) The propagators for the potentials {4.19) can be given,
of course, in terms of either the x or the y variables. The
respective expressions(5.5)= 0,

K(z, z'; t, t') = ) C „(z,t) C „{z',t') (6.1)0, (5.6)

(5 7)
and0.

K(y, y'; t, t') = ) 4I, (y, t) I1I'„{y',t') (6 2)
Notice that in the limit h —+ 0 we recover the classical
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are obviously related by—(z —n(t) z' —a(t')
p(t)

'
p(o)

(6.3)

since y = [z —n(t)]/p(t). [We find it useful to work
in terms of p(t) = 1/f(t) in this section. ] Using the
wave-function transformation (4.2) and substituting in
the propagator expression (6.2), we find

K(y, y'; t, t') = [p(t)p(t')] e "' ) e " ' ):-«(y, t) "«(y', t')

[p(t)p(t )]
~ e@(w&i) e@ ('v &i ) ) Y«(y) P+(y ) e ~ ~~ (&(i)—&(i')) (6.4)

Noting that for the ordinary Schrodinger equation (4.14) which arises for =(y, t), the propagator is

Ko(y, y';t, t') = ) Y«(y) Y«'(y') e
Ie

we see that

K(y, y', t, t') = [p(t)p(t')] '"e""""'""K.(y, y';r(t) -r(t')),

(6.5)

(6.6)

where r(t) is as defined in (4.17). Returning to the original variable z by using Eq. (6.3), and the results for 4(y, t)
contained in (4.6)—(4.8), we find, after some calculation, that

K(z, z';t, t') = [p(t)p(t')] exp
~

—— dsh(s)
~

exp — ds
~
a(s) — a(s)

~

( i ' ') im ' (' . p(s)

( K „) 2h, „( p(s)
im (p(t) 2 p(t')

xexp
~
a(t) — n(t) z —

~

a(t') —,n(t')
~

z'im f. p(t) ) im (. , p(t')

(z —n(t) z' —n(t')
p(t)

' p(t')
(6.7)

Despite its length, this result is relatively elementary
in nature. One should also be able to derive it in a
straightforward manner in the path integral formulation

[8, 10, 11], although we have not attempted to do so.
One can easily check that this propagator gives the cor-
rect result in the special cases a(t) g 0, p(t) = 1 and

a(t) = 0, p(t) = grt2+ 2pt+ q, by comparison with [7,
8, ll], where these special cases are considered.

We now give several examples based on the general for-
mula (6.7). We will identify models in which our method
in combination with other techniques makes the calcula-
tion of propagators relatively easy. In some cases we will
actually display the propagators, while in other cases we
wiH give the reader the necessary ingredients, but, in the
interests of space and clarity, not present the full form of
the propagator.

As a preliminary, we rewrite the potentials (4.19) in
the form

a + ~2(t) n = —E(t) . (6.10)

We will use w and F in lieu of a and p as convenient.
The first example we consider is the free particle of

time-independent quantum mechanics, i.e. , V(y) = 0,
which is of course an exactly soluble model. This im-
plies that the forced oscillator with a time-dependent fre-
quency

1
V(z, t) = —F(t) z + m~'(t) z'-

2
(6.11)

is also an exactly soluble model.
We can arrive at the same model by starting with a

simple harmonic oscillator V(y) = mu02y2/2. Then by
taking h(t) = m~02n2/2p4 w—e find exactly the potential
(6.11) with one minor modification. Now, p(t) is not a
solution of (6.9), but rather of

—t'z —at i 1
V(z, t) =, V

~ ~

—P(t)z+ —m~'(t)z',
p'(t) & p(t) ) p + (t) p =

p3
(6.12)

where the functions ur(t) and E(t) are solutions to

p + u) (t) p = 0 ,

(6.8)

(6.9)

Equation (6.10) remains unchanged. This model is still
separable and exactly soluble, even though p satis6es
(6.12) rather than (6.9), as the effect of the extra term in
(6.12) can be absorbed into a redefinition of V(y) [17].
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(t) = d ~.(t)~.( ) ( .[ .(t) - .( )l)
Il (s)
mhpo

[pi (t)p2 (s) pi (s)A (t)1'
Il (s)
mao

(6.13)

Alternatively, the above expression can be verified by di-
rect substitution in Eq. (6.10).

Thus, given pp(t), we can use either the propagator
of the &ee particle or the propagator of the simple har-
monic oscillator with constant frequency to obtain the
propagator of the potential (6.11). Since the resulting
expression is rather long and complicated, we will not
write down the result here, as its evaluation is entirely
straightforward.

As a by-product, notice that the propagator of the
time-independent oscillator of quantum mechanics can
be derived by the one of the &ee particle as had been no-

It is known that the solutions of Eqs. (6.9) and (6.12)
are related. In particular, if pp(t) is a solution of
Eq. (6.12), then pi(t) = pp(t) sinldp7p(t) and p2(t)

pp(t) cosh/prp(t), where 7p(t) = Jp ds 1/p2p(s), are solu-
tions of Eq. (6.9) [18]. Also, a particular solution for
Eq. (6.10) can be found using the theory of Green's func-
tions:

Kp(y, y'; t, t') = m im (y —y')2

2vrih(t' —t) 2h t —t'exp

(6.14)

we find the well-known expression

K(z, z';t, t') =
2xih sinus p (t' —t)

xexp '

(z + z' )cot~p(t —t')
2h

2xx'

sinup (t —t') (6.15)

We now consider a related model, the Bee particle in

0 if 0&y(Lo
+ f, 0-,oL„. (6.16)

The exact solubility of this model implies that the infinite
well with moving boundaries

ticed in [19]. In this case, E(t) = 0, ~(t) = ldp = const,
and it is enough to take n(t) = 0, p(t) = cosurpt; thus
7 (t) = (1/(up)tan(unapt). Using the propagator of the free
particle

y( t)
—E(t) z+ 2

mur2(t)z2 if n(t) ( z ( p(t) Lp+o(t)
+OO if z & n(t), z ) p(t) Lp + o(t) (6.17)

is also exactly soluble. The propagator of the time-
independent infinite well can be written down e8'ortlessly
using the energy eigenvalues E„= n2m2h /2mL2p and
eigenfunctions Y„(y) = g2/Lp sin(nary/Lp), giving

2
+ . & z ne'er'h'

Kp(y, y';t, t') = —):expl --, (t —t')
l

Lp ( h 2mLp2

nag . n&Q
x sin sin

0 0
(6.18)

This can be written in terms of the Jacobi 83 function,

Os(u~z) = 1 + 2) e'"' 'cos(2n, u),
n=l

giving

(6.19)

Kp(y, y'; t, t') ~h(t —t') )
2mL2p )

(t —t') ~

mLp2 )
(6.20)

1 ~7r(y —y')
83

2Lp I
2Lp

(m(y+ y') 7rh

2Lp 2

It is now an easy exercise again to write down the prop-
agator for the innnite well with moving boundaries in
(z, t) space.

(6.21)

m(dpQyy . ( +3)
h sin(unapt)

I

x
i

mQJoyy i ~ ~&2+&&2)gh 2t

( h, sin(ldpt) )
Our results, then, show that not only is the time-
dependent potential

(6.22)

V(z, t) = —F(t)z + —m~'(t}z' +

(6.23)

exactly soluble, but also that its propagator can easily be
obtained from the propagator (6.22) and our fundamental
propagator forinula (6.7).

As a final example, we note that in [20], the propagator
is found for the exactly soluble potential

Using the theory of supersymmetric quantum mechan-
ics, Das and Huang [20] have developed a very ele-

gant way of calculating the propagators of the time-
independent exactly soluble potentials of quantum me-

chanics. For example, using this method one can obtain
the exact propagator for

&(y) = n(n+ 1) n=12 3,
2m Q

which is [19—21]
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&(y) =
~ + —

I
(~24)

Pzh ( —1 1i
m (cosh (py) 2 j

Putting the results of this paper together with those of
[20], then, we can easily find the propagator for the po-
tential

—F(t) z + —mar (t) z
2

(6.25)

The final expression for the propagator is lengthy, but
simple to obtain.

Needless to say, one can in the same way find the prop-
agators for the time-dependent generalizations (4.19) of
the other known exactly soluble time-independent poten-
tials of quantum mechanics. The examples above have
been selected as a sampler of typical results and tech-
niques.

VII. CONCLUSION

In this paper, we have explored the applicability of sep-
aration of variables to quantum-mechanical systems with
explicitly time-dependent potentials. We have presented
this work in one spatial dimension, but clearly the same
methods can be applied in higher dimensions as well.
We have found that only a very limited set of changes of
variables and transformations of the wave functions can
produce separability. The uniqueness we find is remark-
able, and it indicates that the underlying principles that
allow separation of variables are quite restrictive.

Using as our central technique separation of variables,
we have also constructed exactly soluble time-dependent
generalizations of any exact soluble time-independent
model. In fact, our method reduces the identification of
exactly soluble time-dependent models to the identifica-
tion of exactly soluble time-independent models. This
allows us to make contact with the very powerful in-
sights and techniques of shape invariance, and promises

a deeper understanding of exact solubility in the time-
dependent case.

Our work also makes significant contact with other
work on time-dependent Hamiltonians. For example, we
have used separation of variables to 6nd the exactly sol-
uble models discussed by [7]. We have also worked out
the quantum generalization of [12], and shown that the
existence of an invariant quadratic in the momentum oc-
curs for exactly the same time-dependent Hamiltonians
as separability does.

Of course, we cannot claim to have identified or classi-
fied all exactly soluble time-dependent potentials. How-
ever, the unique time-dependent generalizations pro-
duced by any useful changes of variables suggests that
there is indeed a very intricate structure underlying the
exact solubility of these models. To identify this struc-
ture —ideally, to do so directly in ordinary position space—would be a significant contribution to our understand-
ing of exact solubility and to a possible classification of
exactly soluble time-dependent models.

Furthermore, the results of this paper coincide at var-
ious points with the results of the references cited on
exactly soluble time-dependent quantum mechanics [2, 7,
9, 11],despite the difFering approaches of all these papers
(including ours). This suggests that separation of vari-
ables is a sound guide to finding exactly soluble time-
dependent potentials. Given the variety of techniques
that have been applied to time-dependent quantum me-
chanics, all of them of course producing mutually consis-
tent results, there is probably much progress to be made
by using these various approaches in tandem.
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