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The problem of connecting systems with different numbers of degrees of freedom is discussed. Con-
straints appropriate for “Bose” and “Fermi” quantization are used to construct algebras of Dirac brack-
ets associated with special solutions of the nonlinear complex oscillator. The constraints are shown to
provide a basis for characterizing the elementary excitations of the oscillators. An alternative notion of
quantization through a correspondence with an enveloping subalgebra of the Dirac brackets is intro-
duced, a notion which simplifies the operator-ordering problem implied by the original Dirac brackets.
The infinite- and the two-dimensional representations of the subalgebra are utilized to illustrate the

quantization technique.
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I. INTRODUCTION

In order to avoid the inherent difficulties involved in
the quantization of a nonlinear relativistic field theory, it
has been postulated [1,2] that the spectrum of the quanta
of these equations can be obtained through the quantiza-
tion of the elementary excitations of the nonlinear field
rather than the quantization of the field itself. In this pro-
cedure some ansatz for simple, special solutions (such as
the traveling-wave motion) is employed to reduce the sys-
tem with an infinite number of degrees of freedom to one
of finite number, and to use the canonical formalism for
the latter as a basis for the quantization. One outstand-
ing problem is to establish a direct connection between
the canonical formalisms of the two systems so obtained
which have different degrees of freedom. This is our
main goal and motivation.

On the other hand, Dirac’s second-class constraints
have been (artificially) imposed on a canonical system in
order to obtain a canonical description of a system with
fewer degrees of freedom [3]. In a sense the notion of
constraint solutions could serve as a more precise
definition of the notion of ‘“elementary excitations,”
namely, as the complete set of solutions associated with
embedded constrained systems having fewer degrees of
freedom, if possible one, then two, and then in increasing
order.

The constraints and their associated Dirac brackets are
not viewed as necessarily following from the definition of
the action, but are imposed as additional conditions with
the requirement that the result be self-consistent. Thus
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the Dirac bracket here is considered as a new Poisson
bracket generated by certain constraints. The self-
consistency stems from the requirement that the solutions
to the equations of motion for the constrained system be
simultaneously solutions to the equations of motion of
the original unconstrained system [3]. The converse is,
of course, not true.

After the classical Dirac bracket appropriate to a given
set of constraints has been constructed, there still remains
the difficulty of its quantization. This is because the
Dirac bracket itself is usually a function of the canonical
variables of the constrained system and one has the prob-
lem of ordering these variables in the passage to the
quantum theory. For situations where this is difficult it
may be possible that elements of the enveloping algebra
of the Dirac bracket define a simpler subalgebra through
which the quantization can be performed unambiguously.
It has been shown that for some nonlinear Hamiltonians
the requirement of a dynamical-symmetry algebra allows
one to choose a particular ordering for which the prob-
lem is exactly soluble [4].

The purpose of the present work is to establish the
unification of the concepts of the elementary excitations,
constraint embedding, and quantization. The theory is
developed below in the context of the “Bose” and “Fer-
mi” quantizations of a class of constrained, complex,
nonlinear oscillators. The generalizations to field theory
will be reported separately. However, it should be point-
ed out that both of the above quantizations have their
analogs and utilization in field theory and their elabora-
tion here is more than an exercise. There has been in-
creased activity and vast literature in the quantization of
constrained systems in recent years, chiefly in connection
with reducing the gauge degrees of freedom in gauge
theories [5]. However, since both our method and goals
are different we do not give extensive references to these
methods.
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II. EMBEDDING AND QUANTIZATION PROCEDURE

Consider a Hamiltonian system described by the Ham-
iltonian

H=H(q,p), (1

where ¢ and p are the system’s canonical coordinates and
momenta. Associated with the Hamiltonian (1) are the
canonical equations of motion

dq _ , 4dp _ .
7 [q,H],. o [p,H], )

where [, ]’ refers to the usual Poisson bracket.
Now consider the imposition of constraint functions

:(g,p)=0, i=1,2,...,2r.

We want these constraints to be second class in the sense
that we can construct a “new” Poisson bracket according
to the rule of Dirac [6]. This is possible provided

2r
(H,¢:;]=3 a;(q,p)¢; , (3)
J

and provided the determinant |A(g,p);;| of the matrix
formed from the Poisson brackets [¢;,4;]" of the con-
straints nonvanishing. The “Dirac bracket” is then
defined in the usual way [6],

2r
(f.glp=Lf.81 =2 [f.¢ilc;ld;.8] @)
ij
where the ¢;j=—cj; are the elements of the inverse of the

matrix A. Note that as a consequence of its definition the
Dirac bracket has the property that it is antisymmetric
with respect to interchange of its arguments.

We assume here that there are only second-class con-
straints present. Then associated with the new bracket,
[, 1p, are the equations of motion

E: —43:
dt [q’Hf]D’ dt [P’Hr]D ’ (5)

where
H,=H(g,p)lo,=0

is the Hamiltonian of the reduced constrained system.
Here the self-consistency of the elementary excitations is
equivalent to the requirement that solutions of (5) also be
solutions of (2).

We wish now to quantize the constrained system (5).
The main difficulty lies in the ordering problem. The set
of fundamental Dirac brackets is of the form,

[£,€' 1p=/f(§,6), (6)

where £ and £ are the new canonical coordinates and
momenta whose Dirac bracket determines all other Dirac
brackets of the system (5). The problem of quantization
is then to give meaning to the correspondence of (5) and
(6) as operator expressions with an implied solution to the
ordering problem.

In what follows we carry out this program for two
choices of constraints on the nonlinear complex oscilla-

tor, corresponding to the “Fermi” and ‘“Bose” quantiza-
tions. For both types of quantization we consider first
the construction of elements of an enveloping subalgebra
of the algebra of the Dirac brackets. This subalgebra is
then used to define a Lie algebra in terms of which the
constrained Hamiltonian and all essential variables can
be evaluated. Then we show how this carries over to
quantization and leads us to solve the operator ordering
problem of (5) and (6).

III. CLASSICAL CONSTRAINED
COMPLEX OSCILLATORS

We consider the class of nonlinear complex oscillators
described by the Hamiltonian

( * )N+l

=p*p+ 99 )7 7

H=p*p+A=1" )

(N is an integer), and the consequent equations of motion
§+Mg*q)Ng=0, §*+Ag*q)Ng*=0. (8)

With this system one should keep in mind that
p*=4q, p=q¢*. )
The fundamental brackets are
[e.p]'=[q*.p*]=1,
[9.9*)=[g%q)=[g,p*]'=[q*p]'=0.

There are two classes of constraints that are important
to consider, those typified by “Bose” and “Fermi” quant-
ization.

(10)

A. “Bose” constraints
Let
g +p*q*=¢,
—Mg*)V +pp*=9¢, .

Then using (10) one finds that the constraints satisfy the
conditions required of second-class constraints relative to
the Hamiltonian, i.e.,

[H,¢,]'=—2¢,, [H:¢2]'=A(Q‘Q)N¢1 ’
while the matrix C of (4) has the form

(11)

0 —1
1 0

_ 1
2AN+2)p*p

Using this C matrix and the definition (4) one can cal-
culate the fundamental Dirac brackets. These are

(12)

*
[q,q']p=(—Ng_—+_§g, le:p1p=7%
e _ —(N+1)g? p*
], = _ , 13
[P ™o = S v F2)0q* 2N +20p 13)
1 —=_(N+1) gp

Using these (and their complex conjugates) and the an-
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tisymmetric property of the Dirac brackets one easily
finds that

(99*,9p1p=0 (14)

and that gp and gq* are both constants of the motion of
the constraint system,

[anp]z):[anq*]D =O ’ (15)
since
r=%%k(qqt)1\’+l . (16)

It is not difficult to ascertain from (5) that the canoni-
cal variables ¢ and g * satisfy the first-order equations

* o
q:Lq;_q’ q'*=_Q%.q*_ (17)

q qq
These equations can be viewed classically in two ways, ei-
ther as definitions of p and p*, or, in view of (15), as con-
ditions on the solutions for ¢ and ¢*. With the latter
view it is easily seen that solutions of (17) are automati-
cally also solutions of (8).

We now consider an interesting relation that will be
used in the quantization of the system described by (17).
Consider the following elements in the enveloping algebra
of the p’s and ¢’s:

x =V2g[Mp*q*)N]I/AN+D)
x*=V2[Agp)N]I/AN+gx (18)
These variables are conjugate relative to the Dirac brack-
et (13),
bex*lp=—i . (19)

Moreover, the reduced Hamiltonian can be expressed as a
function of xx * alone,

. e AN +1)/(N+2)
H=(N+1)AMN+2) e (20)
Thus since
[xx*,x1p=ix, [xx*x*]p=—ix* 1)

the variables x, x*, I, and xx * define a Lie subalgebra,
isomorphic to a complex boson algebra, and the con-
strained Hamiltonian can be expressed solely in terms of
these variables.

B. “Fermi” constraints
In this case we consider the new constraints
p*+iViglag*V=¢"
p—iVMgg*N'q*=¢" .

These constraints are associated with the factorization of
(8), using (9) and (10),

(22)

_d_. +l‘/1(qq * )N/Z

at qg=0, (23

d _
e *\N/2
Frim Algg*)
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which is the simplest analog of the field-theoretic treat-
ment of obtaining the first-order Dirac equation through
factorization of the Klein-Gordon equation. Factoriza-
tion may be viewed as a special case of constraint dynam-
ics.

The constraints (22) are again of second class with

,_ - N. 2
(B¢ =F VAT (gt )"
?iﬁ%(qq‘)mztﬁi , (24)
while

[6F,071'=—(N+2)iVA(gg*)V"*.

From this last equation we construct the Dirac C matrix

0 1
—-10

Cc= 1
(N +2)i(gg* )V *V'&

, (25)

which enters into the definition (4) of the Dirac bracket.
Using (4) and (10), the fundamental Dirac bracket for
the Fermi constrained system is then found to be

A 1
4% 1p= : (26)
94" o= N T ia g 72

while the reduced Hamiltonian in the presence of these
constraints (¢*=0) has again precisely the same form
(16). The resulting equations of motion are

g+iviglgg*V?=0, ¢*—iVrg*(gg*)V?=0. (27

Since gq* is clearly a constant of the motion, it is easy to
verify that the solutions of (27) are automatically also
solutions of (8).

Now consider the bracket (26). The new variables

x=\/m72(qq*)”/4q, xtzvmq:(qq.)w‘z 28)
have again the property that

[x,x*]p=—1i, (29)
and we have again a subalgebra with elements x, x*, I,
and xx*. In terms of these variables

2AN+1)/(N+2)

X . (30)

2

_N+2 1
T N+1 AN +2)

which is formally the same as that of the classical “Bose”
expression (20).

Finally it should be pointed out that the form of the
solutions to (17) and (27) are identical in this classical sit-
uation [use of the Bose system constraints (11) takes (18)
into (28)]. Thus in either case the solutions have the form

=ae—i\/it|a|N, qt=atei\/xt|a|N . (31)

q

However, from an algebraic point of view the two sys-
tems differ. This difference clearly manifests itself in the
quantum theory.
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IV. “BOSE” AND “FERMI”
CONSTRAINT QUANTIZATIONS

In both the “Bose” and “Fermi” constrained systems
the reduced Hamiltonian can be expressed solely in terms
of the product xx*, where x and x * satisfy (19) or (29).
Thus it seems reasonable to attempt to carry out the
“quantization” in terms of the operator algebras contain-
ing the operators X and X * corresponding to the reduced
classical algebras containing x and x*. By quantization
we mean to construct representations of the Lie algebras
of the Dirac brackets for both the Bose and Fermi con-
strained systems in such a way that the equations of
motion and operator ordering are consistently defined ac-
cording to a correspondence principle. Both the Bose
and Fermi quantizations given below are carried out in
the Heisenberg picture and in representations in which
the Hamiltonians are diagonal.

A. “Bose” quantization

Let X, X* be the boson creation and annihilation
operators with quantum brackets,

(X, X*]=1I, [XX*X]=—-X, [XX*X*]=X*, (32)

hence generating an infinite dimensional representation of
the Hilbert space of the harmonic oscillator. In addition,
the number operator XX * is diagonal and invertible. The
matrix elements in question are

Xk1= Vk +15k’1_lexp(‘*ia)k,t) ,

— (33)
Xk1=\/k 6k,1_1exp( —ia)klt) ’
where k,l =0,1, . .., «, while clearly
(XX *)y=(k +1)8, . (34)

The ordering problem is facilitated by arranging factors
such that only the roots of diagonal operators need to be
taken.

We wish now to quantize the commuting reduced sys-
tem (15) and (16). The ordering suggested in (7) and (11)
will be assumed to be correct for the quantum operators
Q,0*,P,P* corresponding to the reduced classical vari-
ables ¢,q*,p,p*, i.e.,

*\N+1
H=P‘P+X(Q—1%+)—l—, (35)
QP +P*Q*=0, (36)
—MQ*Q)N 1+ pP*=0. (37)

As was the case in the classical corresponding system,
H, QP, and P*P can all be expressed in terms of the diag-
onal operator XX*, provided one starts with the
identification

2/(N+2)

*
XX ’ (38)

2VA
which is suggested by the classical identification (18).

Here the nth root of a diagonal operator is defined as the
diagonal operator whose diagonal elements are the nth

Q0*=
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roots of the corresponding diagonal elements of the origi-
nal.
The reduced constraint relations (36) and (37) then lead

to
(QPP*Q*)=MQQ*)N 2, (39)
QP=i\/7»(QQ*)(N+2)/2 , (40)
provided N is an integer. Hence using (36)-(38) one has
QP=%(XX‘) , @1)
. 2NHDAN+D)
P*P=}\,1/(N+2) XX (42)
2 ’
and
(N +2) Xx* AN +1/N+2)
- 1/(N+2)
H (N+1)k 2 “3)

Thus the classical expression (20) for H carries over into
the quantum theory and the operators (QQ*), (P*P),
(QP), and (P*Q*) are well defined.

It remains to specify Q, Q*, P, P*, and Q*Q in a con-
sistent way. The task is to be able to express in a con-
sistent fashion these fundamental dynamical variables in
terms of the boson operators I X, X* XX*(X*X
=1+XX*). Since the operator XX * and its roots are in-
vertible, this is accomplished by giving a proper ordering
[consistent with (38)] to the classical correspondences
(18),

0 =(2\/XiN/2)_1/(N+2)(XX* )—N/Z(N+2)X ,
Q*=(2\/7\iN/2)_I/N+2X'(XX* )—N/2(N+2) ,

which from (34) results in

1/N+2 .
0= k+1 5 e—mklt
kl 2‘/7\1.1\[/2 k1—1 ’
P 1/(N+2) _ (44)
iwg,t
Q“:[zm(—n”’” Birvie

Multiplication of (37) first from the right by Q and then
from the left by Q* then leads to the relations

P*=k(—Q1}T)Q(Q‘Q)N“ , 45)
P=MQ“Q)N“Q*P+Q‘ . (46)
But from (44) one can see that
Yo x 2/N+2
Q*0= |-~ @7

Thus (38), (41), and its Hermitian conjugate, and (47)
shows that P* and P can also be consistently expressed as
well-defined functions of X, X*, and (XX*) or (X*X),
completing the requirement of defining the quantum real-
izations of the relevant variables.

For complete consistency it is now necessary to show
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in what sense this quantized system corresponds to the
classically constrained system. This correspondence
takes place through the traditional classical limit of the
large quantum number.

For example, we consider the correspondence of the
fundamental Dirac brackets. Using (33) and (37), we
have

PP*_P*P:)\'[(Q*Q)N+l_(QQt)N+1] .

Thus using (34) and the explicit representation (44) we
find that in the limit of very large k,

Uty — NHD gp s
(k|[P,P*]k") (N+2) q*qs ,

where

(k|Qlk +1)—gq, (k|Plk—1)—p .

Similarly,
xx* 2/(N+1) vy |2/NFD)
* = — - —_—
[e.0"] 2V 2V
so that
* %k
<k|[Q,Q*]|k’)—»(—N%—2‘JF6kk, : (48)

One can also verify in the limit of large k that the classi-
cal equations of motion (8) and (17) follow from
Heisenberg’s equation of motion

F=i[H,F].

B. “Fermi” quantization
Here we use the anticommutator algebra
[X,X],=0, [X*X*],=0, [X,X*], =i[x,x*]p],
(49)
and consequent relations
[XX*X]=—X, [XX*X*]=X*. (50)

The reversal of order in the fundamental Dirac bracket
corresponds to Hermitian conjugation in the quantum
theory. The fundamental Dirac bracket is here interpret-
ed as providing a normalization.

Since canonical anticommutation relations only have
finite-dimensional representations, we look for a realiza-
tion of the two-dimensional representation

0

00 elot (51)

— —iwt * — Q%
X=B e ,Xﬁlo

such that Q and Q* can be obtained from the analog of
(28). Classically this would require that
N/2AN+2)

2= q. (52)

Var”

Since XX * is diagonal its nth root is defined by the diago-
nal matrix constructed from the nth root of its diagonal

x =V
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elements. Since here the operator correspondence of xx *
is not invertible, a direct quantum analog is consistent
only with the requirement that

XX*Q=Q, XX*Q*=0 (X*XQ*=Q* X*X0=0).

Thus the quantum analog of g is

B B 2/N+2 01 o
o= VA2 0 0|¢ ’
2/(N+2) (53)
B 0 0} .
*— = iwt
VA2 1 0l¢

The quantization is completed through the requirement
that (53) be consistent with the statement that
Heisenberg’s equations of motion be equivalent to the
constraints (27).

In the classical theory, the equations of motion of the
constrained system are given by (27). Since QQ* is a
function of XX* we choose the ordering such that the
quantum analog of (27) is
Q+l\/_):(QQ*)N/2Q =0 , Q *—i\/XQ*(QQ*)Nn:O ,

(54)
and that the classical Hamiltonian carries over directly
into the quantum theory without ordering changes. Con-
sistency of (53) and (54) with Heisenberg’s equations im-
plies finally

N/N+2

1/(N+2) 00

1

N+2

H=
N+1

(55)

V. CONCLUSION

In this work we have defined elementary excitations of
the nonlinear complex oscillator by second-class con-
straints leading to new Poisson brackets. We then re-
quired that the solutions to the equations of motion of
the constrained system be also solutions to the equations
of motion of the original oscillator. It was found that the
“Dirac bracket” algebras of both the “Bose” and “Fer-
mi” systems contained a dynamical subalgebra, the well
known harmonic-oscillator algebra, and that all the
relevant dynamical variables could be expressed in terms
of properly ordered elements of the latter, which one may
call the “dressed oscillator.” Thus the basic notion is
that a subalgebra defined by the constraints and their
consequent Dirac brackets defines both the elementary
excitations and the quantization in this simple model, be-
cause the quantization is defined by the representations
isomorphic to this subalgebra. The operator-ordering
problem was solved by expressing the products of opera-
tors in terms of the diagonal elements of this algebra
wherever possible. The proper classical correspondence
of the equations of motion were also found. The generali-
zation of this procedure to the field-theoretic context will
be discussed elsewhere [7].
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