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q-deformed binomial state
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On the basis of the q-binomial theorem we construct the q-binomial state for a q-deformed boson
which interpolates between the q-nupber state and the q-coherent state. The properties of the q-

binomial state are also discussed.
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I. INTRODUC:raQN

Recently much attention has been paid to the q-
deformed boson oscillator due to its possible applications
in various branches of physics [1]. Some important phys-
ical concepts, such as the number state and coherent state
for the ordinary harmonic oscillator and radiation field,
have been extended to the q-deformed case. Besides the
well-studied ordinary number state and coherent state [2]
there also exists the binomial state in some radiation
fields [3], which interpolates between them. In the ap-
propriate limit the binomial state reduces to the coherent
state, which corresponds to the fact that the Poisson dis-
tribution is a sort of limit of the binomial distribution [4].
From the point of view of the photon-counting statistics,
the binomial state produces light that is of antibunched,
sub-Poissonian, and squeezed for certain parameter
ranges. An interesting question thus naturally arises:
how to correctly define a q-deformed binomial state
which in some limit can reduce to a q-deformed coherent
state. According to mathematics literature there are
three kinds of q deformation for Poisson distribution,
known as the Euler, pseudo-Euler, and Heine distribu-
tions depending on the range of the parameter q [5]. The
key point to solving the question is to set up a q-deformed
binomial distribution which can naturally approach to
the Euler (not the Heine) distribution in some definite
limit. This work is organized as follows: In Sec. II we
propose the normalized q binomial state which is based
on the new q-deformed binomial distribution. %e show
that the q coherent state is some limit of the q binomial
state in Sec. III, and point out that the q binomial state
exhibits, an antibunched property in Sec. IV.

II. q BINOMIAL THEOREM AND q BINOMIAL STATE

I.et a (a) denote the q creation (annihilation) operator
which satisfies the commutator

Mailing address.

aa —qa a=1 .

The q number operator ¹is defined through

[a,N]=a, [a,N]= —at .

By introducing

(2)

its)=(e ' ') '"g /n) .

To define a q-deformed binomial state we should have a q
binomial theorem in advance. To begin with, we define
the q binomial expression (x +y)" as

(x +y)"=(x +y)(x +qy) (» +q" 'y)

n —1= g (x+q"y) (n =1,2, 3, . . .),
k=0

(x+y) =1, (6)

which implies that the q binomial (x +y)e does not obey
the multiplication rule of the ordinary binomials. In fact,
we have

(x+y)"+ =(x+y) (x+q y)"

=(x +y)"(x +q "y )

where m and n are both non-negative integers. Corre-
spondingly, we can express the q binomial theorem [8] as

1
x

[x)=
1 —

q
(3)

we know [6] [N]=a a, which possesses the q-deformed
eigenstate

a~"
/n) = /0),

[n]!
where the q factorial [n]!=[n][n—1] [1]. With the
use of

~
n ) the q coherent state is constructed as [7, 1]
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where

n pg

)n y k(k —1)/2 n —k k
kk=o

m

~~, m &= g Qb (n;m, r)~n & (0&r&1),
n=0

where

bq(n;m, q. ) = r"(1 r)—
q

(10)

n [n]!
[k]![n —k]!

(9)

Based on this, we are able to define the q binomial state
for 0&q &1 as

is the new q-deformed binomial distribution. It is worth
pointing out that the expression (1 q)q

—" in Eq. (11)
must be understood as (6).

As a result of (10) we can prove that the state
~

q., m & is
normalized, e.g.,

m m —n

5 =0 k=On=o
(~, m~r, m &= g bq(n, m, q)= g k(k —1)/2( )k n+k [ ] k(k —1)/2 I

m I
( I )klm)f

0 [m —1]![k]![I —k]!

m pyg l

I=o . . q k=o .

m Pl
( )kqk(k 1)/2 + q.l(1 1)l

i=o . l q 0
q

(12)

III. ASYMPTOTIC BEHAVIOR OF THE
q BINOMIAL STATE

Because (e") '=e, /" (see [8]), so Eq. (13) is true. Fur-
ther, by introducing A, through the relation

In this section we explain that the q binomial state in-

terpolates between the q number state and the q coherent
state. From (10} is is easily seen that for r=0 and q =1
the q binomial state ~~, m & reduces to the q number state
~n =0& and ~n=m &, respectively. On the other hand, in
the limit m ~~ we shall show that ~~, m & reduces to a
q-deformed coherent state. This statement will be ap-
parent by virtue of the q analog of the limitation expres-
sion of the ordinary exponential

/(, = lim q[m]=
m —+00 1 q

and using Eqs. (11)and (15), we obtain

lim b (0; m, q ) = lim (1—
w)q

m —+00 m ~ 00

= g [1—(1—q)q "A, ] =(ek)
k=o

(16)

(17)

X
lim 1+— =e",

n~00 n

namely,

lim 1+ X

n~00 n
q

where

X
1/q (13}

It also follows from (11)and (3) that

b (n;m, q) [m n+
lim = lim

m-~ bq(n —1;m, r) m~~ [n](1—qm n~)

m —n+1
= lim

m~~ [n](l —q)(l —
q "w)

ex
1/q

—n[n],=,=q' "[n] .
1 —

q

(14)

[n ](1—q) [n]

Combining the results (17) and (18), we arrive at

lim b (n; m, ~)= (eq )
m ao

'
n l

(18)

In fact, by using (6)
lim„„[n]=(1—q) ', we have

and noticing that

[1+(1—q)q x }
k=0

(
—x)—1

q
(15}

n
n —1 X

lim 1+ = lim g 1+q"
n [n] n ~ k () [n]

q gn /2
11m ~r, m &=(e,")-'"y

m m q
0 V'[n]!

(20)

which tells us that in the limit m ~ ao the state ~r, m &

approaches to the q coherent state
~
a =v X &.

which is just the q Poisson (or Euler) distribution, as it is
the q analog of the ordinary Poisson distribution. Equa-
tion (19) also means that the q binomial distribution (11)
takes the Euler (not Heine) distribution as its limiting
form. Using Eqs. (10) and (18) we have
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IV. SOME PROPERTIES OF ~r, m )

[n]b (n; m, r) = [m]rb (n —1;rn —1,r), (21)

we have

As concluded in Ref. [3], the ordinary binomial state
may exhibit antibunched, sub-Poissonian behavior, so it
is interesting to examine how the q binomial state
behaves. Acting the annihilator a on ~r, m ) and using
the identity

m

a I& m ) = g Q[n]bq(n; m, r)~n —1)
n=]

m —1

=&[m]r g +be(n;m —l, r)~n)
n=0

=&[m]r~r, m —1) . (22)

Hence, the q operator a acts as a sort of lowering opera-
tor for the state ~r, m ). On the other hand, we obtain

at(r, rn ) = 1
[N]~r, m +1) . (23)

v'[m +1]r
It then follows that

) r [m]!
[m n]—!

' 1/2

lr, m n&—, (24)

]'
[m +n]!

' 1/2 P

[N][N —1]'''[N n—+1]~r,m+ n)= ~ ™
[m +n]!

' 1/2

a'"a "(r,m+n & (25)

' j/2
r [m]!

[m —n]!
&r, m ~r, m n&,— (26)

t„) r"[m]!
[m —n]!

' 1/2

(r, m n~r, m—), (27)

respectively. Using the definition (10) it is also straight-
forward to calculate

([N])= g [n]b (n;m, r)
n=0

[ml n(1 )m
—n

„~,[n —1]![rn—n]!

=[m]r,
([N]2) =[m]7+q[m][m —1]v

(28)

(29)

where the equality [n+1]=1+q[n] was used. From
(28) and (29) we obtain the variance

( ( [N] —( [N] ) )t ) = [m)r(1 —r) . (30)

and the expectation values of a" and a~" in the state
~r, m) are

Equations (28) and (29) are the q analog of the ordinary
binomial probability distribution, so we say that the q bi-
nomial state yields a q-deformed distribution for the q bo-
son. Moreover, from (29) and (30) we know

&([N]-& [N]&)'&
([N]&

(31)

which exhibits the sub-Poissonian nature of the q binomi-
al distribution. With use of (24) and (25) we can also cal-
culate the second-order correlation function for

~ r, m ),

(,) &a 'a'& [m —1], 1

(a ta )t [m] [m)
(32)

We can conclude that the q binomial state is antibunched.
In summary, we have extended the conception of the

binomial state of a radiation field to q-deformed case
which is definitely a supplement to the q-deformed num
b«state and q-deformed coherent state. The relation be-
tween the q binomial distribution and the q-poisson dis-
tribution has been revealed and the q antibunched prop-
erty of the q binomial state been investigated.
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