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Minimum-uncertainty states for noncanonical operators
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The usual uncertainty relation AA AB ) (C) /4 between two Hermitian operators A and B
satisfying the noncanonical commutation relation [A, B] = iC, where C is not a constant multiple
of the unit operator, fails to give a nontrivial lower bound on the product of the variances AA and
DB when (C) = 0. For those operators, therefore, the general uncertainty relation b, A DB
[(C) + (F) ]/4 where (F) = (AB+ BA) —2(A)(B) is better suited to determine the lower bound on
EA AB . The implications of the general uncertainty relation and the properties of the minimum-
uncertainty states, i.e., the states for which the general uncertainty relation is satis6ed with equality,
are discussed. The minimum-uncertainty states are found to fall in two difFerent classes. One is the
usually studied class for which (F) = 0, that is, the case when the usual uncertainty relation holds.
The other is the hitherto unnoticed class for (C) = 0, that is, when the usual uncertainty relation is
redundant. The squeezing properties of the present class of minimum-uncertainty states is discussed

by de6ning squeezing in the light of the general uncertainty relation.

PACS number(s): 03.65.Ca, 42.50.Dv, 32.90.+a

where

(C) +(F)
4

(2)

(F) = (AB + BA) —2(A) (B),

is a measure of correlations between A and B. However,
it is the special form

~A'~B'& ( )
4

(4)

of the general uncertainty relation (2) that is widely used.
The special form (4) is, of course, identical with the gen-
eral form (2) if A and B are uncorrelated, i.e. , if (F) = 0.
The uncertainty relation in its special form (4) becomes
redundant; in other words, it does not determine a non-
trivial lower bound on the product of the uncertainties
in the measurement of two noncommuting operators if
(C) = 0. For canonical operators, i.e. , the operators for
which C is a constant multiple of the unit operator (C) is,
of course, never zero and hence, for those operators, (4) is
never redundant. The general uncertainty relation (2) is
therefore better suited to determine the lower bound on
the product of variances in the measurement of observ-
ables corresponding to noncanonical operators. Here we
study the implications of that relation. First, we identify
the class of states for which even the general relation (2)
is redundant. Next, we find the states for which (2) is
satisfied with equality. Those states are the solutions of
the eigenvalue equation

The variances AA and AB in the measurement of
the observables associated with the Hermitian operators
A and B satisfying the commutation relation

[A, B] = iC,

where C is Hermitian, are related by the uncertainty re-
lation [1]

[A —(A)]I@) = -i&[B—(B)]I&)

We show that, for noncanonical operators, the states IQ)
in (5) fall into two classes. One is the class of states for
which there is no correlation between the obsevables A
and B, i.e. , (F) = 0, so that for them the special and
the general uncertainty relations are equivalent. They
solve (5) for A real Tha. t is the only known class of
minimum uncertainty states for noncanonical operators.
The other is the class of states for which (C) = 0, i.e. , the
states for which the special uncertainty relation becomes
redundant. That class of states solves (5) for A imaginary.
For those states (F) is finite, i.e. , the observables A and
B are correlated in those states.

The issue of squeezing should also be reexamined in
light of the general uncertainty relation. Recall that if the
variances of the operators A and B satisfy the inequality
(4) then A is said to be squeezed if AA ( I(C) I/2, with
a similar condition for the squeezing of B. Generalizing
that definition to the case of the variances satisfying the
general inequality (2), we say that A is squeezed if

V'(C)'+ (F)'
2

with a similar condition for the squeezing of B. The
usual squeezing condition follows if (F) = 0. Clearly, if
the usual condition for squeezing in the variance of an op-
erator A is satisfied, then so is the general condition but
not necessarily vice versa. However, if (C) = 0, then the
usual condition for squeezing can never be satisfied. In
that case recourse must be taken to the general condition

(6)
I et us first determine the conditions under which even

the general uncertainty relation (2) fails to determine a
nontrivial lower bound on the product of variances, i.e.,
the conditions under which the right hand side of (2) is

zero but the left hand side is not. The right hand side of
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b,A + A b,B = A(C}. (9)
Equations (8) and (9) are solved by A = [(C) +
i(F}]/2kB . The class of states for A real, i.e. , (F) = 0,
have been widely studied for the canonical commutators
[2] and also for the noncanonical operators satisfying the
SU(2) [3—5] or SU(1,1) [3] commutation relations. That
is the case for which the special and the general un-
certainty relations are equivalent. The minimum uncer-
tainty states for the A complex in the case of canonical
commutation relations have been discussed by Dodonov
et al. [6].

The special uncertainty relation, on the other hand, is
redundant if (C) = 0. The minimum uncertainty states
in the case (C) = 0 are the solutions of (8) and (9) for
A pure imaginary. Since (C) can vanish only for non-
canonical operators, the states for A imaginary constitute
a diferent class of minimum uncertainty states for non-
canonical operators. That is the class for which the usual
uncertainty relation is redundant. Here we discuss some
properties of the states belonging to that class. Clearly,
A in that case will be positive or negative imaginary de-
pending on whether (F} is positive or negative. It will
be useful for further discussion to define the parameter
A = i tan(P). It then follows from (8) and (9) that

~B= (}. (10)
2 tan(P)

Hence it is clear that

2

2

Itan(4)I & 1,

I tan(g ) I
) 1. (12)

Comparing (ll) with (6) it follows that, since (C) = 0,

(2) is zero if (C) = (F) = 0. If (C) = 0, then, following
the commutation relation (1), (AB) = (BA). It then
follows that (F) defined in (3) will simultaneously be
zero if

(AB) = (BA) = (A)(B).

Thus, if (7) is satisfied, then the right hand side of (2) is
zero. The condition (7) holds, in particular, for a state
which is an eigenstate of A or of B. For those states
either LA = 0 or LB = 0, so that then the two sides of
(2) vanish simultaneously, i.e. , (2) is then a nonredundant
relation. However, if a state satisfies (7) so that the right
hand side of (2) is zero, but if it is not an eigenstate of A
or of B, then the variances AA and AB and consequently
the left hand side of (2) remain finite. Hence, if (7) is
satisfied by the states which are not eigenstates of A or
of B, then even the general uncertainty relation (2) fails
to give a nontrivial lower bound on AAAB.

Consider now the eigenvalue equation (5) which deter-
mines the states IQ} for which the general uncertainty
relation is satisfied with equality. It readily follows &om
(5) that

b,A —A AB = —iA(F},

therefore A is squeezed if
I tan(P)I & 1. Similarly, B is

squeezed if
I tan(P)I ) 1.

Let us now apply the preceding considerations to the
angular momentum operators S„,p = x, y, z obeying the
SU(2) commutation relations

[S,Sv] = iS„ [S„S] =iS„, [S„,S,] =iS .

The total angular momentum operator S = S +S +S,
commutes with all S„, p = z, y, z. Hence the angular
momentum operators couple only those states which have
the same eigenvalue for S . The eigenvalues of S are
known to be given by S(S+1), where S can be an integer
or half-odd integer. A particularly useful complete set
of angular momentum states is IS, m), where IS, m) is
an eigenstate of S, with eigenvalue m, where m = —S,
—S+ 1, . . .S. For the sake of definiteness let A = S,
B = S„,so that C = S,. It can be proved easily that in
the case of S = 1/2, the pure states for which the right
hand side of the general uncertainty relation (2) is zero
are also the eigenstates of S or of S„,i.e., the states for
which the left hand side of (2) also vanishes. Therefore,
in the case of spin-1/2, the general uncertainty relation
is nontrivial for all the pure states. For mixed states,
however, the right hand side of (2) may vanish but not
necessarily the left hand side, even for a spin-1/2 system.
An example of such a mixed state is I/(2S + 1), where
I is a (2S+ 1) x (2S + 1) identity matrix. However, for
S g 1/2, the two sides of the general uncertainty relation
(2) may not vanish simultaneously even for a pure state.

Next, we derive explicit expressions for the states sat-
isfying (5) for the angular momentum operators. The
properties of those states for A real have been dis-
cussed in Refs. [3—5]. Here, we solve (5) for imagi-
nary A = ita n(P). By defining Sy = S 6 iS„and
P = [exp(ig)(S+} + exp( —ig)(S )]/2, Eq. (5) can be
written in the form

[exp(ig)S++ exp( —ig)S ]I/} = 2PIQ}. (14)

Introducing the unitary operator

U = exp(eglS ) exp —e —Se),JJ (15)

Eq. (14) can be rewritten as

&s U'I&) = &I&}- (16)

Hence,

)= VIS, m}

7r—:exp(imP) exp ——[exp(iP) S+
4

—exp( —ig)S ] IS, m}

solves (16) with P = m. The set Ig ) of states is com-
plete, as those states are obtained as a result of a unitary
transformation on the complete set IS, m). Note that the
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state ]g g) is the same as an atomic coherent state [3].
It is straightforward to show that, in the state ]g ),

(S ) = m cos(P), (S„)= —m sin(P),

AS = z[S(S+1)—m ]sin (P),

AS„= 2 [S(S+ 1) —m ] cos (P),

(F)= (S,S„+S„S ) —2(S )(S„)

[S(S+ 1) —m'].
2

Thus (F) = 0 for P = 0, vr/2, vr, and 3z /2, and for those
values of P, either AS or b,S„ is zero so that then both
the sides of the uncertainty relation reach their minima.

The states ~Q ) can be generated, for example, in the
interaction of N identical two-level atoms with laser Beld.

If the field &equency is equal to the atomic transition fre-

quency, then the Hamiltonian in the interaction picture
has the form [3]

(19)

where o. is related to the field strength and the atomic
dipole moment. Since the state of the atomic system at
time t is given by exp( —iHt)]0), where ]0) is the state at
time t = 0, therefore, by preparing the atoms initially in
the state ~S, m) by an application of a suitable e.m. field
and by an appropriate choice of time and n, the states

) defined in (17) can evidently be generated.
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