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Observation of Fresnel difFraction in a two-beam laser interferometer
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A displacement-angle interferometer capable of 10 resolution in &inge division was developed

for the precise measurement of the silicon (220) lattice spacing by x-ray and optical interferome-

try. With a view to achieving 10 measurement uncertainty, the interference pattern was studied

by the Fresnel (Gaussian) scalar approximation of the free-space propagation of interfering beams.

Imperfect alignment and diffraction phenomena having been identi6ed, and subsequently experimen-

tally proved, as important error sources, remedial steps were identi6ed and taken with consequent

improvement of the experiment accuracy. The investigation brought into light theoretical and ex-

perimental evidences of corrections to the interference phase which were overlooked in previous

analyses.

PACS number(s): 42.62.Eh, 06.30.Bp, 07.60.Ly, 06.20.Jr

I. INTRODUCTION

The stabilized laser sources now readily available have
made it possible in the high-resolution interferometric
measurements of spatial dimensions to state accuracies
greatly exceeding the capabilities of previous techniques
and to observe interference features previously unre-
solved.

According to the principles of interferometry, a laser
beam is split into two beams, the reference and measur-
ing, which will recombine after propagating in the inter-
ferometer arms. If a plane wave is assumed to propagate
into the interferometer, a simple ray tracing shows (Fig.
1) that by moving a mirror over the distance s, the in-
terfering beams shift longitudinally with respect to each
other by 2a cos P, with P denoting the deviation from per-
fect alignment. The diKculty of high-precision interfer-
ometric measurements is related, among other phenom-
ena, especially to imperfect alignment and difFraction: a
real interferometer necessarily limits transverse extension
of the plane wave which is assumed to illuminate it, so
that diKraction is always present. As a result, the wave
&onts bend and their spacing varies from one point to

FIG. 1. Ray tracing of measuring beam re8ection. The
broken line represents a re6ected wave front. From elementary
geometry, longitudinal and transverse shearings are related
to mirror displacement by AH + BC = 28(1 —P /2) and
AC = 2p8.

another and is diferent from the wavelength of a plane
wave. In precision measurements, diffraction, which in-
creases quadratically with beam clip, is a basic problem
that was extensively investigated both theoretically [1—3]
and experimentally [4].

The authors of the present article are working on ap-
plications of x-ray and optical interferometry in the mea-
surement of the silicon d22o lattice spacing [5). The pre-
cision measurement of d22o is an essential step for the
determination of the Avogadro constant, for the measure-
ment of the de Broglie wavelength of thermal neutrons,
for the extension of the electromagnetic wavelength scale
to the x-ray and p-ray regions, and for the absolute de-
termination of atomic masses. The d22o experiment is
a basic exercise of dimensional metrology because dis-
placement and tilts of a silicon crystal, which constitutes
the movable part of the x-ray and optical interferome-
ter, must be measured with at least 1 pm accuracy and
1 nrad resolution, respectively. With this in view, the
authors developed a Michelson-type interferometer ca-
pable of measuring position and attitude simultaneously
and whose resolution is limited only by photon count-
ing noise [6]. Quality of the interference is essential to
the experiment and, in view of the 10 s desired accu-
racy, the authors have been stimulated to carry out an
experimental and theoretical analysis of possible errors
in interferometer operation.

The interference of two Gaussian beams was discussed
by one of the authors [7], and the analysis of diffraction
was extended to the general case of noncollinear beams.
As Fig. 1 shows, if the laser beam is imperfectly aligned,
when the mirror is moved the interfering beams shear lat-
erally by 2ssinP = 2Ps. In the running of the experiment
it appeared clear that, owing to an incomplete physical
interpretation, the contribution by transverse shearing
to the interference was overlooked in the previous anal-
ysis: whereas shearing has no in6uence in the case of an
unlimited plane wave, it is not so if the wave fronts are
bent by dif&action. The necessity of coping also with this
phenomenon prompted the investigation of the combined
e8ects of di8raction and imperfect alignment.

The article 6rst considers a geometry parametrization
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by which the effect of transverse shearing in the interfer-
ence of two Gaussian beams is described in the simplest
way. Then it shows that angular and transverse shear-
ings produce the same interference pattern and that,
when this pattern is analyzed, a seeming wave &ont ro-
tation is detected. A simple relation, which can be ver-
i6ed experimentally, is found between measured quanti-
ties and wave&ont bending by diffraction. The article
proves that mathematical investigation accounts for the
observed anomaly of interference and that the combined
effect of diffraction and imperfect alignment can be theo-
retically described and experimentally examined making
it possible dimensional measurements with 10 of a pe-
riod accuracy in fringe division.

II. EXPERIMENTAL SETUP

The x-ray and optical interferometer is schematically
shown in Fig. 2. The x-ray interferometer is geometri-
cally similar to a Mach-Zehnder interferometer [8]. The
incoming x-ray beam is coherently split and recombined
by multiple Laue diffraction to obtain interfering beams
both propagating in the same direction. The interfer-
ence pattern is scanned either by varying the length of
the path in one arm of the interferometer (as is done
in the optical equivalents) or by moving any one of the
three crystals (the analyzing crystal in the present case)
orthogonally to the difFracting planes. In the latter case,
as predicted by the dynamical theory of x-ray scattering
in perfect crystals, the interference period, actually 0.192
nm, is equal to that of the di8'racting planes. Owing to
its extreme sensitivity and linearity, the x-ray interfer-
ometer performs movement and rotation measurements
which are accurate to picometer and nanoradian levels
[9—11]. Analyzer yawing is revealed by the fine struc-
ture of the phase shift between the fringes belonging to
the transmitted and diffracted beams [12], and analyzer
pitching by the phase shift between &inges belonging to
the top and bottom portions of the interference pattern

[9]. Phase shifts are estimated by the fit of the relevant
photon counts versus analyzer displacement [10]. The
standard deviation of estimates is 10 of a fringe period,
which, in the case of the pitch measurement, is equivalent
to 1 nrad error.

Though the interference pattern is very sensitive to the
analyzer attitude, measurements of pitch and yaw by x-
ray interferometry are not suitable for on-line correction
of guiding errors by servo-control because of the limited
bandwidth of the measuring chain. Attitude measure-
ments by optical interferometry were therefore investi-
gated. The final technique [13] is based on an extension
of angle interferometry in which the interferometer arms
are folded so as to use a single beam. DifFerent parts
of the beam strike different parts of the analyzer and,
as in standard angle interferometry, the difference in the
optical paths, 68 = aD, is proportional to the analyzer
rotation o. with D the distance between the centers of the
two spots. The interference pattern being integrated on
the four slices of a four-quadrant diode, the angle values
are given by the differential displacements between the
vertical and the horizontal portions of the spot. The dis-
placement is simultaneously obtained by averaging the
four partial signals.

When operating in vacuo, the necessary resolution is
obtained by polarization encoding [14] and phase modu-
lation [6]. With this technique, the phase shift between
the two linearly and orthogonally polarized beam compo-
nents, which represent the reference and the measuring
beams, is modulated by a Pockels's cell and noise is cor-
rected for by driving the modulator to lock to zero the
static phase shift at the interferometer entrance. At each
dark or bright fringe (the balance position of the inter-

ferometer) a 10 resolution in fringe division has been
demonstrated, which is equivalent to sensitivity of 1 pm
and 1 nrad in displacement and angle measurements, re-
spectively. Positioning with picometer resolution and the
attenuation of seismic disturbances are made possible by
a feedback loop driving a piezoelectric element to lock
the guide to a reference value or to a reference path [15].

Mo Kui

III. THEORY

FIG. 2. Schematic drying of the x-ray and optical inter-
ferometer. Mo Ko.i x-ray beam, Cl and C2 fixed and mov-
able (analyzer) crystals of the x ray interfe-rometer, P and Q
position-sensitive detectors, He-Ne laser beam, M fixed mir-
ror. X-ray and optical fringes are scanned by moving the
analyzer over the distance 8. Laser beam and interferome-
ter alignments are varied by tilting the beam-delivering fiber
(rotation P) and the analyzer (rotation cr).

With reference to the Fig. 3, let us consider two in-
terfering beams produced by an interferometer illumi-
nated by a monochromatic Gaussian beam having unit
amplitude, spot size mo at the beam waist, wave number
k = 2vr/A, and confocal parameter b = knjo. Let us also
denote by v' the radial distance &om the beam axis, by
2n and 2s cos P the misalignment and the shift between
the interfering wavefronts (n and s being the geometric
misalignment and shift between the interferometer mir-

rors), by z the distance of the observation plane from the
beam waist, and by zv and 1/R the spot size and wave-
front curvature at the observation plane [16]. A reference
&arne is attached to each beam. Each of the &ames has
its origin at the beam waist and its g axis coincides with
the beam axis, the positive direction being toward the
observation plane. The transformation law between the
two &ames is given by
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where the x and y axes have been taken along the bor-
ders of detector portions. The examination of a general
configuration of the interferometer and the detector [13]
does not further clarify the physics of the system, but
merely complicates the mathematics. The overall power

on each portion is given by the integral

e cos(2xt) dt =——at =1
0 2

2
e a (15a)

and

1
e ' sin(2xt) dt =—

0 2
e ~ erfi(z/~a), (15b)

S;= I(x, y) dzdy
A;

= C + Bcos 2ks(1 —bk —P /2) + iI(;,

(10) where erfi(z) = —ierfi(z) is the imaginary error function,
we obtain

which extends over the ith quadrant of the observation

plane and in which

42,4 ——0, and

1 + erfi(c2i()/4) 2

exp 2(c2i()/4)2
(16a)

C = G(z, y) dzdy =
A, 8

(1la)
2«fi(c2i()/4)

tan
1 —erfi(c2u)/4) 2 ' (16b)

2

8 = G(z, y) cos g(z, y) dz dy
A;

2

+ G(z, y)sin g(z, y) dxdy)
A,

(lib)

are independent (within the approximations here consid-

ered) of the specific quadrant over which the integration
is carried out, and

G (z, y) sin g(z, y) dz dy

tan@; =

f G(z, y) cos g(z, y) dz dy
A;

(1lc)

sing(z, y) = cir —c2(z+—y)/~2,

Owing the presence of the function G(r), if Q(r = u)) «
1, that is, in the case of a very small rotation, we can
compute the integrals in Eq. (llc) by using the approxi-
mations cos g(z, y) = 1, and

where the plus or minus sign still refers to the first or
third quadrant. The contrast and phase of the integrated
signal and the range of application of the approximation
(14) are shown in Fig. 4.

To simplify the analysis of the angle measurement prin-
ciples, let us assume the interferometer perfectly aligned,
s = n = 0, and P = 0. The rotation a of the mirror
causes the rotation 2o. of the measuring beam around
the point zr, the rotation P = u of the baseline, and the
transverse shearing d = —2nzl. The mean phase shift
between the top and bottom portions of the interference
pattern is given by A4 = 2kaD, where

2m B+Mzl
~sr MB

is the equivalent distance between the two spots. Two
limits can be considered: the near field limit (plane wave)

to which M = 1, 8 = oo, and D = 2m/~7r will corre-

spond, and the far field limit (spherical wave) to which

M = B = oo and D = 0 will correspond. The null

where c2 ——k(2n/M —d/R), which gives iII, as the mean

of g(r) for each ray of the bundle weighted by the ray

intensity G(r). Then, by using [18]
o 2

M0L.
C0
O

4
(13a) 0.75

1.5

f te dt = —,
p 2G

(13b)
0.5

we obtain I' = 1, 42 4
———cito /2, and

tU
@13 2C1tU + r C2&

+7l
(14)

0.5
0.25

where I' = B/C is the contrast and the plus or minus

sign refers to the first or third quadrant, respectively. In
the case of a large rotation, a better approximation is

obtained by setting ci ——0 in Eq. (4), an approxima-
tion allowed by the negligible value of the c1r term with

respect to the others. By using [18]

0 0.5 1.5 2 2.k'

c,w/4 (rod)

FIG. 4. Contrast and phase of fringes belonging to a single

quadrant of the observation plane. The broken line is the
lowest order approximation (14) of the phase.
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spacing, which occurs also when zI = —R/M, empha-
sizes the fact that the interference pattern is insensitive
to rotation. In fact, in the foregoing cases, the rotation
occurs at the curvature center of wave fronts (by using
the relations given in [7,16] it can be proved that z —zI
= z+ R/M = R) and, consequently, the interfering wave

&onts are not shifted at all.
Equation (14) expresses formally the fact that diffrac-

tion and shearing jointly bring about a seeming rotation,
which cannot be produced unless both phenomena are
present at the same tiro.e. In fact, their contribution to
phase combines with that of rotations through the ratio
d/R which is zero if d = 0 (no transverse shearing) or
if R ~ oo (no difFraction). As shown in Eq. (2) and in
Fig. 1, mirror movement causes the interfering beams to
shear laterally with respect to each other and this fact
can be used to investigate experimentally the effect of
shearing and diffraction. Let us consider the interfering
beam collinear but the baseline imperfectly aligned so
that, according to Eq. (2), transverse shearing, d = 2sP,
varies linearly with mirror position. The mean phase
shift between the top and bottom portions of the inter-
ference pattern is now given by A4' = 2kngD, where the
seeming guiding error

M 8

R+ Mz

depends linearly on the mirror position and the base-
line direction. This relation, which gives the error of the
interferometric measurement of parasitic tilts accompa-
nying the mirror movement in terms of the geometry of
measurement, is central in the present work because it
can be verified experimentally.

IV. RESULTS

To assess the geometry of interference, the waist size
and location were estimated &om beam profile measure-
ments at a sequence of points along the beam axis.
Results are shown in Fig. 5, which gives also location
of detector, z = (1.6 + 0.2) m, and of interferometer,
zI = (2.1 +0.2) m. According to the convention adopted,
the positive direction of the beam axis is toward the de-
tector, so that, in the figure, the beam propagates &om
right to left, though measurements were actually carried
out on the beam emerging &om the interferometer. The
spot size at the beam waist, mp ——(0.61 + 0.01) mm,
and the confocal parameter, b = (3.69 + 0.04) m, were
obtained by fitting data by a hyperbola. The equivalent
spacing between spots, D = 1 mm, calculated &om these
values by using Eq. (17), is in good agreement with the
value obtained by the calibration of the angle interferom-
eter [13].

When driving the interferometer to produce a uniform
interference pattern we directly observe the beam astig-
matism. By acting on mirror positions and tilts, a uni-
form interference pattern can be obtained only if the wave
&onts are perfectly plane or spherical. In our specific
case, the mean phase of the interference pattern is moni-
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FIG. 5. Laser beam profile. The solid line is the best fit
hyperbola and zI and z are interferometer and detector loca-
tions.
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FIG. 6. Projection error of the optical interferometer in
the measurement of 80 pm displacements vs laser beam align-
ment. The solid line is the best-fit parabola.

tored at top (bottom) and left (right) portions, but only
three degrees of &eedom are available to match the in-

terfering wave fronts, namely, a shift and two rotations.
Consequently, since only three portions of the interfer-
ence pattern can be driven to have the same mean phase,
the excess of the fourth measures the astigmatism. The
measured value is A/100 over 1 mm offset.

The analyzer is guided orthogonally to the diffracting
planes over displacements ranging &om zero to one hun-

dred micrometers and guiding errors (tilts) are compen-
sated for by feeding the angle values into its adjusting
elements. At both the start and end points, a few x-ray
fringes are scanned. During scanning the photon counts
relating to the top and bottom portions of the x-ray inter-
ference patterns and the corresponding top and bottom
displacements of the analyzer are stored for subsequent
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FIG. 8. Ghost rotation vs analyzer displacement. Align-
ment angle of the laser beam is P = 0.24 mrad. The solid line
is the best-fit straight line.

analysis in order to compare the x-ray and optical mea-
surement values of displacement and pitch.

To verify experimentally Eq. (18) the alignment angle

P of the laser beam is varied by tilting the optical fiber
delivering the beam to the interferometer in the vertical
plane. The projection error shown in Fig. 6 is given by
the relative difference between the optical and the x-ray
measurements of the analyzer displacement, that is, be-
tween displacement projections on the beam direction,
which is varied by 6ber tilting, and on the normal to the
diffracting planes, which remain Gxed. Unfortunately, in
setting up the experiment, no device was mounted for
on-line measurements of the incidence angle of the laser
beam on the analyzer. Consequently, the voltage sup-

plying the Aber tilter was put proportional to this angle.
The angle origin and the scale factor were obtained by
fitting the data in Fig. 6 according to the parabola P~/2.
The data shown in the 6gure refer to movements over 250
optical orders, about 80 pm, so that 10 relative errors
correspond to 2.5 x 10 relative errors in the subdivision
of a single &inge. The figure exhibits clearly the very high
sensitivity of combined x-ray and optical interferometry.

When the pitch is locked to the zero reading of the
angle interferometer, the ghost rotation caused by the
combined effects of diffraction and transverse shearing is
corrected for by rotating the analyzer by a countersign

angle. Since this rotation causes a phase shift between
the top and bottom portions of the x-ray interference
pattern, it can be easily measured [9]. Results are shown
in Figs. 7 and 8. Solid lines are the fit of data according to
the linear dependence on the baseline and on the analyzer
position predicted by Eq. (18). The estimated slopes,
19.1x10 s and 5.3 x 10 ~ nrad/ym, agree with the values
calculated by application of Eq. (18), namely, 18.7 x 10
and 5.7 x 10 ~ nrad/pm.

Figure 7 shows also that the ghost rotation is not zero,
as predicted by Eq. (18), when the projection error is
minimum, that is, when P = 0. The nonzero value ev-
idences wave front distortions other than astigmatism,
which make curvature differ from one point to another
in the beam cross section. In fact, if the geometric de-
scription (8) of the phase contributions to the interference
pattern is recalled, it is evident that the absence of a con-
stant term in Eq. (18) is a consequence of the assumption
of a constant curvature.
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