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Quasilinearization method applied to multidimensional quantum tunneling
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We apply the quasilinearization method of Bellman and Kalaba jguasilinearizotion ond Nonlinear
Boundary Volu-e Problems (Elsevier, New York, 1965)] to find approximate solutions for the multidimen-
sional quantum tunneling for separable as well as nonseparable wave equations. By introducing the idea
of the complex "semiclassical trajectory" which is valid for the motion over and under the barrier, and
which, in the proper limit, reduces to the real classical trajectory in the allowed region, we obtain an ei-

genvalue equation for the characteristic wave numbers. This eigenvalue equation is similar to the corre-
sponding equation obtained from the &KB approximation and yields complex eigenvalues with negative
imaginary parts. When the barrier changes very rapidly as a function of the radial distance, we can re-

place the concept of the semiclassical trajectory, which may not be applicable in this case, by the concept
of a complex "quantum trajectory. " The trajectory de5ned either way depends on a constant of integra-
tion, and by minimizing the action with respect to this constant we can obtain the minimum escape path.
The case of two-dimensional tunneling is discussed as an example of this method.

PACS number(s): 03.65.Ge, 03.65.Sq

I. INTRODUCTION

The pioneering work of Kapur and Peierls [1] on the
penetration into potential barriers in several dimensions
and subsequent contributions by Banks and collaborators
[2,3] and by others [4] are all based on generalizations of
WKB approximation. In their work Kapur and Peierls
obtained the Euler-Lagrange equations for the most prob-
able escape path in Cartesian coordinates for real energy
eigenvalues and bypassed the problems of imposing the
condition that the wave function under the barrier should
be single valued, and that the energies of these metastable
states are, in general, complex. However, there are phys-
ical systems for which the potential barrier does not pos-
sess spherical or cylindrical symmetry and the wave
equation cannot be reduced into uncoupled partial waves,
but the symmetry-breaking part of the interaction is
small compared to the central potential. This occurs,
e.g., in the problem of ct decay [5] with noncentral forces,
or in the theory of molecular reactions [6], and the decay
of the false vacuum [7,8]. For these systems the preferred
coordinate system is not Cartesian but a system with an-
gular variables, and then the question of the periodicity
of the wave function under the barrier should be ad-
dressed, even if this difficulty is confined to a small part
of space. In order to appreciate the complexity of the
problem, consider the two-dimensional tunneling where
the Schrodinger equation is not separable. If it is ex-
pressed in terms of the curvilinear coordinate (g, P), the
boundary conditions on the wave function assume a sim-
ple form; e.g., at the origin /=0 and on a closed curve
g=R. Then even if the multidimensional tunneling is ap-
proximated by a separable wave equation, it still involves
a two-point boundary-condition problem with complex
eigenvalues, where the complex eigenvalue appears non-
linearly in the difFerential equation. The complex energy
eigenvalue is related to the well-known result that in the

case of resonant scattering, the scattering matrix has a
pole at a complex value of momentum and the imaginary
part of the energy is proportional to the width of the res-
onant state. In cases where the barrier is high and/or
wide, this imaginary part is small and can be ignored, but
there can also be resonant states where the imaginary
part is not small. The requirements of a single-valued
wave function and complex energy are not compatible
with real classical trajectories for the motion under the
barrier.

In this work we apply the method of quasilinearization
[9] to find an approximate solution of the quantum tun-
neling in two dimensions for a general nonseparable po-
tential barrier. However, it is not difficult to apply the
same method to three-dimensional tunneling problems.
The layout of the paper is as follows. In Sec. II we illus-
trate the method of quasilinearization as applied to an ex-
actly solvable example of the Hamiltonian-Jacobi equa-
tion. In Sec. III we observe that for a separable wave
equation in polar coordinates the partial wave
Schrodinger equation can be viewed as a two-point
boundary-condition problem with complex eigenvalues.
We have not been able to find an accurate and stable nu-
merical method for solving the differential equation for
the complex eigenvalues, however, using the WKB ap-
proximation we have found a relatively simple eigenvalue
equation which can be solved numerically.

Barriers with sharp boundaries are of common oc-
currence in one-, two-, or three-dimensional problems
such as the electron tunneling in metal-insulator-metal
junctions [10]. We consider the partial wave Schrodinger
equation for situations like these where the connection
formulas are exact, and in order to get a better approxi-
mation we need to determine the wave function in each
region more accurately. This can be achieved if we use
the method of quasilinearization to find the wave func-
tion above or below the barrier. In Sec. IV we study a
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barrier of the form v(r, P), where the wave equation is
not separable. Again applying the method of quasilinear-
ization we find an iterative scheme for calculating the
logarithm of the wave function which is a complex quan-
tity. This is done by introducing the concept of the
"complex path" and by imposing the condition that the
wave function must be single valued. In Sec. V we study
two separable examples where the eigenvalue equation
can be determined exactly. In Sec. VI we investigate the
important question of the escape path of the particle. Fi-
nally in Sec. VII we conclude the paper by presenting
some numerical results.

(dS/dx) =k —u (x)—ew (x)=q
—ew (x}, (2.1)

where S is the characteristic function, k is the total ener-

gy, and u (x)—ew (x) is the potential energy with sw (x } a
small perturbation. We replace the nonlinear equation
(2.1}by the following sequence of linear equations:

equations. We then integrate the first few equations of
the set using the method of characteristics, and then ob-
tain an approximate solution for the nonseparable prob-
lem. Let us start with a very simple example of a solvable
one-dimensional Hamilton-Jacobi equation;

II. QUASILINEARIZATION
OF THE HAMILTON-JACOBI EQUATION

ds„
2

dx

dS„
dx

2
dS„—i =k —v (x}—sw (x),

dx

The theory of quasilinearization developed and ex-
pounded by Bellman and Kalaba [9] discusses a method
of finding the solution of nonlinear ordinary or partial
differential equations subject to prescribed boundary con-
ditions by replacing them by an infinite sequence of linear
equations. In the present work we apply the method of
quasilinearization to solve the nonlinear separable equa-
tions of the Hamilton-Jacobi type by considering them as
the limit of an infinite set of linear partial differential

I

(2.2)

(d$0/dx) =k —v (x)=q (x), (2.3)

and then using (2.2) we calculate (dS, /dx),
(dSz/dx), . . . , (dS„/dx);

so that in the limit of n ~~, S„(x}tends to S (x), i.e., S„
converges to the solution of (2.1). To start the iterative
solution of (2.1) we take So to be a solution of

dS,
dx

dS2

dx

dSii

dx

dSi
dx

(s/2) w (x)
q(x)

(e, /8)w (x)
q (x)[q~—ew (x)l2]

(2.4)

(2.5)

dS3 =
dx

dSz + (e /128)w (x)
dx q(x)[q —sw(x)/2][q —aw(x)/2) —(a w /8)]

(2.6)

and so on. This sequence converges faster than the ex-
pansion of [q —ew (x)]'~ in powers of s, since (dS2ldx)
already contains (

—e3/16)w (x), and (dS3/dx) includes
the contribution of a w (x). The question of the conver-
gence of a sequence like (2.2) to the solution of (2.1) is dis-
cussed in detail by Bellman and Kalaba [9].

III. QUASILINEARIZATION
AND THE WEB APPROXIMATION u(r)=r' H'"(kr)g(r) . (3.3)

where H'"(kr) is the Hankel function, and R is the range
of the potential, i.e., for r )R, v(r) becomes negligible.
Thus we have a two-point boundary-condition problem
where the eigenvalue k appears both in the differential
equation as well as the boundary condition. To trans-
form this equation to the normal form of an eigenvalue
equation where the boundary conditions are independent
of k, we change u (r) to y(r) where

In this section we consider the application of the quasi-
linearization method to the tunneling problem, and com-
pare it to the WKB approximation. But first let us con-
sider the two-dimensional tunneling in polar coordinates
with a central potential barrier v(r) for which the re-
duced Schrodinger equation for the rnth partial wave
reads as

By substituting (3.3) in (3.1) we find

g"+2(d I ln[r'~ H"'(kr)] I /dr )y' —v (r)y=0,
as the wave equation with the boundary conditions

y(0) =0, y'(R) =0 .

(3 4)

(3.5)

u" +[A —u(r) —(rn —
—,')/r ]u =0, (3.1)

u(r =0)=0,
(u'/u}„z =Id[in(r'~ Hi (kr}]/dr]„ (3.2}

where primes denote derivatives with respect to r. This
equation is subject to the boundary conditions

In Eq. (3.4) the eigenvalue k will be complex, since it ap-
pears in the argument of the complex function H'"(kr).
This is in contrast with the one-dimensional tunneling
where the boundary conditions are given at x =+ ao, and
k is real and is not a discrete eigenvalue. Apart from the
cases of rectangular and 5-function barriers, Eq. (3.4) has
to be solved numerically, and even this is not simple.
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Therefore let us consider the semiclassical solution of the
tunneling for the central potentials. Since k is complex,
the classical turning points cannot be defined as the roots
of k —U(r) —(m —

—,')/r =0. But for calculating the
lowest eigenvalues, the imaginary part of k is small, and
we can replace k by Rek to define the turning points.

For a simple barrier there are three distinct turning
points, a, b, and c with c & b & a for a given energy k .
For r )c the wave function u4 approaches the outgoing
free particle wave function as r ~ 00, i.e.,

fore we replace it by the complex quantity Ro(r);

%'0(r) = [v (r)+(m ,'—)/—r k—]'

and we write the wave function for b (r & c as

u 3
= (D /Q%'0) e exp f "hodr

b

2i—e exp — R dr0

(3.8)

(3.9)

K0

T

exp i K (r)dr—0 4
(3.6)

KO(r) = [k —
U (r) —(m —

—,
' )/r ]' (3.7)

Under the barrier I( 0 has a large imaginary part, there-

where D is a constant, and Ko(r) is a complex quantity
(since k is complex), with a small imaginary part and is
defined by

L= 0r r
b

(3.10)

Between the two turning points a and b, the wave func-
tion is oscillatory, and again by using the connection for-
mulas we find

where we have used the well-known connection formulas
for the WKB approximation, and where L is defined by

2D

i I(0
[e —

—,'e ]exp i Kodr——I . b 7T b+[e + —,'e ]exp i —Kodr— (3.11}

( —i /4) cos(250)
e2L

1+sin(250)

where

50= f Ko(r)dr
0

(3.12)

(3.13)

If the centripetal force (m ,')lr —is—absent in (3.1) (as
in the case of three-dimensional tunneling for the S
wave), then there are only two turning points b and c. In
this case by demanding that u2 must vanish at r =0, we
find the eigenvalue equation to be

where

5=f Ko(r)dr,
b

a

and P is defined by

P=Ko(a)lk .

(3.16)

(3.17)

Since a is a turning point, p is zero, therefore if T(a) is
not zero, (3.15) reduces to (3.12) except that 5 replaces 50.
However, if we use the WKB approximation we find the
following expressions for u, (r) and for T:

In the presence of the centripetal force, we need to find
the wave function for r &a. This wave function must
satisfy the boundary condition u, (r =0}=0. Let T
denote the logarithmic derivative of the wave function at and

u, (r) =

[CITED(r)'

]sinh f g(o(r)dr
0

(3.18)

r=a;
(du

&
Idr),T—

ku, (a)
(3.14)

Matching this logarithmic derivative with ( du 2/
dr), , /[kuz(a)] gives us the following eigenvalue equa-
tion:

T = P(0(a) lk]coth f %'0(r)dr
0

(3.19)

(PIT)~+i tanhy,

where

(3.20)

Thus T also vanishes at r =a, and the right-hand side of
(3.15) becomes indeterminate. Noting that

(i l4)[(P —T ) cos(25)+2TP sin(25}]
[(P + T )+(T —P )sin(25)+2PT cos(25)] y = f Ro(r)dr,

(3.15) then (3.15) reduces to

(3.21)

(i /4) [—(1+tanh y ) cos(25) +2i tanh(y )sin(25) ]2L

[(1—tanh y)+(1+tanh y)sin(25)+2i tanh(y) cos(25)]
(3.22)
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1
exp i K(r)dr i-

"t/K (r) 4
(3.23)

and substitute this in (3.1) to obtain a difFerential equa-
tion for K(r);

+K Ko(r—) =0 .1 K" 3 K'
2 K 4 K

(3.24)

If we neglected the first two terms of (3.24) we find Ko(r),
where Ko is defined by (3.7). Let us now apply the
method of quasilinearization to (3.24) and write

II I 2
1 Kn-i Kn-i 2 — 2+2K„K„ i

—K„ i
—Ku(r) =0,

n —1 n —1

Equations (3.12) and (3.22) have complex roots
k =k, ik;, but only the roots with k,. & 0 are acceptable.
The quantities k„and k, can have only discrete values,
therefore only after solving Eq. (3.22) can one determine
whether or not the effective height of the barrier,
u(r)+[m —

—,']/r, is greater than the real part of k,
i.e., one is dealing with proper quantum tunneling. Also
when Rek is comparable to the height of the potential
the semiclassical approximation may not be reliable.

Next let us consider the solution of this problem when
the barrier has sharp boundaries using the method of
quasilinearization. For r & c we write the wave function
as

d in[us(n, r)]
dr C

d ln[u 4(n, r) ]
dr C

(3.31)

and this is the eigenvalue equation.

IV. TWO-DIMENSIONAL TUNNELING

V(x,y)=Vs —
—,'MaP(x +y ), (4.1)

where Vo, M, and m are constants. If we write the wave
function as

In scattering theory the semiclassical approximation is
applied to calculate the radial part of the wave function,
but if it is used to calculate the angular part, in certain
cases, the resulting solution may not be physically accept-
able. For instance, in the case of resonant scattering we
need to calculate the wave function in a part of space
where the total energy is lower than the height of the bar-
rier. Here we have a physically acceptable approximate
solution if we use Cartesian coordinates, but the wave
function will not be single valued in spherical or cylindri-
cal coordinates unless we allow for the complex solutions
of the classical Hamilton-Jacobi equation. To illustrate
this let us consider the tunneling under the separable po-
tential barrier

(3.25) y
—e

—s(x,y)/s (4.2)

where, for n =0,

K„O=KO . (3.26)

then in the limit of A'-+0 we have the Hamilton-Jacobi
equation

By substituting K„oin (3.25) we obtain K„
u,
"

5 (v,')
K, (r) =Kv(r)+ — ' +

8 Ko 32 Ko
(3.27)

BS BS
Bx By

'2

=2M[Vv E ,'Ma) (x——+—y }],

Vv & E (4.3}

Here v, is the effective potential;

v, =v(r)+(m —
—,')/r (3.28)

with S(x,y) a real quantity under the barrier. Thus the
wave function is given by

The iteration can be continued by substituting for K, in
(3.25} and calculating K2 and so on. Inside the barrier
the wave function is a linear combination of the two solu-
tions

g= exp k I [2M(a —
—,'Mco x )]'/ dx

2M Vo —a —E

u+ =[I/&4'(r)] exp 6J %'(r)dr (3.29)
1 M~2y 2 }]

1 /2dy (4.4)

1 %"' 3
2 % 4

—JY —Ko(r) =0, (3.30)

Again if we substitute (3.29) in (3.1) we obtain a
difi'erential equation for %(r);

'2 where a) 0 is the separation constant. However, consid-
er the approximate solution of the same problem in polar
coordinates, i.e.,

which can be solve in the same way as Eq. (3.24}. We can
join the solutions u4(n, r) obtained from (3.23) with
K =K„and u3(n, r) found from the linear combination of
u+ and u, Eq. (3.29) with %'=%'„, by requiring that
their logarithmic derivatives at the turning point c be
equal, i.e.,

BS 1

r2

=2M[VO E ,'Ma) r ], Vo—&E—(—4.5)

with the corresponding wave function
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g= exp —p~P+ f [2M[VO E——,'M—co r —(p~/r) ]]' ] d» . (4.6}

Here the wave function is not single valued, unless the
separation constant p& is pure imaginary, i.e., a complex
solution to the classical equation (4.3) is required for a
physically meaningful wave function.

If the potential barrier depends on the radial as well as
the angular variable, i.e., u =u(r, P), then in general the
problem is not separable and therefore not reducible to
the solution of an ordinary differential equation. For this
case the Schrodinger equation

V f+[k —u(r, g)]/=0 (4.7)

can be solved by the method of quasilinearization. To
this end let us write

P= exp(iS), (4.8)

where S, measured in units of A, satisfies the nonlinear
partial differential equation

(VS) —[k' —u (r, P)] i V'S =—0 . (4.9)

Using the method of quasilinearization we replace (4.9}
by a set of first-order partial differential equations:

2(VS„VS„,) = [k —u (r, $)]+i (V S„,)
+(VS„)), n =1,2, 3, . . . . (4.10)

u =(2m. )
' f u (r, P)dP,

0
(4.11)

we find an approximate solution for S, in the classical
limit with u(r);

As we observed in Sec. II, S(r, g) will be the limit of
S„(r,g) as n —+ oo.

Note that even in the classical limit, i.e., by ignoring
iV S in (4.9}, the resulting Hamilton-Jacobi equation is,
in general, nonseparable and complex, since k is com-
plex. Denoting the angular average of u (r, P) by u, i.e.,

dr r dP
as„,/ar as„,/a(j}

2 S„
k —u(r, P)+(VS„)) +i(V S„,)

(4. 15)

gives us both P(r) and S„(r,g) T.hus after the nth itera-
tion we have

aS„,/a)I)

r'( as„ )/ar)
(4.16)

Next let us consider the solution of these equations to the
first order of iteration. Again denoting the classical turn-
ing points by a, b, and c, as before, we observe that for
a (r (b, or» &c,

Rek ~ u(r)+(v/r) (4.18)

and Su(r, g) is given by (4.13) which we now write as

So(r, g)=vga fKu(v, r)dr, (4.19)

where Ku(v, r) is defined by (3.7) and the superscript indi-
cates the motion in the region satisfying the condition
(4.18). On the other hand, if

as the differential equation of the trajectory. Here even
in the classical limit, i.e., when we ignore iV' S in Eqs.
(4.9) and (4.10), the trajectories are complex, since P(r) is
needed for all values of », 0~ r ( 00, and not just between
the classical turning points and since k is complex. By
substituting P(r) in u(r, P), we find S„(r,g) from the in-

tegral

k —u(r, )I}(r))+(Vs„)) +i(V S„,)
fl as„ ) /ar

(4.17)

(Vsu) =[k —u(r)] .

This equation is separable and So is given by

Rek (u(r)+(v/r)
(4.12)

then

So'(r, P) =vs+i fAu(v, r)dr,

(4.20)

(4.21)

So(r,g)=vg+ fKo(v, r)dr, (4.13)

where v is the separation constant. The classical trajecto-
ry of the particle in this approximation is found from the
relation V S() =+[K()+(Ko/r)], (4.22)

the superscript II here means that the motion is under
the barrier. Using these two expressions we can calculate
V So,

iso
=go=/ —(k)v fBv r Ko(v, r)

(4.14)
and

V So' =+i [%'()+ (%'0/r ) ] . (4.23)

where Po is a constant. These equations will be used as
the starting point for our iterative approach to the solu-
tion of Eq. (4.10). For the nth iteration Eq. (4.10) can be
solved using the method of characteristic assuming that
S„,is known. Thus the set of equations

S) (r, P) =+f Qo(v, r)dr+vs+(i /2} ln(Kor),

and

(4.24}

By substituting (4.19), (4.21), (4.22), and (4.23) in (4.17)
we find
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Si (r, P)=hi f 60(v, r)dr+vs+(i/2) ln(%or), (4.25) S i ( r, tt) }=k fKo( v, r )dr +vP

where

Qo(v, r)=KO(v, r)+[v —v(r, P(r))]/[2Ko(v, r)], (4.26)

and 60(v, r) is defined by a similar relation,

6&(v, r)=RO(v, r) —
[U

—U(r, g(r))]/[2RO(v, r)] . (4.27)

Using Eq. (4.16), with n =1, we can rewrite (4.24) in the
form

+(1/2v) f [v(r(P)) —v(r(P), P)]r (P)dP

+ (i l2) ln(Kor ), (4.28)

and we find a similar relation for Si (r, P) by starting
from Eq. (4.25). Continuing the iteration we can deter-
mine S2,S3, . . . , S„. For instance for S„(r,g) we have

k v(r, P—(n —l, r)) —(v/r) —(dS„ i/dr); M„
S„(r,g)=S„,(r, g) +—,

' r+ — ln r
S„ il r

(4.29)

where P(n —1,r) is the solution of (4.16)

dP(n —l, r)
dr

(4.30)

Both of these equations are valid for the classically al-
lowed region or when the particle moves under the bar-
rier.

The rate of convergence of the iteration given by (4.29)
depends on the relative magnitude of the second term in
(4.29) compared to the first term. Thus in the first order
this condition is

v l', l, p —Pp p'

Ur+v r

r2( f dr U(r)+ — —k
rl

1/2

(4.31)

P(r, P) =g(r, 2nn +P) (n an integer) . (4.32)

Thus from Eq. (4.8) and the approximate form of S„Eq.
(4.24) or (4.25), we find

v=m (rn an integer) .

where r, and r2 are the two turning points, and S is cal-
culated for the motion under the barrier.

So far we have treated v as an arbitrary parameter.
Now we impose the condition that the wave function g,
Eq. (4.7},has to be single valued, i.e.,

I

Alternatively we can impose the condition (4.32) on
S,(r, P) given by (4.28). To this end we define the angular
part of the wave function by 4(P), where

4(P)= exp{ivy+(i/2v) f [u(r(P)) —u(r(P), P)]
Xr (P)dP], (4.34}

then from (4.32) we have

4(P)=4(P+2nn) . (4.35)

This equation gives us a set of eigenvalues v which will be
difi'erent from (4.33). Depending on the explicit form of
v (r, P), we may choose either (4.24) or (4.28) to obtain an
approximate form of the wave function.

If the potential U(r) defined by (4.11) is singular (like a
5 function) or changes rapidly, then as before we can use
Eq. (4.10) for iteration, but rather than starting with So
which is given by (4.13), we use So as the solution of

(VSO) —[k —U(r)] —iV SO=0 . (4.36)

This So can be written in terms of the wave function
u (m, r), Eq. (3.1). Using the definition (4.8) we have

So=mg i ln[u (m, r—)/~r ], (4.37)

where m is an integer. By substituting (4.37) in (4.16) and
(4.17), with n = 1, we find the following equations:

p(r) =i f m dr/(r d { ln[u (m, r) /v r ] ] Idr } (4.38)

and

, dr {i(VSo)+ [@ —U(r)]+ —'[U(r) —0 (r, p)]]
S, =i

d {In[u (m, r)I&r ][Idr (4.39)

In Eq. (4.38},P(r) is a continuous function of r even when the logarithmic derivative of u (m, r) is discontinuous, as in
the case of a 5-function potential. This (r) is the quantum analog of the classical equation for the trajectory (4.14), and
reduces to it if we replace ln[u (m, r)I r ] by its WKB approximate form

ln[u(m, r)/&r ]=if Ko(m, r)dr . (4.40)

If we substitute for k —U(r) from (4.36) in (4.39) and simplify, we find S,(r, P),
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T

S,(r, g)=S (r, P)+ —f (4.41}
2 d {ln[u (m, r) IV'r ]]Idr

where in the last integral p in v (r, p) is to be replaced by the complex trajectory (4.38) and thus Si will depend on the
constant of integration ((lv of Eq. (4.38). This point will be discussed in Sec. VI.

V. BARRIERS %ITH SHARP BGUNDARIKS

Let us now consider those cases where the barrier extends from r =b to r =c, and is zero everywhere else. Between
these two points the height of the barrier can depend on both r and P. The wave function in the three regions r &b,
6 (r & c, and r & c is given by

and

u2=Ar'~ J (kr), r &b

u3=r' {Bexp[iS„'(r, b)]+C exp[ iS„—' (r, b)]], b (r &c, n =0, 1,2, . . .

u„=2Dr' H (kr), r &c

(5.1)

(5.2)

(5.3)

where S~'(r, b), and S", (r, b) are given by (4.21) and (4.25), respectively, with / =0, and A, B, C, and D are constants.
By matching the logarithmic derivatives of u at b and c we find the following relation;

{d/dr [iS„' lnJ —(kr)]]„&{d/dr[ InH~(kr)+iS„"]]„
{d/dr [iS„'+lnJ (kr)]]„ i, {dldr[iS„' lnH —(kr)]]„

(5.4)

where S„(c,b)=S„(r=c,P=O) S„(r=b, $=—0), and
these are given by Eq. (4.29). Note that in (5.4) (BS„' /Br)
is not zero either at b or c since these turning points are
not dependent on k. For m & 1 we can replace uz by its
WKB approximate form;

(5.9)

The Schrodinger equation for the potential (5.7) can be
found in terms of special functions. Thus the solution of
Eq. (3.1) (for p=m) is given by

r2

1/2
m ——'

Xexpi f" k—
C

7r

4

u2(p, r)=r' J„(kr), 0(r &b

u3(p, r)=CW, i „(2qr)+DM i „(2qr)

(5.10)

(5.11)

As an example of two-dimensional tunneling with
finite-range potentials, let us consider the case where the
barrier is given by

u4(p, r)=Fr'~ H„(kr), r &c

where

(5.12)

v (r, P) =u(r)+ f (P)lr (5.6)
q =vs —k and A, =B/(2q) . (5.13)

where

v(r) = [uv —(B/r)]8(r b)8(c r—) . —(5.7)

The functions Wi „(2qr) and M i „(2qr) are two in-

dependent solutions of the Whittaker differential equa-
tion [11]

In these expressions uv, B, b, and c are constants, 8(x) is
the step function

d 8' 1 A.+ ——+
dz 4 z

+ 8'=0,P
z2

(5.14)

1, x)0
8' '='0 (0

L

(5.8)

and f (p) is an arbitrary function of p, subject to the can-
dition

and C, D, and F are constants which can be determined
by matching the logarithmic derivatives at the boun-
daries b and c. This results in the following eigenvalue
equation for k:

[kLz(kb)Wi „(2qb)—2qWi „(2qb)][2qM' i „(2qc)—kL4(kc)M i „(2qc)]
—[kL4(kc)Wi „(2qc)—2qWi „(2qc)][2qM' i „(2qb) —kL2(kb)M i &(2qb)]=0, (5.15)

where primes denote derivatives with respect to the argument. The two functions L4(kb) and L4(kc) are defined by

L2(kb) = [i)IBz ln{v'z J„(z)I ], (5.16}
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and

L4(kc) = [r)ldz ln[ zH„(z)] ],
For B =0, Eqs. (5.11) and (5.15) reduce to

u3(p, r)=br' I [qJ„(kb)I„'(qb) kJ—„'(kb)I„(qb))K„(qr)

+[kK„(qb)J„'(kb) qJ—„(kb)K„'(qb)]I„(qr)], b &r &c

and

[qH„(kc)I„'(qc) kH—„'(kc)I„(qc)][qJ„(kb)K„'(qb) kJ„'—(kb)K„(qb) ]

= [qH„(kc)K„'(qc) kH—„'(kc)K„(qc)][qI„'(qb)J„(kb) kJ„'—(kb)I„(qb) ] .

(5.17)

(5.18)

(5.19)

method the wave function defined in terms of S(g, r) is
completely determined once the potential v(r, P(r)) is
known. Now according to (4.14) or (4.38), P(r) is known
up to an arbitrary constant $0. This constant can be
found by requiring that P(r), to any order of iteration n,
be the same as the most probable escape path to the order
n —1.

Noting that the amplitude of the wave function under
the barrier has the form /=exp( —ImS), the most prob-
able escape path is obtained by minimizing ImS(m, go)
with respect to the continuous variable $0 for a given m,
i.e., by finding a complex number $0 such that

(6.1)ImS(m, gv )=minim(m, go) .

Since P(r) is a complete quantity, Po is also a complex
number, and for this value of $0, ImS(m, go ) should be
bounded and positive. The potential v (r, P) is a periodic
function of P, v(r, P)=v(r, /+2m), therefore we only
need to consider those roots satisfying the relation
0 & Rego & 2m. This condition may not be sufficient for a
unique solution to Eq. (6.1). Let us consider the condi-
tion given by (6.1) for the trajectory of the outgoing (or
the ingoing) wave for the two iteration schemes discussed
in Sec. III. From Eqs. (4.25) and (4.41) we have

UI. THE MOST PROBABLE ESCAPE PATH

Both of the eigenvalue equations (5.15) and (5.19) have
complex eigenvalues.

In Table I, the numerical results for the lowest eigen-
values of Eqs. (5.15) and (5.19) are given for different
values of U0, and for the partial wave p=m =2. In Fig.
1, the real and the iinaginary parts of the ground-state
wave function are plotted as a function of r for a constant
barrier which is slightly larger than Rek . We observe
that for each partial wave when Rek & vo+(m ,' )!r, ——
the wave function approximates a wave packet for a par-
ticle trapped to the left of the barrier. The current associ-
ated with the two-dimensional tunneling, unlike the
current in the one-dimensional case, is not constant. For
instance, if the barrier is independent of P, then the radial
component of current is given by

j,(r)= —((Imk )f fu(p, r)/ dr ~0. (5.20)
0

This current fiows radially outward since Imk &0. In
Fig. 2 the radial current is shown for a constant barrier.

The concept of the "complex trajectory" under the
barrier for this problem will be discussed in the next sec-
tion.

Kapur and Peierls [1]have shown that the most prob-
able escape path, or the path of minimum opacity [12] in
the semiclassical regime, can be found by minimizing the
classical action, S, under the barrier (see also Banks and
co-workers [2,3]). Their formulation is applicable when
the action is given in terms of the rectangular coordi-
nates, when k and S, are real quantities. However, in cy-
lindrical (or spherical polar) coordinates, we require a
different approach due to the quantization condition for
the variable P, and the fact that Imk %0. In the present

and

ImSii =ImS"2—,'Re
Ro(r)

+—,'Re[ in(rent'0)],

ImS, =ImS +—,'R Ib dtdrI ln[u(m, r)lv'r )]

(6.2)

(6.3)

TABLE I. Complex eigenvalues for the potential v(r)=[uo —(8/r)]e(2 —r)e(r —l) for the two
cases of B =0, and 8 =1(1 ') are given for different heights of the barrier vo. The approximate value
of the real part of k (1 ') is calculated using Eq. (7.8}.

(1 2)

8 =0(exact)
8 =0(appr. )

B = 1(exact)
8 =1 (appr. )

14

3.8347—0.0286i
3.7892

5.0050—0.381i
3.7889

20

4.0596—0.0059i
4.009 21

4.0330—Q.OQ55i

3.9798

24

4. 158 73—0.0022i
4.1080

4. 13939—Q.0021i
4.0857

28

4.2341 —0.0008i
4.1848

4.2189—0.0008i
4.1672
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0.4.
v (r, g)=A5(r —b)+Ev e(r —b}e(c —r) cosp, (6.7)

u(2, r)

0.3-

0.2-

0.1-

0.

where c is a small positive number and A, and Uo are con-
stants. For these cases u, (r) and vz(r) are given by a rec-
tangular and a 5-function barrier, respectively. In the
case of v, (r) we can obtain the path of minimum opacity
either using the semiclassical approach, Eq. (4.21) or the
quantal approach, Eq. (4.41}. For either of these poten-
tials we have

T

min(ImS, ) =min —,'Re f ~svo cos[P(r)]dr/D(r)

-0.1.
0 3 r(l) 4

FIG. 1. The wave function u (2, r), for the rectangular barrier
v(r)=14B(2 r)B—(r —1)(l ) [Eqs. (5.1), (5.3), and (5.18)j, is
plotted as a function of r (in units of I), for the lowest eigenvalue
k = (3.8357—0.0286i) I

The quantum version of this path of minimum opacity
(again for the outgoing wave) is given by

P(r) =$0 +i f m /(r d /dr [ ln[u (m, r)/&r ) ] )dr .
b

(6.5)

As an application of the present approach, let us consider
the following two simple nonseparable examples;

In both of these expressions, the second term on the
right-hand side depends on $0, therefore PcM can be ob-
tained by minimizing

ReI [u(r, P) v(r)]dr I—D(r)
b

where D (r) is given by %'0(r), or
—d Idr [ln[u (rn, r)l&r ]], depending on the starting
function Su(m, r). Having obtained Pu, the classical path
of minimum opacity for the outgoing wave is given by
Eq. (4.14);

P(r)=&0 ivt dr—/[r &0(v, r)], v=[m —
—,']'

b

(6.4)

(6.8)

for the two approximate ways of calculating Po and
hence the most probable escape path to the Grst order.

In Fig. 3 the "path" P(r) which is found by the semi-
classical method is shown as a function of I", and in Figs.
4 and 5 the same P(r} but calculated by the quantum
method is plotted as a function of r. Note that in each
case the lowest eigenvalue is determined using the ap-
propriate zeroth-order approximation, therefore the cor-
responding zeroth-order wave functions for the two cases
are very different, even asymptotically. Since the limits
of integration in Eq. (6.8) are independent of Po, this
equation can be written as

min( ImS, )=min [Re( A costa+ 8 sin/0) ], (6.9)

where A and 8 are both complex numbers given by the
integral in (6.8). The real and the imaginary parts of tI)0

are found by minimizing (6.9), and once Po is known, Eq.
(6.4) [or (6.5)] gives us the most probable escape path.

The concept of complex trajectories defined by (6.4) is
consistent with the idea of using imaginary time to calcu-
late the trajectory under the barrier [12]. To show this
consider the classical Lagrangian for two-dimensional
motion in a central potential V (r);

I.= 'M[(dr!dt) +—r (d8ldt) ] V(r), —(6.10)

where r and 8 (not P) are the polar coordinates, and M is
the mass of the particle. The reason for this change of

and

u, (r, P) =vue(r —b)e(c —r)(1+s cosP) (6.6)

0.03
j„(r)
0. 025

0. 02-
0. 6-

0. 015-
G. 2

. 005- I

0. 5 1.5
I

r(l ) 2 . 5

0
0. 5 1.5 2 . 5 r(() 3

FIG. 2. The radial component of the current j,(r), Eq. (5.20),
is calculated for the potential U(r) = 146(2—r)e(r —1)(l ).

FIG. 3. The "semiclassical" trajectory for penetration
through the barrier u(r)=246(2 —r)e{r—1)(l ) is shown for
the approximate eigenvalue k = (4.9987—0.0385i)l ', and
m —2.
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3..
4(r)
2.5-

2..

1.5-

order. The most interesting states of such a system are
the low-lying states with very small imaginary parts {cor-
responding to the long lifetime of these levels). For these
states we use the perturbation theory to calculate the real
and the imaginary parts of k. Let us write

0.5-
k =k„—ihk, , (7.1)

0-

-0.5-

where the imaginary part is assumed to be very small.
Substituting this in the expression for L and 5, we have

0.5 1.5 2. 5 I(P 3 L (k }=L„+iL;=L,+ ik„J(k„)dk; (7.2)

FIG. 4. The "quantum trajectory" for the rectangular barrier
u(r)=14e(2 —r)e(r —1), and for m =2, is shown when the
lowest eigenvalue k =(3.8347—0.0286i)l ' is used in the calcu-
lation.

and

5(k)=5(k, ) ik„I—(k, )hk;,

where

(7.3)

notation will be seen later. Changing the variable t to iv,
we have

J(k, )=f drl[u+(vlr) k2]'~2—, (7.4)

L = ,'M[(—dr—ld~) +r (d8/dr} ] V(—r) . (6.11)

E = V(r) ,'M(dr—/—dr) [pe/(2—Mr )], (6.12}

where pz is the momentuin conjugate to the variable 8,

The conserved quantity corresponding to the energy of
the system calculated from (6.11}is given by

and

I(k„)=I dr/[k„—(v/r) —Ti]'~ (7.5)

In the absence of the centripetal barrier, we replace 5(k„)
by 5O(k„), i.e., we set a =0. Here by substituting for L
and 50 in Eq. (3.12) and separating the real and imaginary
parts, keeping only terms linear in hk, , we find

pe= Mr~(d8/d—r) .

From Eqs. (6.12) and {6.13) it follows that

—(ki)(pedrIMr )d8=
((2/M) [ V —E —[pg/(2Mr )]])'~

(6.13)

(6.14)

and

hk, = ( 1/2k, ) [
—cos [25O( k„)]I(IJ)]

'

[
—cos[250( k, )](I/J) ]

'

4[ 1+sin[250(k, )]]

(7.6)

(7.7)

Now if we replace 8 by i P, and pe by ip &
=—i v, then

(6.14) agrees with (6.4).

VII. RESULTS

The numerical solutions of the eigenvalue equations
such as those given by Eqs. (3.12), (3.15), (5.15), and (5.19)
are by no means trivial. Since the eigenvalues are com-
plex numbers it is difBcult to arrange them in a definite

1.75-

1.5-
(I}(l')

1.25-

as the two equations giving us k„and b,k;. Since I, J, and
k„are finite quantities, 1+sin(250) has to be small to
make exp(2L„} large and LLk; small, i.e., as a first approx-
imation we can take 50(k„)=n n + (3n /4).

For the general case with three turning points, Eq.
(3.15), we can also use the perturbation theory to find the
lowest complex eigenvalues. When the potential has two
sharp boundaries, we can use the approximate form [i.e.,
Eq. (5.4)] to calculate the complex eigenvalues. For the
state with smallest imaginary part, b,k;, we can simplify
the calculation by noting that since the particle is initially

2iS (c,b)
trapped behind the barrier, e " '

must be large, there-
fore the denominator in (5.4) has to be small independent
of the position of the point c. Thus, for n =0, the equa-
tion

[d ldr [iSO + lnJ (kr)]], b
=0 (7.8)

0.75-

0.5-

0.25-

0. .
0 0.5 1.5 2. 5 I(Q 3

FIG. 5. The "quantum trajectory" defined by Eq. {6.5},for a
5-function potential v(r) =55(r —1)(l ), and for m =2. The
lowest eigenvalue k =(5.135—0.299i)l ' has been used in this
calculation.

will give us an approximate value for k„. For numerical
calculation we have chosen an arbitrary unit of length I.
The wave numbers are given in units of I ' and the po-
tentials in units of I . In Table I, for two cases, the rec-
tangular barrier and for a combination of rectangular and
cutoff Coulomb barrier, we have compared the results of
the exact calculation using Eqs. (5.15) and (5.19) with the
approximate results obtained from (7.8} with n =0. The
results indicate that the approximate calculation im-
proves as vo becomes larger than Rek . In the second
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round of iteration, i.e., for n =1, Eq. (4.25) shows that
S i (r, b, tti=0) and its derivative (r)S', /dr) depend on Po .
Thus for n = 1, using Eq. (5.4), or the simpler approxima-
tion given by (7.8), we can find k. However, in the
second-order iteration, unlike the first, the roots of Eq.
(7.8) will be complex since (bo is complex. For the
nonseparable rectangular barrier given by (6.6) with

uo =24 and c=0.2 with the semiclassical trajectory
shown in Fig. 3. The constant Po calculated from Eq.
(6.8) is given by t()o =0.1086 5—49.7i, whereas for quan-
tum trajectory shown in Fig. 4 (uo = 14 and a =0.2), po is
0.7168—5.353i. Now using Eq. (7.8) but with (t)S Irjr)
rather than (BSo Ir)r), i.e.,

(BS", /t)r)„b =au(m, b), (7.9)

we find that the lowest eigenvalue to the first order is
given by 4 456.8 0 3—54i. (1 '). Note that in this approxi-
mation, in the zeroth order, k is real but in the first order
the imaginary part hk, is larger than the exact result.
We obtain a similar result for the 5-function potential,
Eq. (6.7), using the quantum trajectory of Fig. 5. The
complex eigenvalues describe discrete quasibound states
with finite lifetime. From the eigenvalue equation (5.4)
we calculate a set of complex eigenvalues k,' ' —iSk,'j',

j=0, 1,2, . . . where kIj' always increases with j and
b k J', in general, becomes larger for larger j's. The ener-

gy of the jth quasibound states, E' ', is given by

E(j) (k(J)}2 (gk(j))2

with width 1 'j' where

r(~'=4k''~'lJ. k'~' .
1

(7.10)

(7.11)

The concept of the quasibound state is meaningful only if
the width of the level is much narrower than the spacing
between the adjacent levels [13],E"+"—E(j', i.e.,

= 1.675( l ), and E"' —E' '= 10.548(l ), therefore
(7.13) is satisfied. When B = 1 and uo =20, then
E' '=16.265(l ) I' '=0.089(1 ' and E"' E-' '

= 13.654, which again shows the validity of (7.13). These
examples show that even when the potential is not very
high and very wide one can define quasistationary states.

Let us summarize the main points discussed in this pa-
per.

(a) We have shown that one- or two-dimensional tun-

neling problems can be solved approximately using the
method of quasilinearization.

(b) To the first order this method yields the same re-
sult as WKB approximation for one-dimensional tunnel-

ing, however, it is easy to include higher-order correc-
tions, at least for barriers with sharp boundaries.

(c) For multidimensional tunneling, there are two ways
of using quasilinearization method. If we start with Su
given by (4.12) then we have a semiclassical approach
similar to WKB, but if we choose So as a solution of Eq.
(4.36}then the method can be applied to a larger group of
potentials.

(d) The "trajectory" of the particle which can be
defined semiclassically as in Eq. (6.4) or quantum
mechanically as in Eq. (6.5} is complex and depends on a
constant of integration.

(e) The most probable escape path is obtained by
minimizing a functional relation, (i.e., ImS) with respect
to the constant of integration appearing in the equation
of the "trajectory. " A11 calculations can be done while

preserving the single-valued property of the wave func-
tion.

(f} For the nonseparable problems it is difiicult to in-

vestigate the accuracy of the quasilinearization method
for the tunneling problem. However, this method has
been tested for nonseparable bound-state problems,
where it has been shown to be a reliable method [14].

p(j) «E(j+&) E(j) (7.12) ACKNOWLEDGMENT

For large enough barrier this condition is satisfied. For
instance, for the complex eigenvalues given in Table I,
when B =0 and uo =14, E' '=14.699(l ), I' '

This work was supported in part by a grant from the
Natural Sciences and Engineering Research Council of
Canada.

[1]P. L. Kapur and R. E. Peierls, Proc. R. Soc. London, Ser.
A 163, 606 (1937).

[2] T. Banks, C. M. Bender, and T. T. Wu, Phys. Rev. D 8,
3346 (1973).

[3]T. Banks and C. M. Bender, Phys. Rev. D 8, 3366 (1973).
[4] H. J. DeVega, J. L. Geravais, and B.Sakita, Nucl. Phys. B

139,20 (1978).
[5] P. Ring, J. O. Rasmussen, and H. Massmann, Sov. J. Part.

Nucl. 7, 366 (1976).
[6] R. G. Carbonell and M. D. Kostin, Phys. Lett. 64A, 1

(1977).
[7] R. Holman, E. Kolb, S. Vadas, Y. Wang, and E. Wein-

berg, Phys. Lett. B 237, 37 (1990).
[8] P. Bowcock and R. Gregory, Phys. Rev. D 44, 1774

(1991).
[9] R. E. Bellman and R. E. Kalaba, Quasilinearization and

nonlinear Boundary- Value Problems (Elsevier, New York,
1965).

[10]D. K. Roy, Quantum Mechanical Tunneling and its Appli

cation (World Scientific, Singapore, 1986).
[11]Handbook of Mathematical Functions, edited by M.

Abramowitz and I. A. Stegun (Dover, New York, 1965), p.
378.

[12] M. Razavy and A. Pimpale, Phys. Rep. 168, 305 (1988).
[13]A. G. Sitenko, Scattering Theory (Springer-Verlag, New

York, 1991),Sec. 7.6.
[14]M. A. Hooshyar and M. Razavy, Nuovo Cimento B 75, 65

(1983).


